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Overview

The Ordinary Case Plancherel measure PPlan
n on (all) partitions of n:

PPlan
n ({λ}) = (f λ)2

n!
.

The Strict Case Shifted Plancherel measure PSPl
n on strict partitions

of n:

PSPl
n ({λ}) = 2n−ℓ(λ)(gλ)2

n!
.

(A partition λ is said to be strict if all parts of λ are pairwise distinct.)

Contents of this talk.

Main Topic: Polynomiality theorems of shifted Plancherel averages
(previous works due to Stanley (2010), Olshanski (2010), Okada,
Panova (2012), M-Novak (2013), Han-Xiong (2016), . . . )

Discussion: Limit Shape Problems, working in progress with
Tomoyuki Shirai (Kyushu Univ.)
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Plancherel measures

Pn: the set of (all) partitions of n.
Y (λ): the Young diagram of λ ∈ Pn.

Example (Young diagram and standard Young tableau)

λ = (4, 2, 2, 1), Y (λ) = a SYT : 1 2 6 7

3 5

4 9

8

Definition (Plancherel measure on Pn)

PPlan
n ({λ}) := (f λ)2

n!
(λ ∈ Pn).

where f λ is the number of standard Young tableaux (SYT) of shape Y (λ).
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Strict partitions

A partition λ = (λ1, λ2, . . . , λl) is called strict if all parts λi (> 0) are
distinct.

SPn: the set of all strict partitions of n.

Example (shifted Young diagram and standard Young tableau)

λ = (5, 3, 2) ∈ SP10.

Y (λ) = S(λ) =

a SYT of shape S(λ): 1 2 4 5 8

3 6 9

7 10
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Plancherel measures on strict partitions

SPn: the set of all strict partitions of n.

Definition (Plancherel measure on SPn)

PSPl
n ({λ}) := 2n−ℓ(λ)(gλ)2

n!
(λ ∈ SPn).

where gλ is the number of SYT of shape S(λ).
It is called the Plancherel measure on strict partitions or shifted Plancherel
measure.

This is indeed a probability measure on SPn by virtue of the identity∑
λ∈SPn

2n−ℓ(λ)(gλ)2 = n!.

This identity can be proved by using projective representation theory of
symmetric groups or shifted RSK correspondences (Sagan (1987), Worley
(1984)).
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PPlan
n versus PSPl

n

In the introduction, we will compare two probablities PPlan
n and PSPl

n .

The Ordinary Case Plancherel measure on Pn, all partitions of n:

PPlan
n ({λ}) = (f λ)2

n!
.

The Strict Case Plancherel measure on SPn, strict partitions of n:

PSPl
n ({λ}) = 2n−ℓ(λ)(gλ)2

n!
.

Comparisons

Limit shape problem (Logan-Shepp-Vershik-Kerov Theorem)
Fluctuations of row-lengths λi (Baik-Deift-Johansson Theorem)
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Logan-Shepp-Vershik-Kerov Limit Shape

The Ordinary Case Limit shape (Russian style)

-2 -1 1 2

0.5

1.0

1.5

2.0

2.5

y = Ω(x) =

{
2
π (x arcsin

x
2 +

√
4− x2) (|x | ≤ 2)

|x | (|x | ≥ 2).

Note that Ω′(x) = 2
π arcsin x

2 (|x | ≤ 2).
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Limit Shape (strict case): Conjecture

The Strict Case
Conjecture [Ivanov (2006), Bernstein-Henke-Regev (2007)].
English style, unshifted Young diagram Y (λ)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.8

-0.6

-0.4

-0.2

y = Ωstrict(x) =

{
1
π (x arccos

x
2
√
2
−

√
8− x2) (0 ≤ x ≤ 2

√
2)

0 (x > 2
√
2).

Note that Ω′strict(x) =
1
π arccos x

2
√
2
(0 ≤ x ≤ 2

√
2) and

Ωstrict(0) = −2
√
2

π = −0.90....
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Limit distribution for λi (The Ordinary Case)

EPlan
n [λ1] ∼ 2

√
n (n → ∞).

Theorem (Baik-Deift-Johansson (1999))

lim
n→∞

PPlan
n

(
λ1 − 2

√
n

n1/6
≤ x

)
= FGUE(x),

where FGUE is the Gaussian Unitary Ensemble Tracy-Widom distribution.

Theorem (Borodin-Okounkov-Olshanski, Johansson, Okounkov
(2000))

Let λ = (λ1, λ2, . . . ) be distributed w.r.t. PPlan
n . The random variables

λi − 2
√
n

n1/6
, i = 1, 2, . . .

converge to the Airy ensemble, in joint distribution.
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Limit distribution for λi (The Strict Case)

ESPl
n [λ1] ∼ 2

√
2n (n → ∞).

Theorem (Tracy-Widom (2004))

lim
n→∞

PSPl
n

(
λ1 − 2

√
2n

(2n)1/6
≤ x

)
= FGUE(x).

Theorem (M (2005))

Let λ = (λ1, λ2, . . . ) be distributed w.r.t. PSPl
n . The random variables

λi − 2
√
2n

(2n)1/6
, i = 1, 2, . . .

converge to the Airy ensemble, in joint distribution.
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Stanley’s polynomiality theorem (The Ordinary Case)

Λ = ΛQ: the algebra of symmetric functions with Q-coefficients.

Theorem (Stanley, Olshanski (2010))

For any symmetric function f ∈ Λ,

∑
λ∈Pn

(f λ)2

n!
f (λ1 − 1, λ2 − 2, . . . , λn − n)

is a polynomial in n.

For example, if f = p1 = x1 + x2 + · · · ,

∑
λ∈Pn

(f λ)2

n!
p1(λ1 − 1, λ2 − 2, . . . , λn − n) =

∑
λ∈Pn

(f λ)2

n!

n∑
i=1

(λi − i)

=− n(n − 1)

2
.
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Main polynomiality theorem (The Strict Case)

Recall Λ = Q[p1, p2, p3, p4, . . . ], where

pk(x1, x2, . . . ) =
∑
i≥1

xki (power-sum)

Define the subalgebra Γ = Q[p1, p3, p5, . . . ].

Main Polynomiality Theorem ([M])

For any f ∈ Γ, the shifted Plancherel average

ESPl
n [f ] :=

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!
f (λ1, λ2, . . . , λℓ(λ))

is a polynomial in n.

Remark: We can not replace Γ by Λ.
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Main polynomiality theorem (The Strict Case)

Example

ESPl
n [p1] =

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!

ℓ(λ)∑
i=1

λi = n.

ESPl
n [p3] =

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!

ℓ(λ)∑
i=1

λ3
i = 6

(
n

2

)
+

(
n

1

)
.

ESPl
n [p5] =

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!

ℓ(λ)∑
i=1

λ5
i = 80

(
n

3

)
+ 30

(
n

2

)
+

(
n

1

)
.

(The first identity is trivial because
p1(λ) = p1(λ1, . . . , λl) =

∑
i λi = |λ| = n for λ ∈ SPn.)
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Main polynomiality theorem (The Strict Case)

Remark

The Plancherel average

ESPl
n [p2] =

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!

ℓ(λ)∑
i=1

λ2
i

is NOT a polynomial in n.

ESPl
n [p1] = n, ESPl

n [p3] = 3n2 − 2n.

Conjecture ([M])

ESPl
n [p2] ∼

32
√
2

9π
n

3
2 ≒ 1.60n

3
2 .

(We will observe this conjecture in the end of this talk.)
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Schur Q-functions

We show ”Main Polynomiality Theorem”. Our proof is exactly similar to
[Olshanski (2010)].

Definition (Schur P-functions and Q-functions)

Let λ be a strict partition of length l := ℓ(λ) ≤ N. The Schur
P-polynomial in N variables is defined by

Pλ|N(x1, . . . , xN) =
1

(N − l)!

∑
w∈SN

w

xλ1
1 · · · xλl

l

l∏
i=1

N∏
j=i+1

xi + xj
xi − xj

 .

The Schur P-function Pλ is defined by the projective limit Pλ = lim
←−

Pλ|N .

The Schur Q-function Qλ is defined by Qλ = 2ℓ(λ)Pλ.

It is well known that

Γ = Q[p1, p3, p5, . . . ] =
∞⊕
n=0

⊕
λ∈SPn

QPλ =
∞⊕
n=0

⊕
λ∈SPn

QQλ.
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Factorial Schur Q-functions

Definition (Okounkov, Ivanov (1999))

Let λ be a strict partition of length l := ℓ(λ) ≤ N. The factorial Schur
P-polynomial in N variables is defined by

P∗λ|N(x1, . . . , xN) =
1

(N − l)!

∑
w∈SN

w

x↓λ1
1 · · · x↓λl

l

l∏
i=1

N∏
j=i+1

xi + xj
xi − xj

 ,

where we set
x↓k = x(x − 1)(x − 2) · · · (x − k + 1).

The factorial Schur P-function P∗λ is defined by their projective limit
P∗λ = lim

←−
P∗λ|N .

The factorial Schur Q-function Q∗λ is defined by Q∗λ = 2ℓ(λ)P∗λ.

P∗λ ∈ Γ is not homogeneous. The highest degree term of P∗λ is Pλ.
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Proof

Main Polynomiality Theorem ([M])

ESPl
n [f ] :=

∑
λ∈SPn

PSPl
n [λ]f (λ1, λ2, . . . , λn)

is a polynomial in n for any f ∈ Γ.

Proof:

{P∗ν}ν∈SP form a linear basis of Γ.

Therefore it is sufficient to prove that ESPl
n [P∗ν ] is a polynomial in n

for each strict partition ν.

In this case, we can obtain the explicit expression

ESPl
n [P∗ν ] = 2k−ℓ(ν)gν

(
n

k

)
(ν ∈ SPk),

which is proved by using (well-studied) orthogonality relations for
Schur Q-functions.
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First degree estimate

For a given function f ∈ Γ, we want to estimate the degree of the
polynomial ESPl

n [f ] in n.

First, we consider the standard degree filtration of symmetric functions (as
a “polynomial” in variables x1, x2, . . . ).

deg pk = k (k = 1, 2, 3, . . . ).

(deg xi = 1)

Proposition (A simple estimate)

If deg f = k , then the degree of the polynomial ESPl
n [f ] is at most k .

Proof:

For the factorial Schur P-function P∗ν , we have degP∗ν = |ν| =
∑

i νi .

We showed ESPl
n [P∗ν ] = 2|ν|−ℓ(ν)gν

( n
|ν|
)
. In particular, the polynomial

ESPl
n [P∗ν ] has degree |ν|.
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Second degree estimate

Proposition (A simple estimate)

If deg f = k , then the degree of the polynomial ESPl
n [f ] is at most k .

However, this degree estimate is not sharp in some cases:

deg p3 = 3 but ESPl
n [p3] = 6

(
n

2

)
+

(
n

1

)
= 3n2 − 2n.

We now introduce the second degree filtration deg′ on Γ by

deg′ p2k−1 = k.

Theorem (Han-Xiong (2016), [M])

If deg′ f = k, then the degree of the polynomial ESPl
n [f ] is at most k.
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A new identity

Theorem ([M] conjectured by Soichi Okada)

Let r ≥ 1 and define the function φr on SP by

φr (λ) =

l(λ)∑
i=1

r∏
k=−r

(λi + k).

Then we have

ESPl
n [φr ] =

2r (2r + 1)!

(r + 1)!

(
n

r + 1

)
.

Proof:

It is easy to see that φr =
∑r

j=0(−1)r−jer−j(1
2, 22, . . . , r2)p2j+1.

In particular, φr ∈ Γ and deg′(φr ) = r + 1.

Therefore ESPl
n [φr ] is a polynomial in n of degree (at most) r + 1.

Check that both sides coincide if n = 0, 1, . . . , r , r + 1.
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Stanley’s polynomiality theorem 2 (The Ordinary Case)

Definition

For each box u in a Young diagram Y (λ), we define its content cu ∈ Z by

0 1 2 3 4

−1 0 1 2

−2 −1 0 1

−3 −2

Theorem (Stanley, Olshanski (2010))

For any symmetric function f ∈ Λ,

∑
λ∈Pn

(f λ)2

n!
f (cu : u ∈ Y (λ))

is a polynomial in n.
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A formula for content evaluations

Theorem [Fujii-Kanno-Moriyama-Okada (2008)]

For each r ≥ 1, define a symmetric function Ur by

Ur (x1, x2, . . . ) =
∑
j≥1

r−1∏
i=0

(x2j − i2).

Then ∑
λ∈Pn

(f λ)2

n!
Ur (cu : u ∈ Y (λ)) =

(2r)!

(r + 1)!

(
n

r + 1

)

U1 =
∑
j

x2j = p2, U2 =
∑
j

x2j (x
2
j − 1) = p4 − p2,

U3 =
∑
j

x2j (x
2
j − 1)(x2j − 4) = p6 − 5p4 + 4p2, . . .
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Polynomiality theorem 2 (The Strict Case)

Definition

For each box u in S(λ), we define its content cu by

0 1 2 3 4 5 6

0 1 2 3 4

0 1

Note that cu are always non-negative integers.
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Polynomiality theorem 2 (The Strict Case)

Polynomiality Theorem 2 (Han-Xiong (2016), [M])

For any symmetric function f ∈ Λ,

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!
f (ĉu : u ∈ S(λ))

is a polynomial in n. Here, we set

ĉu =
1

2
cu(cu + 1).

Why do we consider ĉu instead of cu in the strict case?

The Ordinary Case: a content cu is an eigenvalue of Jucys-Murphy
elements Jk = (1, k) + (2, k) + · · ·+ (k − 1, k) ∈ Q[Sn].
The Strict Case: the quantity ĉu is the square of an eigenvalue of spin
Jucys-Murphy elements [Vershik-Sergeev (2008)].
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Our proof of Polynomiality Theorem 2

Key proposition ([M])

The algebra Γ coincides with the algebra generated by the functions on
SP

λ 7→ |λ|;
λ 7→ f (ĉu : u ∈ S(λ)) (f ∈ Λ).

Remark: The counterpart in The Ordinary Case is proved in [Olshanski
(2010)].

Example

p2(ĉu : u ∈ S(λ)) =
∑

u∈S(λ)

(
cu(cu + 1)

2

)2

=
1

20
p5(λ)−

1

12
p3(λ) +

1

30
p1(λ).
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A formula for content evaluations

A strict version of the theorem of Fujii-Kanno-Moriyama-Okada.

Theorem (Han-Xiong (2016))

For each r ≥ 1, define a symmetric function Vr by

Vr (x1, x2, . . . ) =
∑
j≥1

r−1∏
i=0

(xj −
i(i + 1)

2
).

Then ∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!
Vr (ĉu : u ∈ S(λ)) =

(2r)!

(r + 1)!

(
n

r + 1

)

V1 = p1, V2 = p2 − p1, V3 = p3 − 4p2 + 3p1, . . .
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Stanley’s polynomiality theorem 3 (The Ordinary Case)

Definition

Hook-length hu for each u ∈ Y (λ)

7 5 2 1

4 2

3 1

1

Theorem (Stanley (2010))

For any symmetric function f ∈ Λ,

∑
λ∈Pn

(f λ)2

n!
f (h2u : u ∈ Y (λ))

is a polynomial in n.

Sho Matsumoto (Kagoshima, Japan) Plancherel measures on strict partitions 20 February, 2017 33 / 47



The Strict Case hook-lengths

Let λ be a strict partition.
Recall the shifted Young diagram S(λ) and the double diagram D(λ).

Example (Diagrams and hook-lengths hu)

λ = (5, 4, 2, 1) ∈ SP12.

S(λ) = D(λ) =
10 9 7 6 5 2

9 8 6 5 4 1

7 6 4 3 2

6 5 3 2 1

2 1

Let f ∈ Λ. Consider two kinds of functions f HS and f HD on SP defined by

f HS(λ) =f (h2u : u ∈ S(λ)),

f HD(λ) =f (h2u : u ∈ D(λ)).
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Polynomiality Theorem 3 (The Strict Case)

f HS(λ) = f (h2u : u ∈ S(λ)), f HD(λ) = f (h2u : u ∈ D(λ)).

Theorem ([M])

For power-sums f = pk , we see that f HS ∈ Λ \ Γ and f HD ∈ Γ.

Corollary (Han-Xiong (2016b), [M])

For any symmetric function f ∈ Λ,

∑
λ∈SPn

2n−ℓ(λ)(gλ)2

n!
f (h2u : u ∈ D(λ))

is a polynomial in n. (However, if we replace D(λ) by S(λ), then the
average is not a polynomial in n.)
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A formula for hook-length evaluations

The Ordinary Case

Theorem (Panova (2012) conjectured by Okada)

For each r ≥ 0,

∑
λ∈Pn

(f λ)2

n!

∑
u∈Y (λ)

r∏
i=1

(h2u − i2) =
(2r)!

2(r + 1)!

(
2r + 2

r + 1

)(
n

r + 1

)
.

The Strict Case
The counterpart of this identity is not found.
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Settings for Limit Shape Problem

We deal with a (ordinary) Young diagram Y (λ) (not a shifted
diagram S(λ)) of a strict partition λ = (λ1, λ2, . . . , λl) ∈ SPn.

Y (λ) =

The Young diagram Y (λ) is identified with the step function
y = λ(x) (x ≥ 0) given by
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Settings for Limit Shape Problem

The derivative of the function λ(x) is

λ′ =

ℓ(λ)∑
j=1

δλj

Next, we consider the scaling

y = λ
√
n(x) :=

1√
n
λ(
√
nx).

Note that ∫ ∞
0

λ(x) dx = −n,

∫ ∞
0

λ
√
n(x) dx = −1.

Limit Shape Problem

Consider a sequence (λ(n))n≥1 of random strict partitions λ = λ(n) of n.

We want to show that, in the limit n → ∞, the random variables λ
√
n

converge (in some sense) to a function Ω.
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Limit Shape Problem (The Strict Case): Conjecture

A candidate of Limit Shape
[Ivanov (2006), Bernstein-Henke-Regev (2007)].
English style, unshifted Young diagram Y (λ)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.8

-0.6

-0.4

-0.2

y = Ωstrict(x) =

{
1
π (x arccos

x
2
√
2
−

√
8− x2) (0 ≤ x ≤ 2

√
2)

0 (x > 2
√
2).

Ω′strict(x) =
1
π arccos x

2
√
2
(0 ≤ x ≤ 2

√
2),

Ωstrict(0) = −2
√
2

π = −0.90....
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Law of Large Numbers

Conjecture (1st form, uniform convergence)

Let λ(n) be a random strict partition of size n distributed according to

PSPl
n . Then, in probability,

lim
n→∞

sup
x>0

∣∣∣(λ(n))
√
n(x)− Ωstrict(x)

∣∣∣ = 0.

Conjecture (2nd form, weak convergence)

Let λ(n) be a random strict partition of size n distributed according to

PSPl
n . Then, in probability,

lim
n→∞

∫ ∞
0

xk(λ(n))
√
n(x)dx =

∫ ∞
0

xkΩstrict(x) dx

for any k = 0, 1, 2, . . . .

One can compute the integral
∫∞
0 xkΩstrict(x) dx easily.
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Law of Large Numbers

Conjecture (2nd form) is equivalent to the 3rd form.

Conjecture (3rd form)

Let λ(n) be as before. Then, in probability,

lim
n→∞

pk(λ(n))

n
k+1
2

=
2

3(k+1)
2 Γ(1 + k

2 )√
π(k + 1)2Γ(k+1

2 )
for any k = 1, 2, . . . .

Conjecture (4th form, much weaker version )

lim
n→∞

ESPl
n [pk ]

n
k+1
2

=
2

3(k+1)
2 Γ(1 + k

2 )√
π(k + 1)2Γ(k+1

2 )
for any k = 1, 2, . . . .
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Law of Large Numbers

Conjecture (4th form, much weak version )

lim
n→∞

ESPl
n [pk ]

n
k+1
2

=
2

3(k+1)
2 Γ(1 + k

2 )√
π(k + 1)2Γ(k+1

2 )
for any k = 1, 2, . . . .

Recall a Matsumoto-Okada identity

ESPl
n [φk ] =

2k(2k + 1)!

((k + 1)!)2
· n(n − 1)(n − 2) · · · (n − k)

for φk =
∑

i≥1
∏k

j=−k(xi + j). This implies that ESPl
n [p2k+1] is a

polynomial in n of degree k + 1 and

ESPl
n [p2k+1]

nk+1
→ 2k(2k + 1)!

((k + 1)!)2
=

[
2

3(k+1)
2 Γ(1 + k

2 )√
π(k + 1)2Γ(k+1

2 )

]
k 7→2k+1

Therefore Conjecture (4th form) holds true for k odd.
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Law of Large Numbers

Conjecture (4th form, weak version )

In the limit n → ∞,

ESPl
n [pk ] ∼

2
3(k+1)

2 Γ(1 + k
2 )√

π(k + 1)2Γ(k+1
2 )

· n
k+1
2 for any k = 1, 2, . . . .

However, if k is even, then ESPl
n [pk ] is not a polynomial in n.

So, our Main Polynomiality Theorem (Kerov’ approach, seen in
[Ivanov-Olshanski (2001)]) does not work for k even. (This is a
difficulty of The Strict Case, unlike The Ordinary Case.)

How can one prove Conjecture (4th form) for k even?
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Our Strategy

Conjecture (4th form, weak version )

In the limit n → ∞,

ESPl
n [pk ] ∼

2
3(k+1)

2 Γ(1 + k
2 )√

π(k + 1)2Γ(k+1
2 )

· n
k+1
2 for k even.

Joint work with Tomoyuki Shirai (Kyushu University), in progress

A random strict partition defines a Pfaffian point process on Z
([M (2005)]).

The 1-point correlation function is explicitly given by using Bessel
functions.

The expectation ESPl
n [pk ] is expressed as a computable infinite sum

involving Bessel functions.

We have a heuristic proof of Conjecture (4th form) but it is not
rigorous yet.
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Other open problems in The Strict Case

The Ordinary Case
Normalized character: for µ ∈ Pk and λ ∈ Pn with n ≥ k ,

Chµ(λ) = n(n − 1) · · · (n − k + 1)
χλ
µ∪(1n−k )

f λ
.

the function Chµ is a shifted-symmetric function.

Kerov polynomial: Chµ is a polynomial in free cumulants with
nonnegative integer-valued coefficients.

Stanley-Féray-Śniady polynomial: Chµ is a polynomial in
multi-rectangular coordinates of Young diagrams.

We can define a strict (or spin or projective) version Chstrictρ for odd

partition ρ. The function Chstrictρ on SP belongs to Γ.

Open problems

Find analogues of Kerov polynomials and S-F-Ś polynomials.
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Thank you for listening!

Merci de votre attention! ご静聴ありがとうございました。

1 Introduction: two kinds of Plancherel measures.

2 Polynomiality of Plancherel Averages
Main Polynomiality Theorem
Proof of Polynomiality Theorem. Factorial Schur Q-functions
Degree estimate

3 Content Evaluations

4 Hook-Length Evaluations

5 Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Sho Matsumoto (Kagoshima, Japan) Plancherel measures on strict partitions 20 February, 2017 47 / 47


	Introduction: two kinds of Plancherel measures.
	Polynomiality of Plancherel Averages
	Main Polynomiality Theorem
	Proof of Polynomiality Theorem. Factorial Schur Q-functions
	Degree estimate

	Content Evaluations
	Hook-Length Evaluations
	Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

