Plancherel measures on strict partitions: Polynomiality and limit shape problems

Sho MATSUMOTO

Kagoshima University, JAPAN

Workshop on Asymptotic Representation Theory at IHP, Paris, France

Overview

- The Ordinary Case Plancherel measure $\mathbb{P}_{n}^{P l a n}$ on (all) partitions of n :

$$
\mathbb{P}_{n}^{\text {Plan }}(\{\lambda\})=\frac{\left(f^{\lambda}\right)^{2}}{n!}
$$

- The Strict Case Shifted Plancherel measure $\mathbb{P}_{n}^{S P l}$ on strict partitions of n :

$$
\mathbb{P}_{n}^{\mathrm{SPl}}(\{\lambda\})=\frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!}
$$

(A partition λ is said to be strict if all parts of λ are pairwise distinct.)
Contents of this talk.

- Main Topic: Polynomiality theorems of shifted Plancherel averages (previous works due to Stanley (2010), Olshanski (2010), Okada, Panova (2012), M-Novak (2013), Han-Xiong (2016), ...)
- Discussion: Limit Shape Problems, working in progress with Tomoyuki Shirai (Kyushu Univ.)
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages
- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations

4 Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Plancherel measures

\mathcal{P}_{n} : the set of (all) partitions of n.
$Y(\lambda)$: the Young diagram of $\lambda \in \mathcal{P}_{n}$.
Example (Young diagram and standard Young tableau)

$$
\lambda=(4,2,2,1),
$$

Definition (Plancherel measure on \mathcal{P}_{n})

$$
\mathbb{P}_{n}^{\text {Plan }}(\{\lambda\}):=\frac{\left(f^{\lambda}\right)^{2}}{n!} \quad\left(\lambda \in \mathcal{P}_{n}\right)
$$

where f^{λ} is the number of standard Young tableaux (SYT) of shape $Y(\lambda)$.

Strict partitions

- A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{1}\right)$ is called strict if all parts $\lambda_{i}(>0)$ are distinct.
- $\mathcal{S} \mathcal{P}_{n}$: the set of all strict partitions of n.

Example (shifted Young diagram and standard Young tableau)
 $\lambda=(5,3,2) \in \mathcal{S} \mathcal{P}_{10}$.

$$
\text { a SYT of shape } S(\lambda):
$$

Plancherel measures on strict partitions

$\mathcal{S P} \mathcal{P}_{n}$: the set of all strict partitions of n.

Definition (Plancherel measure on $\mathcal{S} \mathcal{P}_{n}$)

$$
\mathbb{P}_{n}^{\mathrm{SPl}}(\{\lambda\}):=\frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} \quad\left(\lambda \in \mathcal{S} \mathcal{P}_{n}\right)
$$

where g^{λ} is the number of SYT of shape $S(\lambda)$.
It is called the Plancherel measure on strict partitions or shifted Plancherel measure.

This is indeed a probability measure on $\mathcal{S P}{ }_{n}$ by virtue of the identity

$$
\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} 2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}=n!
$$

This identity can be proved by using projective representation theory of symmetric groups or shifted RSK correspondences (Sagan (1987), Worley (1984)).

$\mathbb{P}_{n}^{\text {Plan }}$ versus $\mathbb{P}_{n}^{\mathrm{SPl}}$

In the introduction, we will compare two probablities $\mathbb{P}_{n}^{\mathrm{Plan}}$ and $\mathbb{P}_{n}^{\mathrm{SPl}}$.

- The Ordinary Case Plancherel measure on \mathcal{P}_{n}, all partitions of n :

$$
\mathbb{P}_{n}^{\text {Plan }}(\{\lambda\})=\frac{\left(f^{\lambda}\right)^{2}}{n!}
$$

- The Strict Case Plancherel measure on $\mathcal{S P}{ }_{n}$, strict partitions of n :

$$
\mathbb{P}_{n}^{\mathrm{SPl}}(\{\lambda\})=\frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!}
$$

- Comparisons
- Limit shape problem (Logan-Shepp-Vershik-Kerov Theorem)
- Fluctuations of row-lengths λ_{i} (Baik-Deift-Johansson Theorem)

Logan-Shepp-Vershik-Kerov Limit Shape

The Ordinary Case Limit shape (Russian style)

Note that $\Omega^{\prime}(x)=\frac{2}{\pi} \arcsin \frac{x}{2} \quad(|x| \leq 2)$.

Limit Shape (strict case): Conjecture

The Strict Case
Conjecture [Ivanov (2006), Bernstein-Henke-Regev (2007)]. English style, unshifted Young diagram $Y(\lambda)$

$$
y=\Omega_{\text {strict }}(x)= \begin{cases}\frac{1}{\pi}\left(x \arccos \frac{x}{2 \sqrt{2}}-\sqrt{8-x^{2}}\right) & (0 \leq x \leq 2 \sqrt{2}) \\ 0 & (x>2 \sqrt{2})\end{cases}
$$

Note that $\Omega_{\text {strict }}^{\prime}(x)=\frac{1}{\pi} \arccos \frac{x}{2 \sqrt{2}}(0 \leq x \leq 2 \sqrt{2})$ and
$\Omega_{\text {strict }}(0)=-\frac{2 \sqrt{2}}{\pi}=-0.90 \ldots$.

Limit distribution for λ_{i} (The Ordinary Case)

$$
\mathbb{E}_{n}^{\text {Plan }}\left[\lambda_{1}\right] \sim 2 \sqrt{n} \quad(n \rightarrow \infty)
$$

Theorem (Baik-Deift-Johansson (1999))

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{n}^{\text {Plan }}\left(\frac{\lambda_{1}-2 \sqrt{n}}{n^{1 / 6}} \leq x\right)=F_{\mathrm{GUE}}(x)
$$

where F_{GUE} is the Gaussian Unitary Ensemble Tracy-Widom distribution.
Theorem (Borodin-Okounkov-Olshanski, Johansson, Okounkov (2000))

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be distributed w.r.t. $\mathbb{P}_{n}^{\text {Plan }}$. The random variables

$$
\frac{\lambda_{i}-2 \sqrt{n}}{n^{1 / 6}}, \quad i=1,2, \ldots
$$

converge to the Airy ensemble, in joint distribution.

Limit distribution for λ_{i} (The Strict Case)

$$
\mathbb{E}_{n}^{\mathrm{SP1}}\left[\lambda_{1}\right] \sim 2 \sqrt{2 n} \quad(n \rightarrow \infty) .
$$

Theorem (Tracy-Widom (2004))

$$
\lim _{n \rightarrow \infty} \mathbb{P}_{n}^{\mathrm{SPl}}\left(\frac{\lambda_{1}-2 \sqrt{2 n}}{(2 n)^{1 / 6}} \leq x\right)=F_{\mathrm{GUE}}(x)
$$

Theorem (M (2005))

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be distributed w.r.t. $\mathbb{P}_{n}^{\mathrm{SPl}}$. The random variables

$$
\frac{\lambda_{i}-2 \sqrt{2 n}}{(2 n)^{1 / 6}}, \quad i=1,2, \ldots
$$

converge to the Airy ensemble, in joint distribution.
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages

- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations
(4) Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Stanley's polynomiality theorem (The Ordinary Case)

$\Lambda=\Lambda_{\mathbb{Q}}$: the algebra of symmetric functions with \mathbb{Q}-coefficients.

Theorem (Stanley, Olshanski (2010))

For any symmetric function $f \in \Lambda$,

$$
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} f\left(\lambda_{1}-1, \lambda_{2}-2, \ldots, \lambda_{n}-n\right)
$$

is a polynomial in n.
For example, if $f=p_{1}=x_{1}+x_{2}+\cdots$,

$$
\begin{aligned}
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} p_{1}\left(\lambda_{1}-1, \lambda_{2}-2, \ldots, \lambda_{n}-n\right) & =\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} \sum_{i=1}^{n}\left(\lambda_{i}-i\right) \\
& =-\frac{n(n-1)}{2}
\end{aligned}
$$

Main polynomiality theorem (The Strict Case)

Recall $\Lambda=\mathbb{Q}\left[p_{1}, p_{2}, p_{3}, p_{4}, \ldots\right]$, where

$$
p_{k}\left(x_{1}, x_{2}, \ldots\right)=\sum_{i \geq 1} x_{i}^{k} \quad(\text { power-sum })
$$

Define the subalgebra $\Gamma=\mathbb{Q}\left[p_{1}, p_{3}, p_{5}, \ldots\right]$.

Main Polynomiality Theorem ([M])

For any $f \in \Gamma$, the shifted Plancherel average

$$
\mathbb{E}_{n}^{\mathrm{SPl}}[f]:=\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right)
$$

is a polynomial in n.
Remark: We can not replace Γ by Λ.

Main polynomiality theorem (The Strict Case)

Example

$$
\begin{aligned}
& \mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{1}\right]=\sum_{\lambda \in \mathcal{S P} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} \sum_{i=1}^{\ell(\lambda)} \lambda_{i}=n . \\
& \mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{3}\right]=\sum_{\lambda \in \mathcal{S P} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} \sum_{i=1}^{\ell(\lambda)} \lambda_{i}^{3}=6\binom{n}{2}+\binom{n}{1} . \\
& \mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{5}\right]=\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} \sum_{i=1}^{\ell(\lambda)} \lambda_{i}^{5}=80\binom{n}{3}+30\binom{n}{2}+\binom{n}{1} .
\end{aligned}
$$

(The first identity is trivial because $p_{1}(\lambda)=p_{1}\left(\lambda_{1}, \ldots, \lambda_{l}\right)=\sum_{i} \lambda_{i}=|\lambda|=n$ for $\left.\lambda \in \mathcal{S P} \mathcal{P}_{n}\right)$

Main polynomiality theorem (The Strict Case)

Remark

The Plancherel average

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{2}\right]=\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} \sum_{i=1}^{\ell(\lambda)} \lambda_{i}^{2}
$$

is NOT a polynomial in n.
$\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{1}\right]=n, \quad \mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{3}\right]=3 n^{2}-2 n$.
Conjecture ([M])

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{2}\right] \sim \frac{32 \sqrt{2}}{9 \pi} n^{\frac{3}{2}} \fallingdotseq 1.60 n^{\frac{3}{2}}
$$

(We will observe this conjecture in the end of this talk.)
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages

- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations
(4) Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Schur Q-functions

We show "Main Polynomiality Theorem". Our proof is exactly similar to [Olshanski (2010)].

Definition (Schur P-functions and Q-functions)

Let λ be a strict partition of length $I:=\ell(\lambda) \leq N$. The Schur P-polynomial in N variables is defined by

$$
P_{\lambda \mid N}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{(N-l)!} \sum_{w \in \mathfrak{G}_{N}} w\left(x_{1}^{\lambda_{1}} \cdots x_{l}^{\lambda_{l}} \prod_{i=1}^{l} \prod_{j=i+1}^{N} \frac{x_{i}+x_{j}}{x_{i}-x_{j}}\right)
$$

The Schur P-function P_{λ} is defined by the projective limit $P_{\lambda}=\lim _{\longleftarrow} P_{\lambda \mid N}$. The Schur Q-function Q_{λ} is defined by $Q_{\lambda}=2^{\ell(\lambda)} P_{\lambda}$.

It is well known that

$$
\Gamma=\mathbb{Q}\left[p_{1}, p_{3}, p_{5}, \ldots\right]=\bigoplus_{n=0}^{\infty} \bigoplus_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \mathbb{Q} P_{\lambda}=\bigoplus_{n=0}^{\infty} \bigoplus_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \mathbb{Q} Q_{\lambda}
$$

Factorial Schur Q-functions

Definition (Okounkov, Ivanov (1999))

Let λ be a strict partition of length $I:=\ell(\lambda) \leq N$. The factorial Schur P-polynomial in N variables is defined by

$$
P_{\lambda \mid N}^{*}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{(N-l)!} \sum_{w \in \mathfrak{S}_{N}} w\left(x_{1}^{\downarrow \lambda_{1}} \cdots x_{l}^{\downarrow \lambda_{l}} \prod_{i=1}^{l} \prod_{j=i+1}^{N} \frac{x_{i}+x_{j}}{x_{i}-x_{j}}\right),
$$

where we set

$$
x^{\downarrow k}=x(x-1)(x-2) \cdots(x-k+1) .
$$

The factorial Schur P-function P_{λ}^{*} is defined by their projective limit $P_{\lambda}^{*}=\lim _{\longleftarrow} P_{\lambda \mid N}^{*}$.
The factorial Schur Q-function Q_{λ}^{*} is defined by $Q_{\lambda}^{*}=2^{\ell(\lambda)} P_{\lambda}^{*}$.
$P_{\lambda}^{*} \in \Gamma$ is not homogeneous. The highest degree term of P_{λ}^{*} is P_{λ}.

Proof

Main Polynomiality Theorem ([M])

$$
\mathbb{E}_{n}^{\mathrm{SPl}}[f]:=\sum_{\lambda \in \mathcal{S P}_{n}} \mathbb{P}_{n}^{\mathrm{SPl}}[\lambda] f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

is a polynomial in n for any $f \in \Gamma$.

Proof:

- $\left\{P_{\nu}^{*}\right\}_{\nu \in \mathcal{S P}}$ form a linear basis of Γ.
- Therefore it is sufficient to prove that $\mathbb{E}_{n}^{\mathrm{SPl}}\left[P_{\nu}^{*}\right]$ is a polynomial in n for each strict partition ν.
- In this case, we can obtain the explicit expression

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[P_{\nu}^{*}\right]=2^{k-\ell(\nu)} g^{\nu}\binom{n}{k} \quad\left(\nu \in \mathcal{S} \mathcal{P}_{k}\right)
$$

which is proved by using (well-studied) orthogonality relations for Schur Q-functions.
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages

- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations
(4) Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

First degree estimate

For a given function $f \in \Gamma$, we want to estimate the degree of the polynomial $\mathbb{E}_{n}^{\mathrm{SPl}}[f]$ in n.
First, we consider the standard degree filtration of symmetric functions (as a "polynomial" in variables x_{1}, x_{2}, \ldots).

$$
\operatorname{deg} p_{k}=k \quad(k=1,2,3, \ldots)
$$

$\left(\operatorname{deg} x_{i}=1\right)$

Proposition (A simple estimate)

If $\operatorname{deg} f=k$, then the degree of the polynomial $\mathbb{E}_{n}^{\mathrm{SPl}}[f]$ is at most k.

Proof:

- For the factorial Schur P-function P_{ν}^{*}, we have $\operatorname{deg} P_{\nu}^{*}=|\nu|=\sum_{i} \nu_{i}$.
- We showed $\mathbb{E}_{n}^{S P l}\left[P_{\nu}^{*}\right]=2^{|\nu|-\ell(\nu)} g^{\nu}\binom{n}{|\nu|}$. In particular, the polynomial $\mathbb{E}_{n}^{\mathrm{SPl}}\left[P_{\nu}^{*}\right]$ has degree $|\nu|$.

Second degree estimate

Proposition (A simple estimate)

If $\operatorname{deg} f=k$, then the degree of the polynomial $\mathbb{E}_{n}^{\mathrm{SPl}}[f]$ is at most k.
However, this degree estimate is not sharp in some cases:

$$
\operatorname{deg} p_{3}=3 \quad \text { but } \quad \mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{3}\right]=6\binom{n}{2}+\binom{n}{1}=3 n^{2}-2 n
$$

We now introduce the second degree filtration deg^{\prime} on 「 by

$$
\operatorname{deg}^{\prime} p_{2 k-1}=k
$$

Theorem (Han-Xiong (2016), [M])

If $\operatorname{deg}^{\prime} f=k$, then the degree of the polynomial $\mathbb{E}_{n}^{S P l}[f]$ is at most k.

A new identity

Theorem ([M] conjectured by Soichi Okada)

Let $r \geq 1$ and define the function φ_{r} on $\mathcal{S P}$ by

$$
\varphi_{r}(\lambda)=\sum_{i=1}^{I(\lambda)} \prod_{k=-r}^{r}\left(\lambda_{i}+k\right)
$$

Then we have

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[\varphi_{r}\right]=\frac{2^{r}(2 r+1)!}{(r+1)!}\binom{n}{r+1}
$$

Proof:

- It is easy to see that $\varphi_{r}=\sum_{j=0}^{r}(-1)^{r-j} e_{r-j}\left(1^{2}, 2^{2}, \ldots, r^{2}\right) p_{2 j+1}$.
- In particular, $\varphi_{r} \in \Gamma$ and $\operatorname{deg}^{\prime}\left(\varphi_{r}\right)=r+1$.
- Therefore $\mathbb{E}_{n}^{\mathrm{SPl}}\left[\varphi_{r}\right]$ is a polynomial in n of degree (at most) $r+1$.
- Check that both sides coincide if $n=0,1, \ldots, r, r+1$.
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages
- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate

(3) Content Evaluations

4 Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Stanley's polynomiality theorem 2 (The Ordinary Case)

Definition

For each box u in a Young diagram $Y(\lambda)$, we define its content $c_{u} \in \mathbb{Z}$ by

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

Theorem (Stanley, Olshanski (2010))

For any symmetric function $f \in \Lambda$,

$$
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} f\left(c_{u}: u \in Y(\lambda)\right)
$$

is a polynomial in n.

A formula for content evaluations

Theorem [Fujii-Kanno-Moriyama-Okada (2008)]

For each $r \geq 1$, define a symmetric function U_{r} by

$$
U_{r}\left(x_{1}, x_{2}, \ldots\right)=\sum_{j \geq 1} \prod_{i=0}^{r-1}\left(x_{j}^{2}-i^{2}\right)
$$

Then

$$
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} U_{r}\left(c_{u}: u \in Y(\lambda)\right)=\frac{(2 r)!}{(r+1)!}\binom{n}{r+1}
$$

$$
\begin{aligned}
U_{1} & =\sum_{j} x_{j}^{2}=p_{2}, \quad U_{2}=\sum_{j} x_{j}^{2}\left(x_{j}^{2}-1\right)=p_{4}-p_{2}, \\
U_{3} & =\sum_{j} x_{j}^{2}\left(x_{j}^{2}-1\right)\left(x_{j}^{2}-4\right)=p_{6}-5 p_{4}+4 p_{2}, \quad \ldots
\end{aligned}
$$

Polynomiality theorem 2 (The Strict Case)

Definition

For each box u in $S(\lambda)$, we define its content c_{u} by

0	1	2	3	4			6
	0	1	2	3			
		0	1				

Note that c_{u} are always non-negative integers.

Polynomiality theorem 2 (The Strict Case)

Polynomiality Theorem 2 (Han-Xiong (2016), [M])

For any symmetric function $f \in \Lambda$,

$$
\sum_{\lambda \in \mathcal{S P}}^{n}, \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} f\left(\widehat{c}_{u}: u \in S(\lambda)\right)
$$

is a polynomial in n. Here, we set

$$
\widehat{c}_{u}=\frac{1}{2} c_{u}\left(c_{u}+1\right) .
$$

Why do we consider \widehat{c}_{u} instead of c_{u} in the strict case?

- The Ordinary Case: a content c_{u} is an eigenvalue of Jucys-Murphy elements $J_{k}=(1, k)+(2, k)+\cdots+(k-1, k) \in \mathbb{Q}\left[\mathfrak{S}_{n}\right]$.
- The Strict Case: the quantity \widehat{c}_{u} is the square of an eigenvalue of spin Jucys-Murphy elements [Vershik-Sergeev (2008)].

Our proof of Polynomiality Theorem 2

Key proposition ([M])

The algebra Γ coincides with the algebra generated by the functions on SP

- $\lambda \mapsto|\lambda|$;
- $\lambda \mapsto f\left(\widehat{c}_{u}: u \in S(\lambda)\right)(f \in \Lambda)$.

Remark: The counterpart in The Ordinary Case is proved in [Olshanski (2010)].

Example

$$
\begin{aligned}
p_{2}\left(\hat{c}_{u}: u \in S(\lambda)\right) & =\sum_{u \in S(\lambda)}\left(\frac{c_{u}\left(c_{u}+1\right)}{2}\right)^{2} \\
& =\frac{1}{20} p_{5}(\lambda)-\frac{1}{12} p_{3}(\lambda)+\frac{1}{30} p_{1}(\lambda) .
\end{aligned}
$$

A formula for content evaluations

A strict version of the theorem of Fujii-Kanno-Moriyama-Okada.

Theorem (Han-Xiong (2016))

For each $r \geq 1$, define a symmetric function V_{r} by

$$
V_{r}\left(x_{1}, x_{2}, \ldots\right)=\sum_{j \geq 1} \prod_{i=0}^{r-1}\left(x_{j}-\frac{i(i+1)}{2}\right)
$$

Then

$$
\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} V_{r}\left(\widehat{c}_{u}: u \in S(\lambda)\right)=\frac{(2 r)!}{(r+1)!}\binom{n}{r+1}
$$

$$
V_{1}=p_{1}, \quad V_{2}=p_{2}-p_{1}, \quad V_{3}=p_{3}-4 p_{2}+3 p_{1}, \ldots
$$

(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages

- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations

4 Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Stanley's polynomiality theorem 3 (The Ordinary Case)

Definition

Hook-length h_{u} for each $u \in Y(\lambda)$

7	5	2	1
4	2		
3	1		
1			

Theorem (Stanley (2010))

For any symmetric function $f \in \Lambda$,

$$
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} f\left(h_{u}^{2}: u \in Y(\lambda)\right)
$$

is a polynomial in n.

The Strict Case hook-lengths

Let λ be a strict partition.
Recall the shifted Young diagram $S(\lambda)$ and the double diagram $D(\lambda)$.

Example (Diagrams and hook-lengths h_{u})

$$
\lambda=(5,4,2,1) \in \mathcal{S} \mathcal{P}_{12} .
$$

10	9	7	6	5	2
$\underline{9}$	8	6	5	4	1
7	$\underline{6}$	$\underline{4}$	3	2	
$\underline{6}$	5	$\underline{3}$	$\underline{2}$	1	
$\underline{2}$	$\underline{1}$				

Let $f \in \Lambda$. Consider two kinds of functions f^{HS} and f^{HD} on $\mathcal{S P}$ defined by

$$
\begin{aligned}
f^{\mathrm{HS}}(\lambda) & =f\left(h_{u}^{2}: \quad u \in S(\lambda)\right), \\
f^{\mathrm{HD}}(\lambda) & =f\left(h_{u}^{2}: \quad u \in D(\lambda)\right) .
\end{aligned}
$$

Polynomiality Theorem 3 (The Strict Case)

$$
f^{\mathrm{HS}}(\lambda)=f\left(h_{u}^{2}: u \in S(\lambda)\right), \quad f^{\mathrm{HD}}(\lambda)=f\left(h_{u}^{2}: u \in D(\lambda)\right) .
$$

Theorem ([M])

For power-sums $f=p_{k}$, we see that $f^{\mathrm{HS}} \in \Lambda \backslash \Gamma$ and $f^{\mathrm{HD}} \in \Gamma$.

Corollary (Han-Xiong (2016b), [M])

For any symmetric function $f \in \Lambda$,

$$
\sum_{\lambda \in \mathcal{S} \mathcal{P}_{n}} \frac{2^{n-\ell(\lambda)}\left(g^{\lambda}\right)^{2}}{n!} f\left(h_{u}^{2}: u \in D(\lambda)\right)
$$

is a polynomial in n. (However, if we replace $D(\lambda)$ by $S(\lambda)$, then the average is not a polynomial in n.)

A formula for hook-length evaluations

The Ordinary Case

Theorem (Panova (2012) conjectured by Okada)

For each $r \geq 0$,

$$
\sum_{\lambda \in \mathcal{P}_{n}} \frac{\left(f^{\lambda}\right)^{2}}{n!} \sum_{u \in Y(\lambda)} \prod_{i=1}^{r}\left(h_{u}^{2}-i^{2}\right)=\frac{(2 r)!}{2(r+1)!}\binom{2 r+2}{r+1}\binom{n}{r+1}
$$

The Strict Case

The counterpart of this identity is not found.
(1) Introduction: two kinds of Plancherel measures.
(2) Polynomiality of Plancherel Averages

- Main Polynomiality Theorem
- Proof of Polynomiality Theorem. Factorial Schur Q-functions
- Degree estimate
(3) Content Evaluations

4 Hook-Length Evaluations
(5) Limit Shape Problem (joint work with Tomoyuki Shirai, in progress)

Settings for Limit Shape Problem

- We deal with a (ordinary) Young diagram $Y(\lambda)$ (not a shifted diagram $S(\lambda)$) of a strict partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I}\right) \in \mathcal{S P}{ }_{n}$. $Y(\lambda)=$| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
- The Young diagram $Y(\lambda)$ is identified with the step function $y=\lambda(x)(x \geq 0)$ given by

Settings for Limit Shape Problem

- The derivative of the function $\lambda(x)$ is

$$
\lambda^{\prime}=\sum_{j=1}^{\ell(\lambda)} \delta_{\lambda_{j}}
$$

- Next, we consider the scaling

$$
y=\lambda^{\sqrt{n}}(x):=\frac{1}{\sqrt{n}} \lambda(\sqrt{n} x)
$$

- Note that

$$
\int_{0}^{\infty} \lambda(x) d x=-n, \quad \int_{0}^{\infty} \lambda^{\sqrt{n}}(x) d x=-1
$$

Limit Shape Problem

Consider a sequence $\left(\lambda_{(n)}\right)_{n \geq 1}$ of random strict partitions $\lambda=\lambda_{(n)}$ of n. We want to show that, in the limit $n \rightarrow \infty$, the random variables $\lambda^{\sqrt{n}}$ converge (in some sense) to a function Ω.

Limit Shape Problem (The Strict Case): Conjecture

A candidate of Limit Shape

[Ivanov (2006), Bernstein-Henke-Regev (2007)].
English style, unshifted Young diagram $Y(\lambda)$

$$
y=\Omega_{\text {strict }}(x)= \begin{cases}\frac{1}{\pi}\left(x \arccos \frac{x}{2 \sqrt{2}}-\sqrt{8-x^{2}}\right) & (0 \leq x \leq 2 \sqrt{2}) \\ 0 & (x>2 \sqrt{2})\end{cases}
$$

$\Omega_{\text {strict }}^{\prime}(x)=\frac{1}{\pi} \arccos \frac{x}{2 \sqrt{2}}(0 \leq x \leq 2 \sqrt{2})$,
$\Omega_{\text {strict }}(0)=-\frac{2 \sqrt{2}}{\pi}=-0.90 \ldots$.

Law of Large Numbers

Conjecture (1st form, uniform convergence)

Let $\lambda_{(n)}$ be a random strict partition of size n distributed according to $\mathbb{P}_{n}^{\text {SPl }}$. Then, in probability,

$$
\lim _{n \rightarrow \infty} \sup _{x>0}\left|\left(\lambda_{(n)}\right)^{\sqrt{n}}(x)-\Omega_{\text {strict }}(x)\right|=0
$$

Conjecture (2nd form, weak convergence)

Let $\lambda_{(n)}$ be a random strict partition of size n distributed according to $\mathbb{P}_{n}^{\text {SPl }}$. Then, in probability,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} x^{k}\left(\lambda_{(n)}\right)^{\sqrt{n}}(x) d x=\int_{0}^{\infty} x^{k} \Omega_{\text {strict }}(x) d x
$$

for any $k=0,1,2, \ldots$.
One can compute the integral $\int_{0}^{\infty} x^{k} \Omega_{\text {strict }}(x) d x$ easily.

Law of Large Numbers

Conjecture (2nd form) is equivalent to the 3rd form.

Conjecture (3rd form)

Let $\lambda_{(n)}$ be as before. Then, in probability,

$$
\lim _{n \rightarrow \infty} \frac{p_{k}\left(\lambda_{(n)}\right)}{n^{\frac{k+1}{2}}}=\frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)} \quad \text { for any } k=1,2, \ldots
$$

Conjecture (4th form, much weaker version)

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{k}\right]}{n^{\frac{k+1}{2}}}=\frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)} \quad \text { for any } k=1,2, \ldots
$$

Law of Large Numbers

Conjecture (4th form, much weak version)

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}_{n}^{\text {SP1 }}\left[p_{k}\right]}{n^{\frac{k+1}{2}}}=\frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)} \quad \text { for any } k=1,2, \ldots
$$

Recall a Matsumoto-Okada identity

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[\varphi_{k}\right]=\frac{2^{k}(2 k+1)!}{((k+1)!)^{2}} \cdot n(n-1)(n-2) \cdots(n-k)
$$

for $\varphi_{k}=\sum_{i \geq 1} \prod_{j=-k}^{k}\left(x_{i}+j\right)$. This implies that $\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{2 k+1}\right]$ is a polynomial in n of degree $k+1$ and

$$
\frac{\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{2 k+1}\right]}{n^{k+1}} \rightarrow \frac{2^{k}(2 k+1)!}{((k+1)!)^{2}}=\left[\frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)}\right]_{k \mapsto 2 k+1}
$$

Therefore Conjecture (4th form) holds true for k odd.

Law of Large Numbers

Conjecture (4th form, weak version)

In the limit $n \rightarrow \infty$,

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{k}\right] \sim \frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)} \cdot n^{\frac{k+1}{2}} \quad \text { for any } k=1,2, \ldots
$$

- However, if k is even, then $\mathbb{E}_{n}^{S P l}\left[p_{k}\right]$ is not a polynomial in n.
- So, our Main Polynomiality Theorem (Kerov' approach, seen in [Ivanov-Olshanski (2001)]) does not work for k even. (This is a difficulty of The Strict Case, unlike The Ordinary Case.)
How can one prove Conjecture (4th form) for k even?

Our Strategy

Conjecture (4th form, weak version)

In the limit $n \rightarrow \infty$,

$$
\mathbb{E}_{n}^{\mathrm{SPl}}\left[p_{k}\right] \sim \frac{2^{\frac{3(k+1)}{2}} \Gamma\left(1+\frac{k}{2}\right)}{\sqrt{\pi}(k+1)^{2} \Gamma\left(\frac{k+1}{2}\right)} \cdot n^{\frac{k+1}{2}} \quad \text { for } k \text { even. }
$$

Joint work with Tomoyuki Shirai (Kyushu University), in progress

- A random strict partition defines a Pfaffian point process on \mathbb{Z} ([M (2005)]).
- The 1-point correlation function is explicitly given by using Bessel functions.
- The expectation $\mathbb{E}_{n}^{S P l}\left[p_{k}\right]$ is expressed as a computable infinite sum involving Bessel functions.
- We have a heuristic proof of Conjecture (4th form) but it is not rigorous yet.

Other open problems in The Strict Case

The Ordinary Case
Normalized character: for $\mu \in \mathcal{P}_{k}$ and $\lambda \in \mathcal{P}_{n}$ with $n \geq k$,

$$
\mathrm{Ch}_{\mu}(\lambda)=n(n-1) \cdots(n-k+1) \frac{\chi_{\mu \cup\left(1^{n-k}\right)}^{\lambda}}{f^{\lambda}} .
$$

- the function Ch_{μ} is a shifted-symmetric function.
- Kerov polynomial: Ch_{μ} is a polynomial in free cumulants with nonnegative integer-valued coefficients.
- Stanley-Féray-Śniady polynomial: Ch_{μ} is a polynomial in multi-rectangular coordinates of Young diagrams.
We can define a strict (or spin or projective) version $\mathrm{Ch}_{\rho}^{\text {strict }}$ for odd partition ρ. The function $\mathrm{Ch}_{\rho}^{\text {strict }}$ on $\mathcal{S P}$ belongs to Γ.

Open problems

Find analogues of Kerov polynomials and S-F-Ś polynomials.

Thank you for listening！

Merci de votre attention！ご静聴ありがとうございました。
（1）Introduction：two kinds of Plancherel measures．
（2）Polynomiality of Plancherel Averages
－Main Polynomiality Theorem
－Proof of Polynomiality Theorem．Factorial Schur Q－functions
－Degree estimate
（3）Content Evaluations
（4）Hook－Length Evaluations
（5）Limit Shape Problem（joint work with Tomoyuki Shirai，in progress）

