Skew HLI 000 Asymptotics of skew SYTs 000000000 Multivariate formulas 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1

Hook formulas for skew shapes and asymtptotics of skew SYTs

Greta Panova joint with Alejandro Morales (UCLA), Igor Pak (UCLA)

University of Pennsylvania

February 2017

Asymptotics of skew SYTs 000000000 Multivariate formulas 0000000

Symmetric group S_n Irreps \mathbb{S}_{λ} , $\lambda \vdash n$

 $Tr_{\mathbb{S}_{\lambda}}[\pi] = \chi^{\lambda}(\pi)$

General linear group GL_N V_{λ} , $\ell(\lambda) \leq N$

$$Tr_{V_{\lambda}}(diag(x_1,\ldots)) = s_{\lambda}(x_1,x_2,\ldots)$$

Asymptotics of skew SYTs 000000000

Symmetric group S_n Irreps $\mathbb{S}_{\lambda}, \lambda \vdash n$

$$Tr_{\mathbb{S}_{\lambda}}[\pi] = \chi^{\lambda}(\pi)$$

Multivariate formulas 0000000

General linear group GL_N V_{λ} , $\ell(\lambda) \leq N$

$$Tr_{V_{\lambda}}(diag(x_1,\ldots)) = s_{\lambda}(x_1,x_2,\ldots)$$

Semi-Standard Young Tableaux(SSYT)

▲□▶ ▲圖▶ ▲注▶ ▲注▶ -

-

1	1	1	2	3
2	2	3		
3	3			

Asymptotics of skew SYTs

Symmetric group S_n Irreps $\mathbb{S}_{\lambda}, \lambda \vdash n$

$$Tr_{\mathbb{S}_{\lambda}}[\pi] = \chi^{\lambda}(\pi)$$

Multivariate formulas

-

2

General linear group GL_N V_{λ} , $\ell(\lambda) \leq N$

$$Tr_{V_{\lambda}}(diag(x_1,\ldots)) = s_{\lambda}(x_1,x_2,\ldots)$$

Semi-Standard Young Tableaux(SSYT)

HLF:
$$\dim \mathbb{S}_{\lambda} = f^{\lambda} = \frac{n!}{\prod_{\Box \in \lambda} h_{\Box}}$$

1 1 1 2 3 2 2 3 3 3

$$\dim V_{\lambda} = s_{\lambda}(1^N) = \prod_{\Box \in \lambda} \frac{N + c(\Box)}{h_{\Box}}$$

・ロト ・聞 と ・ ヨト ・ ヨト

Asymptotics of skew SYTs

Symmetric group S_n Irreps $\mathbb{S}_{\lambda}, \lambda \vdash n$

$$Tr_{\mathbb{S}_{\lambda}}[\pi] = \chi^{\lambda}(\pi)$$

Multivariate formulas

General linear group GL_N V_{λ} , $\ell(\lambda) \leq N$

$$Tr_{V_{\lambda}}(diag(x_1,\ldots)) = s_{\lambda}(x_1,x_2,\ldots)$$

Semi-Standard Young Tableaux(SSYT)

HLF:
$$\dim \mathbb{S}_{\lambda} = f^{\lambda} = \frac{n!}{\prod_{\Box \in \lambda} h_{\Box}}$$

$$\dim V_{\lambda} = s_{\lambda}(1^N) = \prod_{\Box \in \lambda} \frac{N + c(\Box)}{h_{\Box}}$$

(Lego art by Dan Betea)

Multivariate formulas 0000000

Counting skew SYTs

Outer shape λ , inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$ 2 4 3 6 87 9

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

3

・ロト ・個ト ・ヨト ・ヨトー

Multivariate formulas 0000000

Counting skew SYTs

Outer shape λ , inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$

(日) (四) (王) (王) (王)

Multivariate formulas 0000000

Counting skew SYTs

Outer shape λ , inner shape μ , e.g. for $\lambda = (5, 4, 4, 2), \mu = (3, 2, 1)$

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$

No product formula, e.g. $\lambda/\mu = \delta_{n+2}/\delta_n$: $1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$

Euler numbers: 2, 5, 16, 61....

3

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

Multivariate formulas 0000000

Hook-Length formula for skew shapes

Theorem (Naruse, 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

$$f^{(4321/21)} = 7! \left(\frac{1}{1^4 \cdot 3^3} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^2 \cdot 3^3 \cdot 5^2} + \frac{1}{1^2 \cdot 3^2 \cdot 5^2 \cdot 7} \right) = 61$$

Multivariate formulas 0000000

Hook-Length formula for skew shapes

Theorem (Morales-Pak-P)

$$\sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left[\frac{q^{\lambda'_j - i}}{1 - q^{h(i,j)}} \right].$$

Theorem (Morales-Pak-P)

$$\sum_{\pi\in \mathcal{RPP}(\lambda/\mu)} q^{|\pi|} = \sum_{S\in \mathcal{PD}(\lambda/\mu)} \prod_{u\in S} \left[rac{q^{h(u)}}{1-q^{h(u)}}
ight].$$

where $PD(\lambda/\mu)$ is the set of pleasant diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Skew HLF 0.00

5

Algebraic proof for SSYTs: [Ikeda-Naruse, Kreiman]: Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq$ $d \times (n - d)$. Then

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

(a)

v = 245613, *w* = 361245

Algebraic proof for SSYTs: [Ikeda-Naruse, Kreiman]: Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subseteq \lambda \subseteq$ $d \times (n - d)$. Then

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

v = 245613, w = 361245 Factorial Schur functions:

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

[Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point:

$$[X_w]|_v = (-1)^{\ell(w)} s_{\mu}^{(d)} (y_{v(1)}, \dots, y_{v(d)}|y_1, \dots, y_{n-1}).$$

Algebraic proof for SSYTs: [Ikeda-Naruse, Kreiman]: Let $w \leq v$ be Grassmannian permutations whose unique descent is at position d with corresponding partitions $\mu \subset \lambda \subset$ $d \times (n - d)$. Then

$$[X_w]|_v = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{v(d+j)} - y_{v(d-i+1)}).$$

v = 245613, w = 361245 Factorial Schur functions:

$$s^{(d)}_{\mu}(\mathbf{x}|\mathbf{a}) := rac{\det \left[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})
ight]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)}$$

[Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point:

$$[X_w]|_v = (-1)^{\ell(w)} s_{\mu}^{(d)}(y_{\nu(1)}, \dots, y_{\nu(d)}|y_1, \dots, y_{n-1}).$$

Evaluation at $y = 1, q, q^2, ..., v(d + 1 - i) = \lambda_i + d + 1 - i, \rightarrow$ Jacobi-Trudi

$$s_{\mu}^{(d)}(q^{\nu(1)}, \dots | 1, q, \dots) = \frac{\det[\prod_{r=1}^{\mu_j + d-j} (q^{\nu(i)} - q^r)]}{\Delta(y_{\nu})} = \dots$$
$$= \det[h_{\lambda_i - i - \mu_j + j}(1, q, \dots)] = s_{\lambda/\mu}(1, q, \dots)$$

Multivariate formulas 0000000

Combinatorial proofs:

Hillman-Grassi Reverse Plane Partitions of shape λ to Arrays of shape λ .

Theorem (Morales-Pak-P)

The Hillman-GrassI map is a bijection to the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

イロト イポト イラト イラト

Combinatorial proofs:

Hillman-Grassi Reverse Plane Partitions of shape λ to Arrays of shape λ .

Theorem (Morales-Pak-P)

The Hillman-Grassl map is a bijection to the SSYTs of shape λ/μ to the excited arrays (diagrams in $\mathcal{E}(\lambda/\mu)$ with nonzero entries on the broken diagonals).

Without the restriction of strictly increasing columns, we have skew reverse plane partitions and a wider class of arrays/diagrams, called *pleasant diagrams*: $PD(\lambda/\mu)$.

Theorem (MPP)

The HG map is a bijection between skew RPPs of shape λ/μ and arrays with certain nonzero entries (at the "high peaks"):

$$\sum_{\pi \in RPP(\lambda/\mu)} q^{|\pi|} = \sum_{S \in PD(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right].$$

With P-partitions/limit: combinatorial proof of original Naruse Hook-Length Formula for $f^{\lambda/\mu}$.

Asymptotics of skew SYTs •00000000

Multivariate formulas 0000000

Asymptotics of the number of skew SYTs

Question: What is the asymptotic value of $t^{\Lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

7

(a)

Multivariate formulas 0000000

Asymptotics of the number of skew SYTs

Question: What is the asymptotic value of $f^{\lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

0. If $\mu = \emptyset$, then $f^{\lambda} \sim \sqrt{n!}(1 + O(1/n))$ for $\lambda \sim$ Plancherel.

Multivariate formulas 0000000

Asymptotics of the number of skew SYTs

Question: What is the asymptotic value of $f^{\lambda/\mu}$, $|\lambda/\mu| = n$ as $n \to \infty$ and λ, μ change under various regimes:

0. If $\mu = \emptyset$, then $f^{\lambda} \sim \sqrt{n!}(1 + O(1/n))$ for $\lambda \sim$ Plancherel.

1. [Stanley, 2001]: when μ is fixed, $\lambda^n \rightarrow (a; b)$ (Frobenius limit):

$$f^{\lambda^n/\mu} \sim f^{\lambda^n} s_\mu(\rho_a^+;\rho_b^-)(1+O(1/n)),$$

where ρ_a^+, ρ_b^- are the corresponding specializations. Similar results in [Corteel-Goupil-Schaeffer] [Okounkov-Olshanski]

(日) (四) (王) (王) (王)

Asymptotics of skew SYTs 00000000

Tool

Naruse Hook-Length formula:

$$f^{\lambda/\mu} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in D} \frac{1}{h_u}.$$

Define the "naive" hook-length formula:

$$F(\lambda/\mu) := \prod_{u \in \lambda/\mu} \frac{1}{h_u}.$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F((6,5,5,5,3,2,2,1)/(3,2,1,1)) = \frac{1}{5 \cdot 4 \cdot 1 \cdot 5 \cdot 3 \cdot 2 \cdot 7 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 3 \cdot 1 \cdot 1}$$

$$F(\lambda/\mu) \leq f^{\lambda/\mu} \leq |\mathcal{E}(\lambda/\mu)|F(\lambda/\mu)|$$

8

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Multivariate formulas 0000000

General bounds for posets (folklore)

P - poset, e(P) - number of linear extensions, $P = A_1 \sqcup \ldots \sqcup A_\ell$ - antichains, $P = C_1 \sqcup \ldots \sqcup C_p$ - chains.

$$|A_1|!|A_2|!\cdots|A_\ell|! \le e(P) \le \frac{n!}{|C_1|!|C_2|!\cdots|C_p|!}$$

$$36 = 1!3!3!1! \le 48 \le \frac{8!}{4!2!2!} = 420$$

[Brightwell-Tetali]: Boolean lattice $\frac{\log_2 e(B_n)}{2^n} = \binom{n}{n/2} - \frac{3}{2}\log_2(e) + o(1)$

(日)、(同)、(日)、(日)、(日)、

Multivariate formulas 0000000

General bounds for posets (folklore)

P - poset, e(P) - number of linear extensions, $P = A_1 \sqcup \ldots \sqcup A_\ell$ - antichains, $P = C_1 \sqcup \ldots \sqcup C_\rho$ - chains.

$$|A_1|!|A_2|!\cdots|A_\ell|! \le e(P) \le \frac{n!}{|C_1|!|C_2|!\cdots|C_p|!}$$

$$36 = 1!3!3!1! \le 48 \le \frac{8!}{4!2!2!} = 420$$

[Brightwell-Tetali]: Boolean lattice $\frac{\log_2 e(B_n)}{2^n} = \binom{n}{n/2} - \frac{3}{2}\log_2(e) + o(1)$

In our case: **Theorem**[MPP]: When $P = \lambda/\mu$ and $A_i - i$ th antidiagonal, then

$$|A_1|!\cdots|A_\ell|! \leq F(\lambda/\mu)$$

if $|A_i| \le |A_{i+1}|$.

Asymptotics of skew SYTs

Multivariate formulas 0000000

General bounds: size of $\mathcal{E}(\lambda/\mu)$

Lemma (MPP) If $|\lambda/\mu| = n$ then $\mathcal{E}(\lambda/\mu) \leq 2^n$.

Lemma (MPP)

If d is the Durfee square size of λ , then $\mathcal{E}(\lambda/\mu) \leq n^{2d^2}$.

イロト イポト イヨト イヨト

Asymptotics of skew SYTs

Multivariate formulas

The "linear" regime

 $a(\lambda) = (a_1, a_2, \ldots), \ b(\lambda) = (b_1, b_2, \ldots) -$ Frobenius coordinates of λ . Let $\alpha = (\alpha_1, \ldots, \alpha_k), \ \beta := (\beta_1, \ldots, \beta_k)$ be fixed sequences in \mathbb{R}^k_+ .

Thoma-Vershik-Kerov (TVK) limit if $a_i/n \to \alpha_i$ and $b_i/n \to \beta_i$ as $n \to \infty$, for all $1 \le i \le k$.

Theorem (MPP)

Let $\{\lambda^{(n)}/\mu^{(n)}\}\$ be a sequence of skew shapes with a TVK limit, i.e. suppose $\lambda^{(n)} \to (\alpha, \beta)$, where $\alpha_1, \beta_1 > 0$, and $\mu^{(n)} \to (\pi, \tau)$ for some $\alpha, \beta, \pi, \tau \in \mathbb{R}_+^k$. Then

$$\log f^{\lambda^{(n)}/\mu^{(n)}} = cn + o(n)$$
 as $n \to \infty$,

where

$$c = \gamma \log \gamma - \sum_{i=1}^{k} (\alpha_i - \pi_i) \log(\alpha_i - \pi_i) - \sum_{i=1}^{k} (\beta_i - \tau_i) \log(\beta_i - \tau_i)$$

and

$$\gamma = \sum_{i=1}^{k} (\alpha_i + \beta_i - \pi_i - \tau_i). \quad \text{(b)} \quad \text{(c)} \quad \text{($$

Asymptotics of skew SYTs

Multivariate formulas 0000000

The stable shape: \sqrt{n} scale

Theorem (MPP)

Let $\omega, \pi : [0, a] \to [0, b]$ be continuous non-increasing functions, and suppose that $\operatorname{area}(\omega/\pi) = 1$. Let $\{\lambda^{(n)}/\mu^{(n)}\}$ be a sequence of skew shapes with the stable shape ω/π , i.e. $[\lambda^{(n)}]/\sqrt{n} \to \omega$, $[\mu^{(n)}]/\sqrt{n} \to \pi$. Then

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2}n\log n \quad as \quad n \to \infty$$

-

イロト 不得 トイヨト イヨト

Asymptotics of skew SYTs

Multivariate formulas 0000000

The stable shape: \sqrt{n} scale

Theorem (MPP)

Suppose $(\sqrt{N} - L)\omega \subset [\lambda^{(n)}](\sqrt{N} + L)\omega$ for some L > 0, and similarly for $\mu^{(n)}$ wrt π , then

$$-(1+c(\omega/\pi))n+o(n)\leq \log f^{\lambda^{(n)}/\mu^{(n)}}-\frac{1}{2}n\log n\leq -(1+c(\omega/\pi))n+\log \mathcal{E}(\lambda^{(n)}/\mu^{(n)})+o(n),$$

as $n \to \infty$, where

$$c(\omega/\pi) = \iint_{\omega/\pi} \log h(x, y) dx dy,$$

where h(x, y) is the hook length from (x, y) to ω .

Asymptotics of skew SYTs

Multivariate formulas 0000000

Subpolynomial depth, "thin" shapes

Suppose depth:= $\max_{u \in \lambda/\mu} h_u =: g(n) = n^{o(1)}$ (subpolynomial growth).

イロト 不良 トイヨト イロト

Theorem (MPP)

Let $\{\nu_n = \lambda^{(n)}/\mu^{(n)}\}\$ be a sequence of skew partitions with a subpolynomial depth shape associated with the function g(n). Then

$$\log f^{\nu_n} = n \log n - \Theta(n \log g(n))$$
 as $n \to \infty$.

Asymptotics of skew SYTs 00000000 Multivariate formulas 0000000

Thick ribbons

Theorem (MPP) Let $\gamma_k := (\delta_{2k}/\delta_k)$, where $\delta_k = (k-1, k-2, \dots, 2, 1)$. Then $\frac{1}{6} - \frac{3}{2}\log 2 + \frac{1}{2}\log 3 + o(1) \le \frac{1}{n}\left(\log f^{\gamma_k} - \frac{1}{2}n\log n\right) \le \frac{1}{6} - \frac{7}{2}\log 2 + 2\log 3 + o(1),$ where $n = |\gamma_k| = k(3k-1)/2$.

Question: What (if it is exists) is c = ?: $c = \lim_{n \to \infty} \frac{1}{n} (\log f^{\gamma_k} - \frac{1}{2}n \log n)$. Jay Pantone's implementation (method of differential approximants) on 150+ terms of the sequence $\{\log f^{\gamma_k}\}$ to approximate the constant to $c \approx -0.1842$.

Asymptotics of skew SYTs

Multivariate formulas 0000000

Thin ribbons

Zigzag: $\rho_k := \delta_{k+2}/\delta_k$, $E_n = |\{\sigma \in S_n : \sigma(1) < \sigma(2) > \sigma(3) < \cdots \}|$ – Euler numbers, alternating permutations.

 $f^{\rho_n} = E_{2n+1}; \qquad E_m \sim m! (2/\pi)^m 4/\pi (1+o(1))$

From theorem: $F(
ho_k) = n!/3^k$, $\mathcal{E}(
ho_k) = C_k$, so

$$\frac{(2k+1)!}{3^k} \le E_{2k+1} \le \frac{(2k+1)!C_k}{3^k}$$

Multivariate formulas 0000000

Thin ribbons

Zigzag: $\rho_k := \delta_{k+2}/\delta_k$, $E_n = |\{\sigma \in S_n : \sigma(1) < \sigma(2) > \sigma(3) < \cdots \}|$ – Euler numbers, alternating permutations.

$$f^{\rho_n} = E_{2n+1}; \qquad E_m \sim m! (2/\pi)^m 4/\pi (1+o(1))$$

From theorem: $F(\rho_k) = n!/3^k$, $\mathcal{E}(\rho_k) = C_k$, so

$$\frac{(2k+1)!}{3^k} \le E_{2k+1} \le \frac{(2k+1)!C_k}{3^k}$$

Problem: If $\gamma_n := \lambda/\mu$ is a border strip (ribbon of thickness 1, *n* boxes) approaching a given curve γ under rescaling by *n*, what is $\log f^{\gamma_n} - n \log n$ in terms of γ ? Is it true that $\frac{\log f^{\gamma_n} - n \log n}{n} \rightarrow c(\gamma)$ for some constant $c(\gamma)$? (Permutations with certain descent sequences)

イロト 不得 トイヨト イヨト

Multivariate formulas

Lozenge tilings

Image: Leonid Petrov

メロト メポト メヨト メヨト 二日

Asymptotics of skew SYTs 000000000

Multivariate formulas

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Multivariate formulas

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Introduce the x and y coordinates as above. Let $d'=d+\ell(\mu)$ and $n:=d'+d+\mu_1.$ Then

$$\sum_{T} \prod_{(i,j)=-\text{ horizontal lozenge of } T} (x_i - y_j) = \frac{\det[(x_i - z_1) \cdots (x_i - z_{\mu_j + d' - j})]_{i,j=1}^n}{\Delta(x)}$$
$$=: s_{\mu}^{(d')}(x_1, \dots, x_{d'} | z_1, \dots, z_{n-1}) (\text{Factorial Schur function})$$

where the sum is over lozenge tilings T of support μ and height d, and $z_{\lambda_i+(d'+1-i)} = x_i$ and $z_{d'+j-\lambda'_j} = y_j$

Multivariate formulas 0000000

Theorem (Morales-Pak-P)

Consider tilings of the $a \times b \times c \times a \times b \times c$ (base $a \times b$, height c) hexagon with horizontal lozenges having weights $x_i - y_i$. The partition function is given by

$$Z(a, b, c) := \sum_{T} \prod_{(i,j) \in H^{T}(T)} (x_{i} - y_{j}) = \frac{\det \left[\begin{cases} (x_{i} - y_{1}) \cdots (x_{i} - y_{a+b+c-j}) \\ (x_{i} - y_{1}) \cdots (x_{i} - y_{a+c}) (x_{i} - x_{b+c}) \cdots (x_{i} - x_{b-j}) \\ \Delta(x) \end{cases} \right]}{\Delta(x)}$$

The probability that a tiling contains a vertical line passing through the points on vertical lines $1, 2, \ldots$ at heights $d_1, d_2, \ldots, d_{a+b}$ (necessarily $|d_i - d_{i+1}| \le 1$, $d_i \le d_{i+1}$ if $i \leq b$ and $d_i \geq d_{i+1}$ if i > b, and $d_1 = d_{a+b}$) is given by

$$\frac{s_{\mu}^{b+d_1}(x_1, \dots, x_{d+b}|z_1, z_2, \dots)s_{\bar{\mu}}^{b+c-d_1}(x_{b+c}, \dots, x_{d_1+1}|z')}{Z}$$
where $d := d_1$, $\ell(\mu) = b$, $\mu_1 = a$ and μ
has diagonals given by $d_i - d_1$ and z is
determined by μ as in Theorem 12. Here
 $\bar{\mu}$ is the complementary shape of μ in a
 $(a+c-d_1) \times (b+c-d_1)$ rectangle and z'
is determined accordingly, with variables
 $x_{b+c}, x_{b+c-1}, \dots$ and $y_{a+c}, y_{a+c-1}, \dots$
 $\bar{\mu} = (2, 0)$

(2,0)

Multivariate formulas

Excited diagrams and factorial Schur functions

Factorial Schur functions.

$$s_{\mu}^{(d)}(x|a) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

where $x = (x_1, x_2, \dots, x_d)$ and $a = (a_1, a_2, \dots)$ is a sequence of parameters. Excited diagrams $\mathcal{E}(\lambda/\mu)$: Start with λ/μ . Move cells of μ inside λ via:

Multivariate formulas

Excited diagrams and factorial Schur functions Factorial Schur functions.

$$s_{\mu}^{(d)}(x|a) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)}$$

where $x = (x_1, x_2, ..., x_d)$ and $a = (a_1, a_2, ...)$ is a sequence of parameters. Excited diagrams $\mathcal{E}(\lambda/\mu)$: Start with λ/μ . Move cells of μ inside λ via:

Theorem (Ikeda-Naruse Multivariate "Hook-Length Formula")

Let $\mu \subset \lambda \subset d \times (n-d)$. Let v be the Grassmannian permutation with unique descent at position d corresponding to λ , i.e. $v(d'+1-i) = \lambda_i + (d'+1-i)$ and $v(j) = d' + j - \lambda'_j$. Then

$$s_{\mu}^{(d)}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_{1},\ldots,y_{n-1}) = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{\nu(d-i+1)} - y_{\nu(d+j)})$$

-

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

Multivariate formulas 0000000

Excited diagrams and factorial Schur functions

Excited diagrams $\mathcal{E}(\lambda/\mu)$: Start with λ/μ . Move cells of μ inside λ via:

Theorem (Ikeda-Naruse Multivariate "Hook-Length Formula") Let $\mu \subset \lambda \subset d \times (n - d)$. Let v be the Grassmannian permutation with unique descent at position d corresponding to λ , i.e. $v(d'+1-i) = \lambda_i + (d'+1-i)$ and $v(j) = d' + j - \lambda'_i$. Then

$$S^{(d)}_{\mu}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_1,\ldots,y_{n-1}) = \sum_{D\in\mathcal{E}(\lambda/\mu)} \prod_{(i,j)\in D} (y_{\nu(d-i+1)} - y_{\nu(d+j)})$$

 $y_1 \ y_2 \ y_3 \ y_4 \ y_5$ y_6

-

Asymptotics of skew SYTs

Multivariate formulas

Other results

• Proof of multivariate Naruse formula using Lascoux-Pragacz determinant, and manipulatorial proofs for border strips.

Multivariate formulas

Other results

• Proof of multivariate Naruse formula using Lascoux-Pragacz determinant, and manipulatorial proofs for border strips.

3

イロト 不得 トイヨト イヨト

Multivariate formulas

Other results

• Proof of multivariate Naruse formula using Lascoux-Pragacz determinant, and manipulatorial proofs for border strips.

• Generalizations to Grothendieck polynomials.

-

イロト 不得 トイヨト イヨト

Asymptotics of skew SYTs

Multivariate formulas

More problems?

- More precise asymptotics of $f^{\lambda/\mu}$ in various regimes.
- Asymptotics of lozenge tilings using the multivariate weights, new regimes?
- Asymptotics of $\frac{s_{\lambda/\mu}(x_1,...,x_k,1^{n-k})}{s_{\lambda/\mu}(1^n)}$ (Schur generating functions of tilings of arbitrary domains)
- Asymptotics of Littlewood-Richardson coefficients, $c_{\mu,\nu}^{\lambda}$... (e.g. if $\lambda \vdash 2n$, $\mu, \nu \vdash n$, when is it maximal)
- Maximal $f^{\lambda/\mu}$ under constraints...

21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Asymptotics of skew SYTs

Multivariate formulas

Asymptotics of skew SYTs 000000000 Multivariate formulas

Thank you for organizing, Valentin Féray, Pierre-Loïc Méliot!

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣