Characters of infinite-dimensional unitary group and particle systems

Leonid Petrov

University of Virginia and IITP

Extreme characters of the infinite-dimensional unitary group

Irreducible characters of unitary groups $U(N)$ [Clebsch 1872, Schur, Weyl]

Irreducible representations of $U(N)$ are indexed by highest weights (signatures)

$$
\widehat{U(N)}=\left\{\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{N}\right), \quad \lambda_{i} \in \mathbb{Z}\right\}
$$

Irreducible characters of unitary groups $U(N)$ [clebsch 1872, schur, Wey]]

Irreducible representations of $U(N)$ are indexed by highest weights (signatures)

$$
\widehat{U(N)}=\left\{\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{N}\right), \quad \lambda_{i} \in \mathbb{Z}\right\}
$$

$$
U(N) \ni U=D\left(\begin{array}{cccc}
e^{\mathrm{i} \theta_{1}} & 0 & \ldots & 0 \\
0 & e^{\mathrm{i} \theta_{2}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & e^{\mathrm{i} \theta_{N}}
\end{array}\right) D^{-1}
$$

Let $x_{j}=e^{\mathrm{i} \theta_{j}}$. The values of the irreducible character corresponding to λ are given by the Schur polynomial:

$$
\chi_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}_{i, j=1}^{N}\left[x_{i}^{\lambda_{j}+N-j}\right]}{\operatorname{det}_{i, j=1}^{N}\left[x_{i}^{N-j}\right]} .
$$

Branching and lozenge tilings

Restriction to $U(N-1) \subset U(N)$:

$$
s_{\lambda}\left(x_{1}, \ldots, x_{N-1}, 1\right)=\sum_{\lambda_{N} \leq \mu_{N-1} \leq \lambda_{N-1} \leq \ldots \leq \lambda_{2} \leq \mu_{1} \leq \lambda_{1}} s_{\mu}\left(x_{1}, \ldots, x_{N-1}\right)
$$

which implies that there is a distinguished Gelfand-Tsetlin basis in every irreducible V_{λ} indexed by lozenge tilings of a sawtooth domain with fixed top row

$$
\lambda+\rho=\left(\lambda_{1}+N-1, \lambda_{2}+N-2, \ldots, \lambda_{N}\right)
$$

Branching and lozenge tilings

Restriction to $U(N-1) \subset U(N)$:

$$
s_{\lambda}\left(x_{1}, \ldots, x_{N-1}, 1\right)=\sum_{\lambda_{N} \leq \mu_{N-1} \leq \lambda_{N-1} \leq \ldots \leq \lambda_{2} \leq \mu_{1} \leq \lambda_{1}} s_{\mu}\left(x_{1}, \ldots, x_{N-1}\right)
$$

which implies that there is a distinguished Gelfand-Tsetlin basis in every irreducible V_{λ} indexed by lozenge tilings of a sawtooth domain with fixed top row

$$
\lambda+\rho=\left(\lambda_{1}+N-1, \lambda_{2}+N-2, \ldots, \lambda_{N}\right)
$$

Remark: uniformly random lozenge tilings with fixed top row

(asymptotics: a somewhat different story; e.g. [Bufetov's talk next])

Asymptotic representation theory of unitary groups

Let

$$
U(\infty)=\bigcup_{N=1}^{\infty} U(N), \quad\left(\begin{array}{ccccccc}
u_{11} & u_{12} & \ldots & u_{1 N} & 0 & 0 & \ldots \\
u_{21} & u_{22} & \ldots & u_{2 N} & 0 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
u_{N 1} & u_{N 2} & \ldots & u_{N N} & 0 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 1 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & 1 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \cdots
\end{array}\right) \in U(\infty)
$$

A (normalized) character of $U(\infty)$ is a function χ on $U(\infty)$ which is

- Continuous
- $\chi(A B)=\chi(B A)$ (constant on conjugacy classes)
- $\chi(1)=1$ (normalized)
- χ is positive definite

Normalized characters of $U(\infty)$ form a convex set, and its extreme points are analogues of irreducible characters.

Asymptotic representation theory of unitary groups

Each extreme character of $U(\infty)$ is a limit of normalized irreducible characters
$\frac{s_{\lambda(N)}(\cdots)}{s_{\lambda(N)}(1, \ldots, 1)}, N \rightarrow+\infty$ [Vershik '74], [Vershik-Kerov '80s]
Combinatorially, the problem of asymptotic character theory of $U(\infty)$ is equivalent to the following:

Find all sequences $\lambda(N)$ such that the uniformly random tilings of domains of height N with fixed top rows $\lambda(N)$ have weak limits when restricted to any fixed height K.

Asymptotic representation theory of unitary groups

Each extreme character of $U(\infty)$ is a limit of normalized irreducible characters
$\frac{s_{\lambda(N)}(\cdots)}{s_{\lambda(N)}(1, \ldots, 1)}, N \rightarrow+\infty$ [Vershik '74], [Vershik-Kerov '80s]
Combinatorially, the problem of asymptotic character theory of $U(\infty)$ is equivalent to the following:

Find all sequences $\lambda(N)$ such that the uniformly random tilings of domains of height N with fixed top rows $\lambda(N)$ have weak limits when restricted to any fixed height K.

Asymptotic representation theory of unitary groups

Theorem [Edrei ‘53], [Voiculescu '76], also [Vershik-Kerov '80s], [Okounkov-OIshanski '90s], yet other proofs [Borodin-Olshanski '11], [P. '12], [Gorin-Panova '13]

Extreme characters of $U(\infty)$ are parametrized* by tuples in

$$
\begin{aligned}
\widehat{U(\infty)}:=\left\{\omega=\left(\alpha^{ \pm}, \beta^{ \pm}, \gamma^{ \pm}\right) \in \mathbb{R}^{4 \infty+2}: \alpha^{ \pm}=\right. & \left(1>\alpha_{1}^{ \pm} \geq \alpha_{2}^{ \pm} \geq \ldots \geq 0\right) \\
& \left.\beta^{ \pm}=\left(\beta_{1}^{ \pm} \geq \beta_{2}^{ \pm} \geq \ldots \geq 0\right), \gamma^{ \pm} \geq 0\right\}
\end{aligned}
$$

and are given by

$$
\chi\left(x_{1}, x_{2}, \ldots\right)=\prod_{i=1}^{\infty} \frac{\Phi\left(x_{i}\right)}{\Phi(1)}, \quad\left|x_{i}\right|=1
$$

where

$$
\Phi(x):=e^{\gamma^{+} x+\gamma^{-} x^{-1}} \prod_{j=1}^{\infty} \frac{1+\beta_{j}^{+} x}{1-\alpha_{j}^{+} x} \prod_{j=1}^{\infty} \frac{1+\beta_{j}^{-} x^{-1}}{1-\alpha_{j}^{-} x^{-1}}
$$

Particle systems from flows on $\widehat{U(\infty)}$

Random lozenge tilings / interlacing arrays

For any $\omega \in \widehat{U(\infty)}$ the restriction to the first K levels is a random tiling with random top row.

Gibbs property

Conditioned on fixed configuration λ^{K} at any level K, the distribution of the tiling at levels $1,2, \ldots, K-1$ is uniformly random (provided the interlacing).

$$
\omega \in \widehat{U(\infty)}
$$

If $\omega=0$, then $\lambda^{K}=(0,0, \ldots, 0)$, and there is only one densely packed tiling.

Random lozenge tilings / interlacing arrays

For any $\omega \in \widehat{U(\infty)}$ the restriction to the first K levels is a random tiling with random top row.

Gibbs property

Conditioned on fixed configuration λ^{K} at any level K, the distribution of the tiling at levels $1,2, \ldots, K-1$ is uniformly random (provided the interlacing).

$$
\omega \in \widehat{U(\infty)}
$$

If $\omega=0$, then $\lambda^{K}=(0,0, \ldots, 0)$, and there is only one densely packed tiling.
The distribution of each λ^{K} is a Schur measure (or its analogue with additional α^{-}, β^{-}, γ^{-}parameters), and the whole tiling is distributed as a Schur process [Okounkov ‘01],
[Okounkov-Reshetikhin '03].

How to see the structure of Schur measures

Restrict the extreme character χ of $U(\infty)$ to any $U(K) \subset U(\infty)$. This is still a normalized character (but not necessarily irreducible), and we can decompose:

$$
\chi\left(x_{1}, \ldots, x_{K}, 1,1, \ldots\right)=\prod_{i=1}^{K} \frac{\Phi\left(x_{i}\right)}{\Phi(1)}=\sum_{\lambda_{1} \geq \ldots \geq \lambda_{K}} \operatorname{Prob}_{K}(\lambda) \frac{s_{\lambda}\left(x_{1}, \ldots, x_{K}\right)}{s_{\lambda}(1, \ldots, 1)},
$$

where $\operatorname{Prob}_{K}(\lambda)$ is a probability distribution on K-signatures λ.
The expansion into Schur polynomials can be computed explicitly. Let $\frac{\Phi(x)}{\Phi(1)}=\sum_{n \in \mathbb{Z}} \varphi_{n}$, then

$$
\operatorname{Prob}_{K}(\lambda)=s_{\lambda}(1, \ldots, 1) \operatorname{det}_{i, j=1}^{K}\left[\varphi_{\lambda_{j}+i-j}\right] .
$$

Markov kernel Λ_{K}^{∞}

$\operatorname{Prob}_{k}(\lambda)$ defines a Markov kernel $\Lambda_{K}^{\infty}: \widehat{U(\infty)} \rightarrow \widehat{U(K)}, \Lambda_{K}^{\infty}(\omega, \lambda)=\operatorname{Prob}_{K}(\lambda)$.

$$
\text { If } \alpha^{-}=\beta^{-}=\gamma^{-}=0 \text { then } \operatorname{det}_{i, j=1}^{n}\left[\varphi_{\lambda_{j}+i-j}\right]=s_{\lambda}(\alpha ; \beta ; \gamma) \text { is a specialization of the Schur }
$$ function, and that is how we get Schur measures.

Deterministic flows on $\widehat{U(\infty)}$

Let $\mathbf{T}_{\alpha^{+}}, \mathbf{T}_{\beta^{+}}, \mathbf{T}_{\Delta \gamma^{+}}: \widehat{U(\infty)} \rightarrow \widehat{U(\infty)}$ be operations of adding a new parameter α^{+}, β^{+}, or changing $\gamma^{+} \rightarrow \gamma^{+}+\Delta \gamma^{+}$, respectively. Similarly for $\mathbf{T}_{\alpha^{-}}, \mathbf{T}_{\beta^{-}}, \mathbf{T}_{\Delta \gamma^{-}}$.

Remark

$\lim _{M \rightarrow+\infty}\left(\mathbf{T}_{\alpha_{M}^{+}}\right)^{M}=\mathbf{T}_{\gamma^{+}}$with $\alpha_{M}^{+}=\gamma^{+} / M$; $\lim _{M \rightarrow+\infty}\left(\mathbf{T}_{\beta_{M}^{+}}\right)^{M}=\mathbf{T}_{\gamma^{+}}$with $\beta_{M}^{+}=\gamma^{+} / M$; and similarly for $\alpha^{-}, \beta^{-}, \gamma^{-}$.

Deterministic flows on $\widehat{U(\infty)}$

Let $\mathbf{T}_{\alpha^{+}}, \mathbf{T}_{\beta^{+}}, \mathbf{T}_{\Delta \gamma^{+}}: \widehat{U(\infty)} \rightarrow \widehat{U(\infty)}$ be operations of adding a new parameter α^{+}, β^{+}, or changing $\gamma^{+} \rightarrow \gamma^{+}+\Delta \gamma^{+}$, respectively. Similarly for $\mathbf{T}_{\alpha^{-}}, \mathbf{T}_{\beta^{-}}, \mathbf{T}_{\Delta \gamma^{-}}$.

Remark

$\lim _{M \rightarrow+\infty}\left(\mathbf{T}_{\alpha_{M}^{+}}\right)^{M}=\mathbf{T}_{\gamma^{+}}$with $\alpha_{M}^{+}=\gamma^{+} / M$;
$\lim _{M \rightarrow+\infty}\left(\mathbf{T}_{\beta_{M}^{+}}\right)^{M}=\mathbf{T}_{\gamma^{+}}$with $\beta_{M}^{+}=\gamma^{+} / M$; and similarly for $\alpha^{-}, \beta^{-}, \gamma^{-}$.

Stochastic particle dynamics [Borodin-Ferrari '08], [Borodin '10]
Each of these flows defines a unique discrete time or a continuous time Markov evolution of each level $\lambda^{K}, K=1,2, \ldots$; denote by $\mathbf{T}_{\alpha^{+}}^{K}$, etc.

[Borodin-Gorin '10]: q-variant with random flows

Particle dynamics $\mathbf{T}_{\alpha^{+}}^{K}$ etc. on $\widehat{U(K)}$

$K=1$ - single-particle dynamics

- $\left(\alpha^{+}\right)$At each discrete time step, the particle jumps to the right by $j \in \mathbb{Z}_{\geq 0}$ with probability $\left(\alpha^{+}\right)^{j}\left(1-\alpha^{+}\right)$;
- (β^{+}) At each discrete time step, the particle jumps to the right by 1 with probability $\frac{\beta^{+}}{1+\beta^{+}}$, and otherwise stays put;
- $\left(\gamma^{+}\right)$Continuous time Poisson process: in continuous time, the particle jumps to the right by 1 after exponential random time intervals

For $\alpha^{-}, \beta^{-}, \gamma^{-}$, reverse the direction and jump to the left.
General K : discrete-space analogues of Dyson Brownian motion
Dynamics of K independent particles $\lambda_{j}^{K}+K-j$ evolving as $\mathbf{T}_{\alpha^{+}}^{1}$ etc., but conditioned to never collide.

From the point of view of characters: $\chi_{\lambda}\left(\left.\chi_{\alpha^{+}}\right|_{U(K)}\right)$ as character of $U(K)$ decomposes into irreducible characters with weights corresponding to dynamics $\mathbf{T}_{\alpha^{+}}^{K}$.

More particle systems, now in 2 dimensions

2-dimensional particle systems

$\omega \in \widehat{U(\infty)}$

$\Lambda_{K-1}^{K}(\lambda, \mu)=\frac{s_{\mu}\left(1^{K-1}\right)}{s_{\lambda}\left(1^{K}\right)} \mathbf{1}_{\lambda \text { and } \mu \text { interlace }}$ (Gibbs property)

If $\mathbf{T}_{\alpha^{+}}^{K}, \mathbf{T}_{\lambda^{+}}^{K-1}, \ldots, \mathbf{T}_{\alpha^{+}}^{1}$ evolve independently, this does not preserve interlacing (i.e., there is no consistent tiling picture)

2-dimensional particle systems [Borodin-Ferrai '08], [Borodin-P. '13], [Matveev-P. '15]

- $\mathbf{T}_{\alpha^{+}}^{[1, K]}$ preserves Gibbs measures;
- on Gibbs measures, restriction of $\mathbf{T}_{\alpha^{+}}^{[1, k]}$ to any level m is $\mathbf{T}_{\alpha^{+}}^{m}$;
- The construction of $\mathbf{T}_{\alpha^{+}}^{[1, K]}$ is highly non-unique (as opposed to single-level dynamics $\mathbf{T}_{\alpha^{+}}^{K}$);
- Some possible constructions of $\mathbf{T}_{\alpha^{+}}^{[1, k]}$ involve Robinson-Schensted-Knuth correspondences [O'Connell '03];
- Let us give an example of $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ not directly related to Robinson-Schensted-Knuth [Borodin-Ferrari "08]

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari "08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Example: $\mathbf{T}_{\Delta \gamma^{+}}^{[1, K]}$ [Borodin-Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1 , unless it is blocked from below. If needed, it pushes the particles above.

Long-time ($\gamma^{+} \rightarrow \infty$) asymptotics [Borodin-Ferrari '08]: Anisotropic KPZ

- Frozen boundary is a parabola;
- Local fluctuations along the boundary are of order $\left(\gamma^{+}\right)^{1 / 3}$ in normal direction and have the GUE Tracy-Widom F_{2} distribution (and multipoint ones are governed by the Airy line ensemble);
- Global fluctuations inside the parabola are governed by the Gaussian Free Field

TASEPs

TASEPs

The evolution of the leftmost particles is marginally Markovian, i.e., it does not depend on the rest of the tiling

Let $x_{j}:=\lambda_{j}^{j}-j$, so $x_{1}>x_{2}>x_{3}>\ldots$ is a particle configuration in \mathbb{Z}.
Continuous time TASEP [MacDonald-Gibbs-Pipkin '68], [Spitzer '70],
In continuous time, each particle in the configuration jumps to the right by 1 after an exponential waiting time with mean 1 , unless the destination is occuppied

GUE Tracy-Widom asymptotics of fluctuations for $x_{j}(0)=-j$: [Johansson '00]

Discrete time TASEPs for $\mathbf{T}_{\alpha^{+}}^{[1, K]}$ and $\mathbf{T}_{\beta^{+}}^{[1, K]}$

Geometric case α^{+}. Notation $\mathbf{G}_{\alpha^{+}}$

At each dicrete time step $t \rightarrow t+1$, each particle x_{j}, independently of others, jumps to the right by a geometric random distance with parameter α^{+}, and the jump is stopped if x_{j} would overjump $x_{j-1}(t)$ (since $\alpha<1$ this is well-defined):

$$
\operatorname{Prob}\left(x_{j}(t+1)=x_{j}(t)+m\right)= \begin{cases}\left(\alpha^{+}\right)^{m}\left(1-\alpha^{+}\right), & 0 \leq m<x_{j-1}(t)-x_{j}(t)-1 \\ \left(\alpha^{+}\right)^{m}, & m=x_{j-1}(t)-x_{j}(t)-1\end{cases}
$$

000000000000000000

x_{6}
$x_{5} \quad x_{4}$
x_{3}
$x_{2} x_{1}$

Bernoulli case β^{+}. Notation $\mathbf{B}_{\beta^{+}}$

At each dicrete time step $t \rightarrow t+1$, each particle x_{j} jumps to the right by 1 with probability $\frac{\beta^{+}}{1+\beta^{+}}$, unless blocked. We update from right to left (from x_{1} to x_{K}), so blockage is defined as $x_{j}(t)=x_{j-1}(t+1)-1$.

Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint distributions in any of the TASEPs along space-like paths, for example:

$$
x_{5}(t), x_{5}(t+1), x_{4}(t+3), x_{4}(t+4), x_{2}(t+5)
$$

$\widehat{U(5)}-\underset{\mathbf{T}_{\alpha^{+}}^{5}}{--\rightarrow \widehat{U(5)}}$
(leads to a marginal of a Schur process)

$$
\begin{array}{lll}
\frac{\vdots}{U} \wedge_{4}^{5} \\
\mathbf{T}_{\alpha^{+}}^{4}
\end{array}
$$

Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint distributions in any of the TASEPs along space-like paths, for example:

$$
x_{5}(t), x_{5}(t+1), x_{4}(t+3), x_{4}(t+4), x_{2}(t+5)
$$

$\widehat{U(5)}-\underset{\mathbf{T}_{\alpha^{+}}^{5}}{-\rightarrow \rightarrow \widehat{U(5)}}$
(leads to a marginal of a Schur process)

What about time-like paths such as

$$
x_{5}(t), x_{10}(t+8), x_{10}(t+9), x_{12}(t+10) \quad ?
$$

[Johansson '15]: asymptotics of time-like two-point distribution in last passage percolation (in bijection with TASEP started from $x_{j}(0)=-j$). Different asymptotic regime, fluctuation exponent 1 (scale $O(1)$). Slow decorrelation [Ferrari '08], [Corwin-Ferrari-Péché ‘10]

Next

An attempt to understand some of the algebraic structure of time-like joint distributions

Commuting flows on $\overline{U(\infty)}$ and particle systems of a new sort

Commuting flows and Markov kernels

- Flows $\mathbf{T}_{\alpha^{+}}$and $\mathbf{T}_{\beta^{+}}$on $\widehat{U(\infty)}$ commute for trivial reasons
- Markov dynamics $\mathbf{T}_{\alpha^{+}}^{K}$ and $\mathbf{T}_{\beta^{+}}^{K}$ also commute*, for simple Schur reasons
- What about 2-dimensional dynamics $\mathbf{T}_{\alpha^{+}}^{[1 ; K]}$ and $\mathbf{T}_{\beta^{+}}^{[1 ; K]}$?
- What about TASEPs $\mathbf{G}_{\alpha^{+}}$and $\mathbf{B}_{\beta^{+}}$?

In the following we focus on TASEPs, which indeed commute*. Their commutation can be traced to the Yang-Baxter equation for (a degenerate case of) the higher spin six-vertex model

Commutation of TASEPs $\mathbf{G}_{\alpha^{+}}$and $\mathbf{B}_{\beta^{+}}$

If all four geometric and Bernoulli steps are independent (given \vec{x}), then commutation means that for fixed \vec{x} the distributions of \vec{y} and \vec{y} 尼 are the same.
However, unknown how to couple so that the steps $\mathbf{G}_{\alpha^{+}}$and $\mathbf{B}_{\beta^{+}}$are still independent but $\vec{y}^{\boldsymbol{A}}=\vec{y} \overrightarrow{ }$.

Commutation of TASEPs $\mathbf{G}_{\alpha^{+}}$and $\mathbf{B}_{\beta^{+}}$

If all four geometric and Bernoulli steps are independent (given \vec{x}), then commutation means that for fixed \vec{x} the distributions of \vec{y} and \vec{y} 尼 are the same.
However, unknown how to couple so that the steps $\mathbf{G}_{\alpha^{+}}$and $\mathbf{B}_{\beta^{+}}$are still independent but $\vec{y}^{\boldsymbol{A}}=\vec{y}$.

Idea

Having some partial information about $\vec{x}, \vec{x}, \vec{y}$, we are able to say something about the top right configuration.

Coupling lemmas

Lemmas [Orr-P. '16]

There is a rule for sampling y_{m}^{\dagger} given $x_{m-1}, y_{m-1}, x_{m}^{\prime}$, such that given \vec{x} :

$$
\left(y_{m-1}, y_{m}^{\dagger}\right) \stackrel{d}{=}\left(y_{m-1}, y_{m}^{\stackrel{\rightharpoonup}{\top}}\right), \quad\left(x_{m}^{\prime}, y_{m}^{\dagger}\right) \stackrel{d}{=}\left(x_{m}^{\prime}, y_{m}^{\vec{\rightharpoonup}}\right)
$$

Q: What is in the black box? A: stochastic vertex weights

	$\frac{1+\beta^{+} \mathbf{1}_{g>0}}{1+\beta^{+}}$		$\frac{\beta^{+} \mathbf{1}_{g>0}}{1+\beta^{+}}$	$\sum=1$
	$\frac{1-\alpha^{+} \mathbf{1}_{g=0}}{1+\beta^{+}}$		$\frac{\beta^{+}+\alpha^{+} \mathbf{1}_{g=0}}{1+\beta^{+}}$	$\sum=1$

At a vertex: fixing incoming arrows (from left and bottom), we have probability distribution on outgoing arrow configuration (to the right and upwards).

Parameters: $\alpha^{+} \in(0,1), \beta^{+} \in(0,+\infty)$. Inputs: $x_{m-1}-x_{m}^{\prime}-1, y_{m-1}-x_{m-1}$.

Remark

This is $q=0$ case of a more general stochastic higher spin six vertex model [Reshetikhin et al. '80s], [Borodin '14], [Corwin-P. '15]. There is also space-time inhomogeneous version $\left(\beta^{+} \rightarrow a_{x} \beta_{y}^{+}, \alpha^{+} \rightarrow \alpha_{x}^{+}\right)$for which we can compute observables for $q>0$ [Borodin-P. '16] and $q=0$ [Knizel-P. '17, in prep.]. We mostly stick to the homogeneous case.

Coupling of TASEPs to a stochastic vertex model

- Step Bernoulli boundary conditions in vertex model: paths are started independently on the right with probabilities $\frac{\beta^{+}}{1+\beta^{+}}$; nothing enters from below.
- Having stochastic vertex weights, define probability distribution on path ensembles by induction on $x+y$.
(At most one horizontal arrow per edge.)

- Define the height function $h(N, T)$ to be the number of vertical arrows crossing the T-th horizontal (weakly) to the right of N. In short, paths are level lines for the height function.

Coupling of TASEPs to a stochastic vertex model

Let $h(N, T)$ be the height function of the vertex model with the step Bernoulli boundary condition, and $x(N, T)$ be a TASEP started from the usual initial configuration $x_{j}(0,0)=0$. To get to configuration $x(N, T)$, TASEP performs $N-1$ geometric steps $\mathbf{G}_{\alpha^{+}}$ and T Bernoulli steps $\mathbf{B}_{\beta^{+}}$in some order.

Coupling of TASEPs to a stochastic vertex model

Let $h(N, T)$ be the height function of the vertex model with the step Bernoulli boundary condition, and $x(N, T)$ be a TASEP started from the usual initial configuration $x_{j}(0,0)=0$. To get to configuration $x(N, T)$, TASEP performs $N-1$ geometric steps $\mathbf{G}_{\alpha^{+}}$ and T Bernoulli steps $\mathbf{B}_{\beta^{+}}$in some order.

Theorem [Orr-P. '16]

Joint distribution of $\left\{h\left(N_{t}+1, T_{t}\right)\right\}$ along any up-right path is the same as for $\left\{x_{N_{t}}\left(N_{t}, T_{t}\right)+N_{t}\right\}$ in a mixed geometric/Bernoulli TASEP as above, with

- Horizontal step $N \rightarrow N+1$ \leftrightarrow geometric $\mathbf{G}_{\alpha^{+}}$
- Vertical step $T \rightarrow T+1$ \leftrightarrow Bernoulli $\mathbf{B}_{\beta^{+}}$

Remarks

Abstract

Schur structure Joint distributions of ($x_{m-1}, y_{m-1}, y_{m-1}^{\text {P }}$) and $\left(x_{m-1}, x_{m-1}^{\prime}, y_{m-1}^{*}\right)$ are marginals of Schur processes. The passage $m-1 \rightarrow m$ in the last coordinates seems to bring us outside the Schur processes formalism.

Marginal distributions are Schur-type; access to single-point asymptotics

We have $h(N+1, T)=x_{N}(N, T)+N$, which does not depend on the path.
At the same time, $x_{N}(N, T)+N$ is equal in distribution to λ_{N} under the Schur measure $\propto s_{\lambda}(\underbrace{\alpha^{+}, \ldots, \alpha^{+}}_{N-1} ; \underbrace{\beta^{+}, \ldots, \beta^{+}}_{T}) s_{\lambda}(\underbrace{1, \ldots, 1}_{N})$.

Shifting

For fixed $k,\left\{x_{N_{t}+k}\left(N_{t}, T_{t}\right)+N_{t}+k\right\} \stackrel{d}{=}\left\{h^{(k)}\left(N_{t}+1, T_{t}\right)\right\}$, where $h^{(k)}$ is the height function of the vertex model with the so-called generalized step Bernoulli boundary condition (depending on k).

Time-like joint distributions

Vertex model structure of joint distribution of, e.g., $x_{4}(4,3), x_{4}(4,4), x_{5}(5,4), x_{6}(6,4)$

- an informal picture
- joint distribution does not seem accessible (and not via Schur processes)

Accessible time-like joint distributions

In the higher spin model we can compute (at least for $q>0$ [Borodin-P. '16]) joint observables of

$$
x_{N}(N, T), x_{N+1}(N+1, T), x_{N+2}(N+2, T), \ldots
$$

which are time-like (though very specific)

Bonus: asymptotics of TASEP in continuous inhomogeneous space

Continuous space TASEP

A (mostly straightforward) limit of the inhomogeneous stochastic vertex model (powered by TASEPs with particle-dependent jumps) brings the following continuous time particle system on ordered particles $y_{1} \geq y_{2} \geq \ldots$ in $\mathbb{R}_{\geq 0}$:

- initially there are infinitely many particles at 0 ;
- one particle can leave a stack at location y at rate $\xi(y)$, where ξ is an arbitrary (positive, nice) function;
- the jumping particle wants to jump an exponential distance with mean $1 / L$;
- particles preserve order (so a flying particle joins the existing stack)

Define the height function $H(t, y):=\#\{$ number of particles $\geq y$ at time $t\}$.

Asymptotics via Schur measures [Knizel-P. '17, in prep.]

Let $L \rightarrow \infty$ (jumps are small), $t=\tau L$ (many particles). There exists a limit shape $\mathbf{H}(\tau, y)$ such that

$$
\lim _{L \rightarrow \infty} \mathbb{P}\left(\frac{H(\tau L, y)-L \mathbf{H}(\tau, y)}{\sigma(y) L^{\frac{1}{3}}} \geq-r\right)=F_{2}(r) .
$$

- If $\xi(0) \geq \lim _{\varepsilon \rightarrow 0} \xi(\varepsilon)$ then the Tracy-Widom fluctuations are for all $y>0$;
- If $\xi(0)<\lim _{\varepsilon \rightarrow 0} \xi(\varepsilon)$ then there are Tracy-Widom fluctuations for $y>\sigma>0$, Gaussian fluctuations on the scale $L^{\frac{1}{2}}$ on $(0, \sigma)$, and a Baik-Ben Arous-Péché phase transition at σ.
- The limit shape \mathbf{H} can be explicitly described. If ξ is piecewise constant then \mathbf{H} is piecewise algebraic.
- There is another type of phase transitions in this model - traffic jams caused by slowdown in ξ

Asymptotics via Schur measures [Knizel-p. 17, in prep.]

Let $L \rightarrow \infty$ (jumps are small), $t=\tau L$ (many particles). There exists a limit shape $\mathbf{H}(\tau, y)$ such that

$$
\lim _{L \rightarrow \infty} \mathbb{P}\left(\frac{H(\tau L, y)-L H(\tau, y)}{\sigma(y) L^{\frac{1}{3}}} \geq-r\right)=F_{2}(r)
$$

Overview and perspectives:

- Commuting Markov operators from Schur processes / asymptotic character theory of $U(\infty)$ bring new particle systems and tools to study them
- Particle systems in continuous inhomogeneous space display traffic jam phase transitions with Tracy-Widom fluctuations on both sides
- How to better describe the structure of time-like joint distributions not falling under Schur processes formalism?
- Anything new if we include the other group of parameters $\alpha^{-}, \beta^{-}, \gamma^{-}$?
- How to extend this to commuting Markov operators on 2-dimensional particle configurations?

Overview and perspectives:

- Commuting Markov operators from Schur processes / asymptotic character theory of $U(\infty)$ bring new particle systems and tools to study them
- Particle systems in continuous inhomogeneous space display traffic jam phase transitions with Tracy-Widom fluctuations on both sides
- How to better describe the structure of time-like joint distributions not falling under Schur processes formalism?
- Anything new if we include the other group of parameters $\alpha^{-}, \beta^{-}, \gamma^{-}$?
- How to extend this to commuting Markov operators on 2-dimensional particle configurations?

Things left out:

- Along the way of studying the continuous space TASEP we discovered new continuous-parameter limits of Schur measures and processes. They live on half-infinite or infinite configurations
- Everything discussed in the talk except connections to irreducible characters has a q-deformation related to q-Whittaker polynomials (= Macdonald polynomials with $t=0$). Asymptotic behavior of the continuous space inhomogeneous model for fixed q is the same (with q-modified \mathbf{H}) [Borodin-P., arXiv:1702.????]

