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Irreducible characters of unitary groups U(N) [Clebsch 1872, Schur, Weyl]

Irreducible representations of U(N) are indexed by highest weights (signatures)

Û(N) =
{
λ = (λ1 ≥ . . . ≥ λN), λi ∈ Z

}
.

λN

λ2 + N − 2

λ1 + N − 1

U(N) 3 U = D


e iθ1 0 . . . 0
0 e iθ2 . . . 0

. . . . . . . . . . . . . . . . . . .
0 0 . . . e iθN

D−1.

Let xj = e iθj . The values of the irreducible character corresponding to λ are given by the
Schur polynomial:

χλ(x1, . . . , xN) = sλ(x1, . . . , xN) =

N

det
i,j=1

[
x
λj+N−j
i

]
N

det
i,j=1

[
xN−ji

] .
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Branching and lozenge tilings

Restriction to U(N − 1) ⊂ U(N):

sλ(x1, . . . , xN−1, 1) =
∑

λN≤µN−1≤λN−1≤...≤λ2≤µ1≤λ1

sµ(x1, . . . , xN−1)

which implies that there is a distinguished Gelfand–Tsetlin basis in every irreducible Vλ
indexed by lozenge tilings of a sawtooth domain with fixed top row
λ+ ρ = (λ1 + N − 1, λ2 + N − 2, . . . , λN)

(λ1 + 2, λ2 + 1, λ3) ∈ Û(3)

(µ1 + 1, µ2) ∈ Û(2)

(ν1) ∈ Û(1)
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Remark: uniformly random lozenge tilings with fixed top row

(asymptotics: a somewhat different story; e.g. [Bufetov’s talk next])
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Asymptotic representation theory of unitary groups

Let

U(∞) =
∞⋃

N=1

U(N),



u11 u12 . . . u1N 0 0 . . .
u21 u22 . . . u2N 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
uN1 uN2 . . . uNN 0 0 . . .

0 0 . . . 0 1 0 . . .
0 0 . . . 0 0 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


∈ U(∞)

A (normalized) character of U(∞) is a function χ on U(∞) which is

Continuous

χ(AB) = χ(BA) (constant on conjugacy classes)

χ(1) = 1 (normalized)

χ is positive definite

Normalized characters of U(∞) form a convex set, and its extreme points are analogues
of irreducible characters.
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Asymptotic representation theory of unitary groups

Each extreme character of U(∞) is a limit of normalized irreducible characters
sλ(N)(· · · )

sλ(N)(1, . . . , 1)
, N → +∞ [Vershik ‘74], [Vershik–Kerov ‘80s]

Combinatorially, the problem of asymptotic character theory of U(∞) is equivalent to the
following:

Find all sequences λ(N) such that the uniformly random tilings of domains of height N
with fixed top rows λ(N) have weak limits when restricted to any fixed height K .

K
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Asymptotic representation theory of unitary groups

Each extreme character of U(∞) is a limit of normalized irreducible characters
sλ(N)(· · · )

sλ(N)(1, . . . , 1)
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K

∼ α+
j N

∼ β+
j N∼ β−j N

∼ α−j N
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Asymptotic representation theory of unitary groups

Theorem [Edrei ‘53], [Voiculescu ‘76], also [Vershik–Kerov ‘80s], [Okounkov–Olshanski ‘90s], yet other
proofs [Borodin–Olshanski ‘11], [P. ‘12], [Gorin–Panova ‘13]

Extreme characters of U(∞) are parametrized∗ by tuples in

Û(∞) :=
{
ω = (α±, β±, γ±) ∈ R4∞+2 : α± = (1 > α±1 ≥ α

±
2 ≥ . . . ≥ 0),

β± = (β±1 ≥ β
±
2 ≥ . . . ≥ 0), γ± ≥ 0

}
and are given by

χ(x1, x2, . . .) =
∞∏
i=1

Φ(xi )

Φ(1)
, |xi | = 1,

where

Φ(x) := eγ
+x+γ−x−1

∞∏
j=1

1 + β+
j x

1− α+
j x

∞∏
j=1

1 + β−j x−1

1− α−j x−1
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Particle systems from flows on Û(∞)

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



Random lozenge tilings / interlacing arrays

For any ω ∈ Û(∞) the restriction to the first K levels is a random tiling
with random top row.

Gibbs property

Conditioned on fixed configuration λK at any level K , the distribution of the tiling at
levels 1, 2, . . . ,K − 1 is uniformly random (provided the interlacing).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω ∈ Û(∞)

λKj + K − j
λK−1
j + K − 1− j

If ω = 0, then λK = (0, 0, . . . , 0), and there is only one densely packed tiling.

The distribution of each λK is a Schur measure (or its analogue with additional α−, β−,
γ− parameters), and the whole tiling is distributed as a Schur process [Okounkov ‘01],
[Okounkov-Reshetikhin ‘03].
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ω ∈ Û(∞)

λKj + K − j
λK−1
j + K − 1− j

If ω = 0, then λK = (0, 0, . . . , 0), and there is only one densely packed tiling.

The distribution of each λK is a Schur measure (or its analogue with additional α−, β−,
γ− parameters), and the whole tiling is distributed as a Schur process [Okounkov ‘01],
[Okounkov-Reshetikhin ‘03].

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



How to see the structure of Schur measures

Restrict the extreme character χ of U(∞) to any U(K ) ⊂ U(∞). This is still a
normalized character (but not necessarily irreducible), and we can decompose:

χ(x1, . . . , xK , 1, 1, . . .) =
K∏
i=1

Φ(xi )

Φ(1)
=

∑
λ1≥...≥λK

ProbK (λ)
sλ(x1, . . . , xK )

sλ(1, . . . , 1)
,

where ProbK (λ) is a probability distribution on K -signatures λ.

The expansion into Schur polynomials can be computed explicitly. Let
Φ(x)

Φ(1)
=
∑

n∈Z ϕn,

then

ProbK (λ) = sλ(1, . . . , 1)
K

det
i,j=1

[
ϕλj+i−j

]
.

Markov kernel Λ∞K

Probk(λ) defines a Markov kernel Λ∞K : Û(∞) 99K Û(K ), Λ∞K (ω, λ) = ProbK (λ).

If α− = β− = γ− = 0 then
K

det
i,j=1

[
ϕλj+i−j

]
= sλ(α;β; γ) is a specialization of the Schur

function, and that is how we get Schur measures.
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Deterministic flows on Û(∞)

Let Tα+ ,Tβ+ ,T∆γ+ : Û(∞)→ Û(∞) be operations of adding a new parameter α+, β+,
or changing γ+ → γ+ + ∆γ+, respectively. Similarly for Tα− ,Tβ− ,T∆γ− .

Remark

limM→+∞(Tα+
M

)M = Tγ+ with α+
M = γ+/M;

limM→+∞(Tβ+
M

)M = Tγ+ with β+
M = γ+/M; and similarly for α−, β−, γ−.

Stochastic particle dynamics [Borodin–Ferrari ‘08], [Borodin ‘10]

Each of these flows defines a unique discrete time or a continuous time Markov evolution
of each level λK , K = 1, 2, . . .; denote by TK

α+ , etc.

Û(∞) Û(∞)

Û(K ) Û(K )

Tα+

Λ∞K Λ∞K

TK
α+ [Borodin–Gorin ‘10]: q-variant

with random flows
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Particle dynamics TK
α+ etc. on Û(K )

K = 1 — single-particle dynamics

(α+) At each discrete time step, the particle jumps to the right by j ∈ Z≥0 with
probability (α+)j(1− α+);

(β+) At each discrete time step, the particle jumps to the right by 1 with

probability β+

1+β+ , and otherwise stays put;

(γ+) Continuous time Poisson process: in continuous time, the particle jumps to
the right by 1 after exponential random time intervals

For α−, β−, γ−, reverse the direction and jump to the left.

General K : discrete-space analogues of Dyson Brownian motion

Dynamics of K independent particles λKj + K − j evolving as T1
α+ etc., but conditioned to

never collide.

From the point of view of characters: χλ
(
χα+

∣∣
U(K)

)
as character of U(K ) decomposes

into irreducible characters with weights corresponding to dynamics TK
α+ .
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More particle systems, now in 2 dimensions
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2-dimensional particle systems

Û(∞) Û(∞)

Û(K ) Û(K )

̂U(K − 1) ̂U(K − 1)

Û(1) = Z Û(1) = Z

. . . . . .

Tα+

Λ∞K Λ∞K

ΛK
K−1 ΛK

K−1

TK
α+

TK−1
α+

T1
α+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω ∈ Û(∞)

λKj + K − j
λK−1
j + K − 1− j

ΛK
K−1(λ, µ) =

sµ(1K−1)

sλ(1K )
1λ and µ interlace

(Gibbs property)

If TK
α+ , TK−1

λ+ , . . . , T1
α+ evolve independently, this does not preserve interlacing (i.e.,

there is no consistent tiling picture)
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2-dimensional particle systems [Borodin–Ferrari ‘08], [Borodin–P. ‘13], [Matveev–P. ‘15]

Û(∞) Û(∞)

Û(K ) Û(K )

̂U(K − 1) ̂U(K − 1)

Û(1) = Z Û(1) = Z

. . . . . .

Tα+

Λ∞K Λ∞K

ΛK
K−1 ΛK

K−1

T
[1,K ]
α+

T
[1,K ]
α+ preserves Gibbs measures;

on Gibbs measures, restriction of
T

[1,K ]
α+ to any level m is Tm

α+ ;

The construction of T
[1,K ]
α+ is highly

non-unique (as opposed to single-level
dynamics TK

α+ );

Some possible constructions of T
[1,K ]
α+

involve Robinson–Schensted–Knuth
correspondences [O’Connell ‘03];

Let us give an example of T
[1,K ]
∆γ+ not

directly related to
Robinson–Schensted–Knuth
[Borodin–Ferrari ‘08]
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Example: T
[1,K ]
∆γ+ [Borodin–Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.
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Example: T
[1,K ]
∆γ+ [Borodin–Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.

Long-time (γ+ →∞) asymptotics [Borodin–Ferrari ‘08]: Anisotropic KPZ

Frozen boundary is a parabola;

Local fluctuations along the boundary are of order (γ+)1/3 in normal direction and
have the GUE Tracy–Widom F2 distribution (and multipoint ones are governed by
the Airy line ensemble);

Global fluctuations inside the parabola are governed by the Gaussian Free Field
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TASEPs
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TASEPs

λ4

λ3

λ2

λ1

The evolution of the leftmost particles is
marginally Markovian, i.e., it does not
depend on the rest of the tiling

Let xj := λjj − j , so x1 > x2 > x3 > . . . is a particle configuration in Z.

Continuous time TASEP [MacDonald–Gibbs–Pipkin ‘68], [Spitzer ‘70],

In continuous time, each particle in the configuration jumps to the right by 1 after an
exponential waiting time with mean 1, unless the destination is occuppied

GUE Tracy–Widom asymptotics of fluctuations for xj(0) = −j : [Johansson ‘00]

rate 1

x1x2x3x4x5x6
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Discrete time TASEPs for T
[1,K ]
α+ and T

[1,K ]
β+

Geometric case α+. Notation Gα+

At each dicrete time step t → t + 1, each particle xj , independently of others, jumps to
the right by a geometric random distance with parameter α+, and the jump is stopped if
xj would overjump xj−1(t) (since α < 1 this is well-defined):

Prob(xj(t + 1) = xj(t) + m) =

{
(α+)m(1− α+), 0 ≤ m < xj−1(t)− xj(t)− 1;

(α+)m, m = xj−1(t)− xj(t)− 1.

x1x2x3x4x5x6

Bernoulli case β+. Notation Bβ+

At each dicrete time step t → t + 1, each particle xj jumps to the right by 1 with

probability β+

1+β+ , unless blocked. We update from right to left (from x1 to xK ), so

blockage is defined as xj(t) = xj−1(t + 1)− 1.
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Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint
distributions in any of the TASEPs along space-like paths, for example:

x5(t), x5(t + 1), x4(t + 3), x4(t + 4), x2(t + 5)

(leads to a marginal of a Schur process)Û(5) Û(5)

Û(4) Û(4) Û(4) Û(4)

Û(2) Û(2)

T5
α+

Λ5
4

T4
α+ T4

α+ T4
α+

Λ4
2 T2

α+

What about time-like paths such as

x5(t), x10(t + 8), x10(t + 9), x12(t + 10) ?

[Johansson ‘15]: asymptotics of time-like two-point distribution in last passage percolation
(in bijection with TASEP started from xj(0) = −j). Different asymptotic regime,
fluctuation exponent 1 (scale O(1)). Slow decorrelation [Ferrari ‘08], [Corwin–Ferrari-Péché ‘10]

Next

An attempt to understand some of the algebraic structure of time-like joint distributions

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint
distributions in any of the TASEPs along space-like paths, for example:

x5(t), x5(t + 1), x4(t + 3), x4(t + 4), x2(t + 5)

(leads to a marginal of a Schur process)Û(5) Û(5)
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Commuting flows on Û(∞) and particle
systems of a new sort
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Commuting flows and Markov kernels

Û(∞) Û(∞)

Û(∞) Û(∞)

Tα+

Tα+

Tβ+ Tβ+

Û(K ) Û(K )

Û(K ) Û(K )

̂U(K − 1) ̂U(K − 1)

̂U(K − 1) ̂U(K − 1)

Λ∞K Λ∞K

Λ∞K

Λ∞K

TK
α+

TK
α+

TK
β+ TK

β+

Flows Tα+ and Tβ+ on Û(∞)
commute for trivial reasons

Markov dynamics TK
α+ and TK

β+ also
commute∗, for simple Schur reasons

What about 2-dimensional dynamics

T
[1;K ]
α+ and T

[1;K ]
β+ ?

What about TASEPs Gα+ and Bβ+ ?

In the following we focus on TASEPs,
which indeed commute∗. Their
commutation can be traced to the
Yang–Baxter equation for (a degenerate
case of) the higher spin six-vertex model

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



Commutation of TASEPs Gα+ and Bβ+

~x

~y

~x ′

Bβ+

Gα+

Bβ+

Gα+

~y

~y

If all four geometric and Bernoulli steps are independent (given ~x), then commutation
means that for fixed ~x the distributions of ~y and ~y are the same.

However, unknown how to couple so that the steps Gα+ and Bβ+ are still independent
but ~y = ~y .

Idea

Having some partial information about ~x , ~x , ~y , we are able to say something about the
top right configuration.
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Coupling lemmas

~x

~y

~x ′

y†m = −1

Bβ+

Gα+

black box
xm−1 = 0

x ′m = −2

ym−1 = 0

Lemmas [Orr–P. ‘16]

There is a rule for sampling y†m given xm−1, ym−1, x
′
m, such that given ~x :

(ym−1, y
†
m)

d
= (ym−1, ym ), (x ′m, y

†
m)

d
= (x ′m, ym).

~x

~y

~x ′

Bβ+

Gα+

Bβ+

Gα+

~y

~y
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Q: What is in the black box? A: stochastic vertex weights

g

0

g

0
1 + β+1g>0

1 + β+

g

0

g − 1

1
β+1g>0

1 + β+

∑
= 1

g

1

g + 1

0
1− α+1g=0

1 + β+

g

1

g

1
β+ + α+1g=0

1 + β+

∑
= 1

At a vertex: fixing incoming arrows (from left and bottom), we have probability
distribution on outgoing arrow configuration (to the right and upwards).

Parameters: α+ ∈ (0, 1), β+ ∈ (0,+∞). Inputs: xm−1 − x ′m − 1, ym−1 − xm−1.

Remark

This is q = 0 case of a more general stochastic higher spin six vertex model
[Reshetikhin et al. ‘80s], [Borodin ‘14], [Corwin–P. ‘15]. There is also space-time inhomogeneous
version (β+ → axβ

+
y , α+ → α+

x ) for which we can compute observables for q > 0
[Borodin–P. ‘16] and q = 0 [Knizel–P. ‘17, in prep.]. We mostly stick to the homogeneous case.
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Coupling of TASEPs to a stochastic vertex model

Step Bernoulli boundary conditions in vertex model: paths are started

independently on the right with probabilities β+

1+β+ ; nothing enters from below.

Having stochastic vertex weights, define probability distribution on path
ensembles by induction on x + y .

(At most one horizontal arrow per edge.)

2 3 4 5 6 71

1

2

3

4

5

x + y = 6

N

T

Define the height function h(N,T ) to be the number of vertical arrows crossing
the T -th horizontal (weakly) to the right of N. In short, paths are level lines for the
height function.
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Coupling of TASEPs to a stochastic vertex model

2 3 4 5 6 71

1
2
3
4
5

Let h(N,T ) be the height function of the vertex
model with the step Bernoulli boundary condition, and
x(N,T ) be a TASEP started from the usual initial
configuration xj(0, 0) = 0. To get to configuration
x(N,T ), TASEP performs N − 1 geometric steps Gα+

and T Bernoulli steps Bβ+ in some order.

Theorem [Orr-P. ‘16]

N

T

1 2 3 4

0

1

2

x1(1,0)+1 x2(2,0)+2

x2(2,1)+2 x3(3,1)+3 x4(4,1)+4
d
= h(5,1)

x4(4,2)+4
d
= h(5,2)

Gα+

Bβ+

Gα+ Gα+

Bβ+

Joint distribution of {h(Nt + 1,Tt)}
along any up-right path is the same
as for {xNt (Nt ,Tt) + Nt} in a
mixed geometric/Bernoulli TASEP
as above, with

Horizontal step N → N + 1
↔ geometric Gα+

Vertical step T → T + 1
↔ Bernoulli Bβ+
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Remarks

Schur structure

Joint distributions of (xm−1, ym−1, ym−1) and
(xm−1, x

′
m−1, ym−1) are marginals of Schur

processes. The passage m − 1 → m in the
last coordinates seems to bring us outside the
Schur processes formalism.

~x

~y

~x ′

Bβ+

Gα+

Bβ+

Gα+

~y

~y

Marginal distributions are Schur-type; access to single-point asymptotics

We have h(N + 1,T ) = xN(N,T ) + N, which does not depend on the path.
At the same time, xN(N,T ) + N is equal in distribution to λN
under the Schur measure ∝ sλ(α+, . . . , α+︸ ︷︷ ︸

N−1

;β+, . . . , β+︸ ︷︷ ︸
T

)sλ(1, . . . , 1︸ ︷︷ ︸
N

).

Shifting

For fixed k, {xNt+k(Nt ,Tt) + Nt + k} d
= {h(k)(Nt + 1,Tt)}, where h(k) is the height

function of the vertex model with the so-called generalized step Bernoulli boundary
condition (depending on k).
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Time-like joint distributions

Vertex model structure of joint distribution of, e.g., x4(4, 3), x4(4, 4), x5(5, 4), x6(6, 4)

an informal picture

joint distribution does not seem
accessible (and not via Schur
processes)

Û(4) Û(4)

Û(5)

Û(6)

Bernoulli step Geometric; next particle

Geometric; next particle

Accessible time-like joint distributions

In the higher spin model we can compute (at least for q > 0 [Borodin–P. ‘16]) joint
observables of

xN(N,T ), xN+1(N + 1,T ), xN+2(N + 2,T ), . . .

which are time-like (though very specific)
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Bonus: asymptotics of TASEP in continuous
inhomogeneous space
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Continuous space TASEP

A (mostly straightforward) limit of the inhomogeneous stochastic vertex model (powered
by TASEPs with particle-dependent jumps) brings the following continuous time particle
system on ordered particles y1 ≥ y2 ≥ . . . in R≥0:

initially there are infinitely many particles at 0;

one particle can leave a stack at location y at rate ξ(y), where ξ is an arbitrary
(positive, nice) function;

the jumping particle wants to jump an exponential distance with mean 1/L;

particles preserve order (so a flying particle joins the existing stack)

Define the height function H(t, y) := # {number of particles ≥ y at time t}.

0 y

Rate = ξ(0) Rate = ξ(y)
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Asymptotics via Schur measures [Knizel–P. ‘17, in prep.]

Let L→∞ (jumps are small), t = τL (many particles). There exists a limit shape
H(τ, y) such that

limL→∞ P

(
H(τL, y)− LH(τ, y)

σ(y)L
1
3

≥ −r

)
= F2(r).

If ξ(0) ≥ limε→0 ξ(ε) then the Tracy–Widom fluctuations are for all y > 0;

If ξ(0) < limε→0 ξ(ε) then there are Tracy–Widom fluctuations for y > σ > 0,

Gaussian fluctuations on the scale L
1
2 on (0, σ), and a Baik–Ben Arous–Péché phase

transition at σ.

The limit shape H can be explicitly described. If ξ is piecewise constant then H is
piecewise algebraic.

There is another type of phase transitions in this model — traffic jams caused by
slowdown in ξ
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Asymptotics via Schur measures [Knizel–P. ‘17, in prep.]

Let L→∞ (jumps are small), t = τL (many particles). There exists a limit shape
H(τ, y) such that

limL→∞ P

(
H(τL, y)− LH(τ, y)

σ(y)L
1
3

≥ −r

)
= F2(r).
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Overview and perspectives:

Commuting Markov operators from Schur processes / asymptotic character theory
of U(∞) bring new particle systems and tools to study them

Particle systems in continuous inhomogeneous space display traffic jam phase
transitions with Tracy–Widom fluctuations on both sides

How to better describe the structure of time-like joint distributions not falling under
Schur processes formalism?

Anything new if we include the other group of parameters α−, β−, γ−?

How to extend this to commuting Markov operators on 2-dimensional particle
configurations?

Things left out:

Along the way of studying the continuous space TASEP we discovered new
continuous-parameter limits of Schur measures and processes. They live on
half-infinite or infinite configurations

Everything discussed in the talk except connections to irreducible characters has a
q-deformation related to q-Whittaker polynomials (= Macdonald polynomials with
t = 0). Asymptotic behavior of the continuous space inhomogeneous model for
fixed q is the same (with q-modified H) [Borodin–P., arXiv:1702.????]
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