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Irreducible characters of unitary groups U(N) [ciebsch 1872, sciur, wey

Irreducible representations of U(N) are indexed by highest weights (signatures)
UN)={ =\ >...> M), AeZ}.
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Irreducible characters of unitary groups U(N) [ciebsch 1872, sciur, wey

Irreducible representations of U(N) are indexed by highest weights (signatures)
UN)={ =\ >...> M), AeZ}.
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Let x; = €!%. The values of the irreducible character corresponding to A are given by the
Schur polynomial:

N .
N+N—
det [x,- / J}
ij=1

N }
N—
det [x,. J]
ij=1

XAGKLs ) = SA(Xts X)) =



S
Branching and lozenge tilings

Restriction to U(N — 1) C U(N):

S)\(Xl,...,XN_l,l) = E S;L(Xla'--aXN—l)
ANSpn—1<An—1 < <A< <

which implies that there is a distinguished Gelfand—Tsetlin basis in every irreducible V)
indexed by lozenge tilings of a sawtooth domain with fixed top row
Adp=M+N-L +N=-2...\y)

()\14‘2,)\24‘1,)\3)6@

(1 + 1,/_#2\) € U(2\)
v/ (n) € UQ1)
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Branching and lozenge tilings

Restriction to U(N — 1) C U(N):

S)\(Xl,...,XN_l,l) = E S;L(Xlw--aXN—l)
ANSpn—1<An—1 < <A< <

which implies that there is a distinguished Gelfand—Tsetlin basis in every irreducible V)
indexed by lozenge tilings of a sawtooth domain with fixed top row
Adp=M+N-L +N=-2...\y)

()\14‘2,)\24‘1,)\3)6@

—

(11 +1,p2) € U(2)

—

O\ (v1) € U(1)
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Remark: uniformly random lozenge tilings with fixed top row

(asymptotics: a somewhat different story; e.g. [Bufetov’s talk next])
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Asymptotic representation theory of unitary groups

Let
Uil U uy 0 0
U1 U wy 0 0
L
U(OO) = U U(N), uyi un2 ... uyy 0 0 L. ] € U(OO)
N=1 0 0 0 1 0
0 0 0 0 1

A (normalized) character of U(o0) is a function x on U(oo) which is

o Continuous

(]

X(AB) = x(BA) (constant on conjugacy classes)
o x(1) =1 (normalized)
@ x is positive definite

Normalized characters of U(co) form a convex set, and its extreme points are analogues
of irreducible characters.
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S
Asymptotic representation theory of unitary groups

Each extreme character of U(c0) is a limit of normalized irreducible characters
5/\(N)(’ )

SA(N)(L ceey 1)
Combinatorially, the problem of asymptotic character theory of U(c0) is equivalent to the

following:

, N — +00 [Vershik ‘74], [Vershik-Kerov ‘80s]

Find all sequences A(N) such that the uniformly random tilings of domains of height N
with fixed top rows A(/N) have weak limits when restricted to any fixed height K. J
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Asymptotic representation theory of unitary groups

Each extreme character of U(c0) is a limit of normalized irreducible characters
5/\(N)(’ )

S)\(N)(l7 ey 1)
Combinatorially, the problem of asymptotic character theory of U(c0) is equivalent to the

following:

, N — 400 [Vershik ‘74], [Vershik—Kerov ‘80s]

Find all sequences A(N) such that the uniformly random tilings of domains of height N
with fixed top rows A\(/N) have weak limits when restricted to any fixed height K. J

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



S
Asymptotic representation theory of unitary groups

Theorem [Edrei ‘53], [Voiculescu ‘76], also [Vershik—Kerov ‘80s], [Okounkov—Olshanski ‘90s], yet other
pI’OOfS [Borodin—Olshanski ‘11], [P. ‘12], [Gorin—Panova ‘13]

Extreme characters of U(co) are parametrized® by tuples in

@:: {w:(ai,ﬁi,’yi)ER4°°+2:ai:(1>a1i2a2i2...20),
BE=(BE 2 BF > ... 20), v 20}

and are given by

%)
XXIaX2a"' H a |Xi|:17

where - R o
o(x) = 1+ 5 x rp1t5x
Ll1—afx 11— a; x71
Jj=1 J o j= J
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Particle systems from flows on U(oc0)



E—
Random lozenge tilings / interlacing arrays
For any w € WO?) the restriction to the first K levels is a random tiling
with random top row.

Gibbs property

Conditioned on fixed configuration AX at any level K, the distribution of the tiling at

levels 1,2,..., K — 1 is uniformly random (provided the interlacing).
w e U(0)
MK

If w =0, then AKX =(0,0,...,0), and there is only one densely packed tiling.
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Random lozenge tilings / interlacing arrays

For any w € U(c0) the restriction to the first K levels is a random tiling
with random top row.

Gibbs property
Conditioned on fixed configuration AX at any level K, the distribution of the tiling at

levels 1,2,..., K — 1 is uniformly random (provided the interlacing).
w e U(0)
K
VRS
AT HK =1

If w =0, then AKX =(0,0,...,0), and there is only one densely packed tiling.

The distribution of each \X is a Schur measure (or its analogue with additional a—, 57,
v~ parameters), and the whole tiling is distributed as a Schur process [Okounkov ‘01],
[Okounkov-Reshetikhin ‘03].




N
How to see the structure of Schur measures

Restrict the extreme character x of U(c0) to any U(K) C U(oc). This is still a
normalized character (but not necessarily irreducible), and we can decompose:

Loo(x) ) (x1, ... XK)
x(x1,. ., xk,1,1,..) = ¢(1') = Z Probk )‘(l’i’K
i=1 A1>. > A e

where Proby () is a probability distribution on K-signatures \.

[0}
The expansion into Schur polynomials can be computed explicitly. Let ¢E)1<; =D ez P
then p
PI"ObK()\) = S)\(l, 1) (%etl [‘p)‘j‘“‘*j] .

Markov kernel AR

—

Proby()\) defines a Markov kernel A% : U(oo) --» U(K), A (w, A) = Probg()).

K
If o= =3~ =~ =0 then d,et1 [©x4i—j] = sa(; B;7) is a specialization of the Schur
)=

function, and that is how we get Schur measures.




—_—

Deterministic flows on U(o0)
Let Tor, Tae, Taqy:: U(oo) — @ be operations of adding a new parameter o™, 37,
or changing v — 7 + Ay™, respectively. Similarly for T,—, Ts—, Ta,-.

Remark
IimM%Jroo(TaL)M = T+ with o, =~v/M;
IimMHJrOO(TBL)M = T.+ with 8y, = v"/M; and similarly for o, 37, 7".
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Deterministic flows on U(o0)
Let Tor, Tae, Taqy:: @ — @ be operations of adding a new parameter o™, 37,
or changing v* — 7" + Ay™, respectively. Similarly for T,—, Tg—, Tp,-.

Remark
IimM%Jroo(TaL)M = T+ with o, =~v/M;
IimM%JrOO(TBE)M = T.+ with 8y, = v"/M; and similarly for o, 37, 7".

Stochastic particle dynamics [Borodin—Ferrari ‘08], [Borodin ‘10]

Each of these flows defines a unique discrete time or a continuous time Markov evolution
of each level \X, K =1,2,...; denote by TX,, etc.

Ty

U(oo) = U()

A v
\L TK ‘L iant
v o :r_ LN TN [Borodin—Gorin ‘10]: g-varian
U(K) > U(K) with random flows
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Particle dynamics TX, etc. on U(K)

K = 1 — single-particle dynamics

o (a™) At each discrete time step, the particle jumps to the right by j € Z>o with
probability (o) (1 — at);

o (BT) At each discrete time step, the particle jumps to the right by 1 with
probability % and otherwise stays put;

o (™) Continuous time Poisson process: in continuous time, the particle jumps to
the right by 1 after exponential random time intervals

For o=, 8=, reverse the direction and jump to the left.

General K: discrete-space analogues of Dyson Brownian motion

Dynamics of K independent particles )\JK + K — j evolving as T, etc., but conditioned to
never collide.

v

From the point of view of characters: yx (Xa*|u(f<)) as character of U(K) decomposes

into irreducible characters with weights corresponding to dynamics T§+.




More particle systems, now in 2 dimensions
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2-dimensional particle systems

— at — N/
U(K) --------- ) U(K) \M
AK ' \K s (1K1
K_lﬂlf K—-1 ﬂlf K=t Aﬁfl(/\a M) = ZE\(].K) 1) and 1t interlace
— v —
UK-1)-- - UK-1) (Gibbs property)
~ ~
/\\I, T1+ \I,
uvl)y=%z------ >»U(l)=Z
If T§+, Tffl, C, T}ﬁ evolve independently, this does not preserve interlacing (i.e.,

there is no consistent tiling picture)

J
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2-dimensional particle systems [Borodin-Ferrari ‘08], [Borodin-P. ‘13], [Matveev-P. ‘15]

_ To: .
U(c) > U(o0)
AR AR
¥ 3
U(K) U(K)
Ag-1i AR
UK — 1) LK) UK — 1)

A G S
. Y.
~ v
U =27 u(l) =z

1K .
TL+ ] preserves Gibbs measures;

on Gibbs measures, restriction of
T 160 any level mis T™.;

The construction of Tal;K] is highly
non-unique (as opposed to single-level
dynamics TK.);

@ Some possible constructions of TE;K]

involve Robinson—-Schensted—Knuth

correspondences [0’Connell ‘03];

L . [1,K]
et us give an example of TA7+

directly related to

Robinson—-Schensted—Knuth

[Borodin—Ferrari ‘08]

not



LK
Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.

\VAAYA
Y
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Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.

\VAAYA
Y
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LK
Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.

Y
Y
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LK
Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.

AVA
\%4
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Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.
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Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]
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Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
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Exa mple T[Ai)ﬂL] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above.
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Examplei T[Ai)/""] [Borodin—Ferrari ‘08]

Each particle waits for a random exponential time and then jumps to the right by 1,
unless it is blocked from below. If needed, it pushes the particles above. J

Long-time (7" — 00) asymptotics [Borodin—Ferrari ‘08]: Anisotropic KPZ
o Frozen boundary is a parabola;

o Local fluctuations along the boundary are of order (7*)'/3 in normal direction and
have the GUE Tracy-Widom F; distribution (and multipoint ones are governed by
the Airy line ensemble);

o Global fluctuations inside the parabola are governed by the Gaussian Free Field
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TASEPs
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TASEPs

The evolution of the leftmost particles is
marginally Markovian, i.e., it does not
depend on the rest of the tiling

Let x; := )\j: —J, S0 X3 > Xo > x3 > ... s a particle configuration in Z.

Continuous time TASEP [MacDonald-Gibbs-Pipkin ‘68], [Spitzer ‘70],

In continuous time, each particle in the configuration jumps to the right by 1 after an
exponential waiting time with mean 1, unless the destination is occuppied

GUE Tracy-Widom asymptotics of fluctuations for x;j(0) = —j: [Johansson ‘00]

rate 1

N Ly
—0000000000000000095

X6 X5 X4 X3 X2 X1



E—
Discrete time TASEPs for TL: and T4:"

Geometric case at. Notation G+

At each dicrete time step t — t + 1, each particle x;, independently of others, jumps to
the right by a geometric random distance with parameter o™, and the jump is stopped if
x; would overjump xj_1(t) (since av < 1 this is well-defined):

(a*)"(1—a*), 0<m<x1(t) —x(t) ~ 1

Prob(x;(t + 1) = x;(t) + m) = {(a+)m m = x_1(t) — x(t) - 1.

ERSASA ASASISIS) | ASiS) ASiSiS) 4 ASiS

X6 X5 Xg4 X3 X2 X1

Bernoulli case 7. Notation Bg+

At each dicrete time step t — t + 1, each particle x; jumps to the right by 1 with
probability % unless blocked. We update from right to left (from x; to xx), so
blockage is defined as x;(t) = xj_1(t + 1) — L.




N
Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint
distributions in any of the TASEPs along space-like paths, for example:

x5(t), xs(t + 1), xa(t + 3), xa(t + 4), x2(t + 5)

u(5) --_-I_g--) U(5) (leads to a marginal of a Schur process)
at \I//\i
@) - @) === @) -=--> T3
) 3377 U =337 U8) =579 U8
\'/A2 T2+
u@)------ > U(2)

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



N
Joint distributions

The constructions explained so far allow to obtain determinantal structure of joint
distributions in any of the TASEPs along space-like paths, for example:

x5(t), xs(t + 1), xa(t + 3), xa(t + 4), x2(t + 5)

U(S\) ------ > U(E) (leads to a marginal of a Schur process)
T, )
@ \I/Ai
L (@) === @) -2 U@)
) 3377 U =337 U8) =579 U8
\'/A2 T2+
u@)------ > U(2)

What about time-like paths such as
x5(t), x10(t +8), x10(t +9), x12(t +10)  ?

[Johansson ‘15]: asymptotics of time-like two-point distribution in last passage percolation
(in bijection with TASEP started from x;(0) = —j). Different asymptotic regime,
fluctuation exponent 1 (scale O(1)). Slow decorrelation [Ferrari ‘08], [Corwin-Ferrari-Péché ‘10]

Next
An attempt to understand some of the algebraic structure of time-like joint distributions

)




—_—

Commuting flows on U(oco) and particle
systems of a new sort



Commuting flows and Markov kernels

. Tor o o Flows T,+ and T+ on U(c0)
U(IOO) i U(?O) commute for trivial reasons
T/%/\E T/%/\E o Markov dynamics TX. and Tg+ also
AR T,. ' commute®, for simple Schur reasons
U(oco . > U(o 1 Aco
(. ) : 1K (. ) J’AK o What about 2-dimensional dynamics
: A at : N [1;K] [1;K] 2
b U(K) mmmm e =% U(K) Toi and Toim 7
b r o What about TASEPs G, and Bg: ?
AR T, . /\?i STH
UK) ==r=mmmmmmmes > U(K) In the following we focus on TASEPs,
s s which indeed commute®. Their
UK-1) » UK -1) commutation can be traced to the
: : Yang—Baxter equation for (a degenerate
case of) the higher spin six-vertex model
UK — 1) UK — 1)



Commutation of TASEPs G+ and Bg+

r
G

=P
y

(-eoecec00@c— = = )

y ( ) 7+

Bﬂ+ B['L

-5 050050800-) -0000000000—
( < ) - g6 < )

X X

If all four geometric and Bernoulli steps are independent (given X), then commutation
means that for fixed X the distributions of y= and y" are the same.

However, unknown how to couple so that the steps G,+ and Bg+ are still independent
but y* = y".
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Commutation of TASEPs G+ and Bg+

G, .
(cocececcoec— - = ) 7"
y ( )
Bﬂ+ BEL
(-ceccecceco—) - »-ccecccecce—)

e~

X

If all four geometric and Bernoulli steps are independent (given X), then commutation
means that for fixed X the distributions of y= and y" are the same.

However, unknown how to couple so that the steps G,+ and Bg+ are still independent
but y* = y".
Idea

Having some partial information about X, X, y/, we are able to say something about the
top right configuration.




Coupling lemmas

~

Lemmas [Or—P. ‘16]
There is a rule for sampling y/| given x, 1, ym_1,x.,, such that given X:

d
(X Yh) = (s vi2)-

d P
(ym—layri)) = (ym—laym)a




Q: What is in the black box? A: stochastic vertex weights

g g—1
+ +
(o JE 1 . 0 1+ 1g20 0 e 1 BT 1g>0 S=1
1+ 6+ 1+ 6+
g g
g+1 g
ot + +
1 w0 1 « 1g:0 1 1 ﬂ +« lg:O Z -1
1+t 1+ 6+
g g

At a vertex: fixing incoming arrows (from left and bottom), we have probability
distribution on outgoing arrow configuration (to the right and upwards).

Parameters: a™ € (0,1), 87 € (0, +00). Inputs: xp—1 — X, — 1, Ym—1 — Xm—1-

Remark

This is g = 0 case of a more general stochastic higher spin six vertex model
[Reshetikhin et al. ‘80s], [Borodin ‘14], [Corwin—P. ‘15]. There is also space-time inhomogeneous
version (8T — a7, a™ — ) for which we can compute observables for g > 0

[Borodin-P. ‘16] and g = 0 [Knizel-P. ‘17, in prep.]. We mostly stick to the homogeneous case.



S
Coupling of TASEPs to a stochastic vertex model

o Step Bernoulli boundary conditions in vertex model: paths are started
independently on the right with probabilities 14/-3?; nothing enters from below.

o Having stochastic vertex weights, define probability distribution on path
ensembles by induction on x + y.

(At most one horizontal arrow per edge.)

= N W A~ o

1 2 3 45 6 7

o Define the height function h(N, T) to be the number of vertical arrows crossing
the T-th horizontal (weakly) to the right of N. In short, paths are level lines for the
height function.



Coupling of TASEPs to a stochastic vertex model

Let h(N,T) be the height function of the vertex

5 .)_”—_'TJ : model with the step Bernoulli boundary condition, and
‘31.)_‘ i x(N, T) be a TASEP started from the usual initial
PUREERIN I configuration x;(0,0) = 0. To get to configuration
1> R x(N, T), TASEP performs N — 1 geometric steps G+
1234567 and T Bernoulli steps B+ in some order.
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Coupling of TASEPs to a stochastic vertex model

Let h(N,T) be the height function of the vertex

5 .)_”—_'TJ : model with the step Bernoulli boundary condition, and
‘31_)_ i x(N, T) be a TASEP started from the usual initial
5 il configuration x;(0,0) = 0. To get to configuration
1> R x(N, T), TASEP performs N — 1 geometric steps G+
1234567 and T Bernoulli steps B+ in some order.

Theorem [Orr-P. ‘16]

T Joint distribution of {h(N;+1, T;)}

I u(@2)+4<n2) along any up-right path is the same

2 as for {xn,(N¢ Tt) + Ni} in a

mixed geometric/Bernoulli TASEP
as above, with

o Horizontal step N - N +1
> geometric G+

o Vertical step T — T +1
< Bernoulli Bg+




|
Remarks

Schur structure

- . . - r r N
Joint distributions of (xm,l,}./m,l,ym_l) and s 1 %
(Xm—1,X._1,y> ;) are marginals of Schur ~ (cosecsoscece ) s

o By
processes. The passage m — 1 — m in the B,
last coordinates seems to bring us outside the (essessesss) = H5585558558-)

Schur processes formalism.

Marginal distributions are Schur-type; access to single-point asymptotics

We have h(N + 1, T) = xy(N, T) + N, which does not depend on the path.

At the same time, xy(N, T) + N is equal in distribution to Ay

under the Schur measure o s)(a™,...,at; 8%,... . 8")s\(1,...,1).
———

N—1 T N

Shifting

For fixed k, {xnsk(Ne, Te) + Ny + k} £ {h(O(N; + 1, T,)}, where h(¥) is the height
function of the vertex model with the so-called generalized step Bernoulli boundary
condition (depending on k).
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Time-like joint distributions

Vertex model structure of joint distribution of, e.g., x4(4, 3), xa(4, 4), x5(5, 4), x6(6, 4)

@ an informal picture u(6)
b

’
’

o joint distribution does not seem L ) )
-7 Geometric; next particle

accessible (and not via Schur .
processes) u(s)
b

’
’

’
Bernoulli step - -7 Geometric; next particle

Accessible time-like joint distributions

In the higher spin model we can compute (at least for g > 0 [Borodin-P. ‘16]) joint

observables of
XN(N, T),XN+1(N +1, T),XN+2(N + 2, T), R

which are time-like (though very specific)




Bonus: asymptotics of TASEP in continuous
inhomogeneous space
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Continuous space TASEP

A (mostly straightforward) limit of the inhomogeneous stochastic vertex model (powered
by TASEPs with particle-dependent jumps) brings the following continuous time particle
system on ordered particles y; > y» > ... in R>q:

o initially there are infinitely many particles at 0;

o one particle can leave a stack at location y at rate {()), where £ is an arbitrary
(positive, nice) function;

o the jumping particle wants to jump an exponential distance with mean 1/L;
o particles preserve order (so a flying particle joins the existing stack)

Define the height function H(t,y) := # {number of particles > y at time t}.

Rate = £(0) Rate = £(y)

A 4

Leonid Petrov
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Asymptotics via Schur measures [knize-p. ‘17, in prep.]

Let L — oo (jumps are small), t = 7L (many particles). There exists a limit shape

H(,y) such that
limisoo P | PN MY S ) g
o(y)Ls

o If £(0) > lim._0&(¢) then the Tracy-Widom fluctuations are for all y > 0;

o If £(0) < lim.—0&(¢) then there are Tracy-Widom fluctuations for y > o > 0,
Gaussian fluctuations on the scale L2 on (0,0), and a Baik—Ben Arous—Péché phase
transition at o.

@ The limit shape H can be explicitly described. If £ is piecewise constant then H is
piecewise algebraic.

o There is another type of phase transitions in this model — traffic jams caused by
slowdown in &

Leonid Petrov Characters of infinite-dimensional unitary group and particle systems



Asymptotics via Schur measures [knize-p. ‘17, in prep.]

Let L — oo (jumps are small), t = 7L (many particles). There exists a limit shape

H(7,y) such that

IimL%OoJP’

H(TLvy) — LH(Tvy)

1 > —r
o(y)Ls

= FQ(I’).

g
Y

\

traffic jam

Gaussian fluctuations

BBP transition point

Tracy-Widom
fluctuations

Tracy-Widom fluctuations

I
1

g

0.1

0.4 05

0.6

07

X
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ems



Overview and perspectives:

o Commuting Markov operators from Schur processes / asymptotic character theory
of U(oo) bring new particle systems and tools to study them

o Particle systems in continuous inhomogeneous space display traffic jam phase
transitions with Tracy-Widom fluctuations on both sides

@ How to better describe the structure of time-like joint distributions not falling under
Schur processes formalism?

o Anything new if we include the other group of parameters =, 57,777

o How to extend this to commuting Markov operators on 2-dimensional particle
configurations?



Overview and perspectives:

o Commuting Markov operators from Schur processes / asymptotic character theory
of U(oo) bring new particle systems and tools to study them

o Particle systems in continuous inhomogeneous space display traffic jam phase
transitions with Tracy-Widom fluctuations on both sides

@ How to better describe the structure of time-like joint distributions not falling under
Schur processes formalism?

o Anything new if we include the other group of parameters =, 57,777

o How to extend this to commuting Markov operators on 2-dimensional particle
configurations?

Things left out:

o Along the way of studying the continuous space TASEP we discovered new
continuous-parameter limits of Schur measures and processes. They live on
half-infinite or infinite configurations

o Everything discussed in the talk except connections to irreducible characters has a
g-deformation related to g-Whittaker polynomials (= Macdonald polynomials with
t = 0). Asymptotic behavior of the continuous space inhomogeneous model for
fixed g is the same (with g-modified H) [Borodin-P., arXiv:1702.2277]



