Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chains for promotion and nonabelian sandpile models or The power of *R*-trivial monoids

Anne Schilling

Department of Mathematics, UC Davis

based on

- A. Ayyer, S. Klee, A. Schilling, J. Alg. Comb. 39 (2014)
- A. Ayyer, A. Schilling, B. Steinberg, N. Thiéry, Comm. Math. Phys. 335 (2015)
- A. Ayyer, A. Schilling, B. Steinberg, N. Thiéry, Int. J. Alg. & Comp. 25 (2015)
- A. Ayyer, A. Schilling, N. Thiéry, Exp. Math. 26 (2017)

Institut Henri Poincaré, Paris, February 20, 2017 🚛 💿 🧟

Promotion	Markov	chains
	000000	

Representation theory of monoid

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Outline

- Promotion Markov Chains: Markov chains on linear extensions of finite posets via promotion operators:
 - Nice stationary distributions!
 - Integer eigenvalues and nice multiplicities for rooted forests (generalizations of derangements)

Promotion	Markov	chains
	000000	

Representation theory of monoids

Outlook 00

Outline

- Promotion Markov Chains: Markov chains on linear extensions of finite posets via promotion operators:
 - Nice stationary distributions!
 - Integer eigenvalues and nice multiplicities for rooted forests (generalizations of derangements)

• Directed Nonabelian Sandpile Models:

Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

Promotion	Markov	chains
	000000	

Representation theory of monoids

Outlook 00

Outline

- Promotion Markov Chains: Markov chains on linear extensions of finite posets via promotion operators:
 - Nice stationary distributions!
 - Integer eigenvalues and nice multiplicities for rooted forests (generalizations of derangements)

• Directed Nonabelian Sandpile Models:

Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

Other Markov chains:

Further examples with nice eigenvalues and multiplicities:

- Walk on reduced words of longest element of Coxeter group
- Toom models

Promotion	Markov	chains
	000000	

Representation theory of monoids

Outlook 00

Outline

- Promotion Markov Chains: Markov chains on linear extensions of finite posets via promotion operators:
 - Nice stationary distributions!
 - Integer eigenvalues and nice multiplicities for rooted forests (generalizations of derangements)

• Directed Nonabelian Sandpile Models:

Grain toppling on arborescences:

- Nice stationary distributions and wreath product interpretation.
- Integer eigenvalues and nice multiplicities!

Other Markov chains:

Further examples with nice eigenvalues and multiplicities:

- Walk on reduced words of longest element of Coxeter group
- Toom models
- Representation Theory of Monoids:
 - Use the representation theory of *R*-trivial monoids.

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Outline

2 Nonabelian sandpile model

3 Representation theory of monoids

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - の��

Promotion	Markov	chains
•00000000000000000000000000000000000000		

Representation theory of monoid

Outlook 00

Posets

- P a partially ordered set with order \prec
- |P| = n, "naturally" labeled by integers in [n]

Promotion	Markov	chains
••••••••••••		

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook 00

Posets

- P a partially ordered set with order \prec
- |P| = n, "naturally" labeled by integers in [n]
- $\mathcal{L}(P)$ linear extensions of P, ways of arranging elements of P in a line respecting the order

$$\mathcal{L}(\mathcal{P}) = \{\pi \in \mathcal{S}_n : i \prec j \Rightarrow \pi_i^{-1} < \pi_j^{-1}\} \ni e$$

Promotion	Markov	chains
••••••••••		

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook 00

Posets

- P a partially ordered set with order \prec
- |P| = n, "naturally" labeled by integers in [n]
- $\mathcal{L}(P)$ linear extensions of P, ways of arranging elements of P in a line respecting the order

$$\mathcal{L}(\mathcal{P}) = \{\pi \in S_n : i \prec j \Rightarrow \pi_i^{-1} < \pi_j^{-1}\} \ni e$$

• Eg:
$$P = \begin{vmatrix} 4 & 3 \\ -1 & 2 \end{vmatrix}$$
, $\mathcal{L}(P) = \{1234, 1243, 1423, 2134, 2143\}.$

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

Schützenberger '72]

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Promotion (aka jeu de taquin)

Schützenberger '72 9 5 8 2

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Nonabelian sandpile model

 ∂

Representation theory of monoid

Outlook 00

Promotion (aka jeu de taquin)

[Schützenberger '72]

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outlook 00

Algebraic formulation in terms of transposition

• Define τ_i on $\mathcal{L}(P)$

$$\tau_i \pi = \begin{cases} \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \cdots \pi_n & \text{if } \pi_i \text{ and } \pi_{i+1} \text{ are not} \\ & \text{comparable in } P, \\ \pi_1 \cdots \pi_n & \text{otherwise.} \end{cases}$$

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Algebraic formulation in terms of transposition

• Define τ_i on $\mathcal{L}(P)$

$$\tau_i \pi = \begin{cases} \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \cdots \pi_n & \text{if } \pi_i \text{ and } \pi_{i+1} \text{ are not} \\ & \text{ comparable in } P, \\ \pi_1 \cdots \pi_n & \text{ otherwise.} \end{cases}$$

• Then define a generalized promotion operator [Haiman '92, Malvenuto & Reutenauer '94]

$$\partial_j = \tau_{n-1}\tau_{n-2}\cdots\tau_j.$$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Algebraic formulation in terms of transposition

• Define τ_i on $\mathcal{L}(P)$

$$\tau_i \pi = \begin{cases} \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \cdots \pi_n & \text{if } \pi_i \text{ and } \pi_{i+1} \text{ are not} \\ & \text{ comparable in } P, \\ \pi_1 \cdots \pi_n & \text{ otherwise.} \end{cases}$$

 Then define a generalized promotion operator [Haiman '92, Malvenuto & Reutenauer '94]

$$\partial_j = \tau_{n-1}\tau_{n-2}\cdots\tau_j.$$

The case j = 1 is the previous promotion operator.

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outlook 00

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

The Directed Graph

- Given P, let G be the graph whose vertex set is $\mathcal{L}(P)$
- There is an edge $\pi \to \pi'$ if $\pi' = \partial_j \pi$ for some *j*.

Nonabelian sandpile model

Representation theory of monoids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

The Directed Graph

- Given P, let G be the graph whose vertex set is $\mathcal{L}(P)$
- There is an edge $\pi \to \pi'$ if $\pi' = \partial_j \pi$ for some *j*.

Lemma

G is strongly connected.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

The Directed Graph

- Given P, let G be the graph whose vertex set is $\mathcal{L}(P)$
- There is an edge $\pi \to \pi'$ if $\pi' = \partial_j \pi$ for some *j*.

Lemma

G is strongly connected.

Nonabelian sandpile model

Representation theory of monoid 000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Uniform Promotion Graph

We will define two Markov chains on this underlying graph.

Nonabelian sandpile model

Representation theory of monoid 000000000

Outlook 00

Uniform Promotion Graph

We will define two Markov chains on this underlying graph.

Uniform promotion graph

• The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight x_j .

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Uniform Promotion Graph

We will define two Markov chains on this underlying graph.

Uniform promotion graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight x_j .
- Probability distribution:

Theorem (AKS 2014)

The stationary distribution of the Markov chain is uniform.

Representation theory of monoids

Uniform Promotion Graph

We will define two Markov chains on this underlying graph.

Uniform promotion graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight x_j .
- Probability distribution:

Theorem (AKS 2014)

The stationary distribution of the Markov chain is uniform.

• Follows from the fact that $\partial_i^k = \partial_i$ for large enough k.
Nonabelian sandpile model

Representation theory of monoid 000000000

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Ξ.

Outlook 00

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

Promotion Graph

• The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight $x_{\pi(j)}$.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Promotion Graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight $x_{\pi(j)}$.
- Stationary distribution:

Theorem (AKS 2014)

The stationary state weight $w(\pi)$ of the linear extension $\pi \in \mathcal{L}(P)$ for the continuous time Markov chain for the promotion graph is given by

$$w(\pi) = \prod_{i=1}^{n} \frac{x_1 + \dots + x_i}{x_{\pi_1} + \dots + x_{\pi_i}}$$

assuming w(e) = 1.

Outlook 00

Promotion Graph

- The edge $\pi \to \pi'$, where $\pi' = \partial_j \pi$ has weight $x_{\pi(j)}$.
- Stationary distribution:

Theorem (AKS 2014)

The stationary state weight $w(\pi)$ of the linear extension $\pi \in \mathcal{L}(P)$ for the continuous time Markov chain for the promotion graph is given by

$$w(\pi) = \prod_{i=1}^{n} \frac{x_1 + \dots + x_i}{x_{\pi_1} + \dots + x_{\pi_i}},$$

assuming w(e) = 1.

- Note that $w(\pi)$ is independent of *P*.
- Proved by induction.

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

Example (continued)

The transition matrix this time is given by

$$\begin{pmatrix} x_4 & x_4 & x_1 + x_4 & 0 & 0 \\ x_2 + x_3 & x_3 & 0 & x_2 & 0 \\ 0 & x_2 & x_2 + x_3 & 0 & x_2 \\ 0 & x_1 & 0 & x_4 & x_1 + x_4 \\ x_1 & 0 & 0 & x_1 + x_3 & x_3 \end{pmatrix}$$

Notice that row sums are no longer one. The stationary distribution is

$$\left(1, \quad \frac{x_1+x_2+x_3}{x_1+x_2+x_4}, \quad \frac{(x_1+x_2)(x_1+x_2+x_3)}{(x_1+x_2)(x_1+x_2+x_4)}, \quad \frac{x_1}{x_2}, \quad \frac{x_1(x_1+x_2+x_3)}{x_2(x_1+x_2+x_4)}\right)$$

Nonabelian sandpile model

Representation theory of monoid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Special Posets

• A rooted tree is a connected poset, where each node has at most one successor.

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

Special Posets

- A rooted tree is a connected poset, where each node has at most one successor.
- A rooted forest is a union of rooted trees.

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Special Posets

- A rooted tree is a connected poset, where each node has at most one successor.
- A rooted forest is a union of rooted trees.
- A chain is a totally ordered set.

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Special Posets

- A rooted tree is a connected poset, where each node has at most one successor.
- A rooted forest is a union of rooted trees.
- A chain is a totally ordered set.
- A union of chains is also a rooted forest.

Nonabelian sandpile model

Representation theory of monoid

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook 00

- An upper set S in P is a subset of [n] such that if $x \in S$ and $y \succeq x$, then also $y \in S$.
- Let *L* be the lattice (by inclusion) of upper sets in *P*.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

- An upper set S in P is a subset of [n] such that if $x \in S$ and $y \succeq x$, then also $y \in S$.
- Let *L* be the lattice (by inclusion) of upper sets in *P*.
- $\mu(x, y)$ is the Möbius function for $[x, y] := \{z \in L \mid x \preceq z \preceq y\}$

- An upper set S in P is a subset of [n] such that if $x \in S$ and $y \succeq x$, then also $y \in S$.
- Let *L* be the lattice (by inclusion) of upper sets in *P*.
- $\mu(x, y)$ is the Möbius function for $[x, y] := \{z \in L \mid x \preceq z \preceq y\}$
- $f([y, \hat{1}])$ is the number of maximal chains in the interval $[y, \hat{1}]$.

- An upper set S in P is a subset of [n] such that if $x \in S$ and $y \succeq x$, then also $y \in S$.
- Let *L* be the lattice (by inclusion) of upper sets in *P*.
- $\mu(x, y)$ is the Möbius function for $[x, y] := \{z \in L \mid x \preceq z \preceq y\}$
- $f([y, \hat{1}])$ is the number of maximal chains in the interval $[y, \hat{1}]$.
- Brown defined, for each element x ∈ L, a derangement number d_x

$$d_x = \sum_{y \succeq x} \mu(x, y) f([y, \hat{1}]) \; .$$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Spectrum of the Transition Matrix

Theorem (AKS 2014)

Let P be a rooted forest, M the transition matrix of the promotion graph. Then

$$\det(M - \lambda \mathbb{1}) = \prod_{\substack{S \subseteq [n] \\ S \text{ upper set in } P}} (\lambda - \mathbf{x}_S)^{d_S},$$

where $x_{S} = \sum_{i \in S} x_{i}$ and d_{S} is the derangement number in the lattice L (by inclusion) of upper sets in P.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Spectrum of the Transition Matrix

Theorem (AKS 2014)

Let P be a rooted forest, M the transition matrix of the promotion graph. Then

$$\det(M - \lambda \mathbb{1}) = \prod_{\substack{S \subseteq [n] \\ S \text{ upper set in } P}} (\lambda - \mathbf{x}_S)^{d_S},$$

where $x_{S} = \sum_{i \in S} x_{i}$ and d_{S} is the derangement number in the lattice L (by inclusion) of upper sets in P.

In other words, for each upper set $S \subseteq [n]$, there is

- an eigenvalue xs
- with multiplicity *d*_S.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Running Example

 $P = \begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix}$

- $\mathcal{L}(P) = \{123, 132, 312\}$
- Upper sets: ϕ , {2}, {3}, {2,3}, {1,2}, {1,2,3}
- Eigenvalues of M: $x_1 + x_2 + x_3$, x_2 , 0.

Nonabelian sandpile model

Representation theory of monoid

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outlook 00

A special case: the Tsetlin library

The Tsetlin library:

• *n* books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

A special case: the Tsetlin library

The Tsetlin library:

• *n* books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

• The probability of choosing book B_i is x_i .

Nonabelian sandpile model

Representation theory of monoid

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook 00

A special case: the Tsetlin library

The Tsetlin library:

• *n* books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

- The probability of choosing book B_i is x_i .
- Once the book is chosen, it is moved to the back:

$$B_1 B_2 \cdots B_i \cdots B_n \longrightarrow B_1 B_2 \cdots B_n B_i$$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

A special case: the Tsetlin library

The Tsetlin library:

• *n* books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

- The probability of choosing book B_i is x_i .
- Once the book is chosen, it is moved to the back:

Same as promotion Markov chain on the antichain! In this case $\mathcal{L}(P) = S_n$.

Nonabelian sandpile model

Representation theory of monoid 000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

A Markov chain on permutations

- Let $\pi \in S_n$ be a permutation.
- The stationary distribution of the Tsetlin library is given by [Hendricks '72]

$$\mathbb{P}(\pi) = \prod_{i=1}^n \frac{x_{\pi_i}}{x_{\pi_1} + \cdots + x_{\pi_i}}$$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

A Markov chain on permutations

- Let $\pi \in S_n$ be a permutation.
- The stationary distribution of the Tsetlin library is given by [Hendricks '72]

$$\mathbb{P}(\pi) = \prod_{i=1}^n \frac{x_{\pi_i}}{x_{\pi_1} + \cdots + x_{\pi_i}}$$

• A derangement is a permutation without fixed points. Let *d_m* be the number of derangements in *S_m*.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

A Markov chain on permutations

- Let $\pi \in S_n$ be a permutation.
- The stationary distribution of the Tsetlin library is given by [Hendricks '72]

$$\mathbb{P}(\pi) = \prod_{i=1}^n \frac{x_{\pi_i}}{x_{\pi_1} + \dots + x_{\pi_i}}$$

- A derangement is a permutation without fixed points. Let *d_m* be the number of derangements in *S_m*.
- Let M_n be the transition matrix. Then [Phatarfod '91]

$$\det(M_n - \lambda \mathbb{1}) = \prod_{S \subset [n]} (\lambda - x_S)^{d_{[n] \setminus |S|}}$$

where
$$x_S = \sum_{i \in S} x_i$$
.

Nonabelian sandpile model

Representation theory of monoid 000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook 00

Example

• The case of n = 3:

$$M_{3} = \begin{pmatrix} x_{3} & x_{3} & 0 & 0 & x_{3} & 0 \\ x_{2} & x_{2} & x_{2} & 0 & 0 & 0 \\ 0 & 0 & x_{3} & x_{3} & 0 & x_{3} \\ x_{1} & 0 & x_{1} & x_{1} & 0 & 0 \\ 0 & 0 & 0 & x_{2} & x_{2} & x_{2} \\ 0 & x_{1} & 0 & 0 & x_{1} & x_{1} \end{pmatrix} \begin{bmatrix} 123 \\ 132 \\ 213 \\ 231 \\ 312 \\ 321 \end{bmatrix}$$

۲

Nonabelian sandpile model

Representation theory of monoid 000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outlook 00

Example

• The case of n = 3:

$$M_{3} = \begin{pmatrix} x_{3} & x_{3} & 0 & 0 & x_{3} & 0 \\ x_{2} & x_{2} & x_{2} & 0 & 0 & 0 \\ 0 & 0 & x_{3} & x_{3} & 0 & x_{3} \\ x_{1} & 0 & x_{1} & x_{1} & 0 & 0 \\ 0 & 0 & 0 & x_{2} & x_{2} & x_{2} \\ 0 & x_{1} & 0 & 0 & x_{1} & x_{1} \end{pmatrix} \begin{bmatrix} 123 \\ 132 \\ 213 \\ 231 \\ 312 \\ 321 \end{bmatrix}$$

$$\mathbb{P}(231) = \frac{x_3 x_1}{(x_2 + x_3)(x_1 + x_2 + x_3)}$$

Nonabelian sandpile model

Representation theory of monoid 000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Example

The case of n = 3:

$$M_{3} = \begin{pmatrix} x_{3} & x_{3} & 0 & 0 & x_{3} & 0 \\ x_{2} & x_{2} & x_{2} & 0 & 0 & 0 \\ 0 & 0 & x_{3} & x_{3} & 0 & x_{3} \\ x_{1} & 0 & x_{1} & x_{1} & 0 & 0 \\ 0 & 0 & 0 & x_{2} & x_{2} & x_{2} \\ 0 & x_{1} & 0 & 0 & x_{1} & x_{1} \end{pmatrix} \begin{bmatrix} 123 \\ 132 \\ 213 \\ 231 \\ 312 \\ 321 \end{bmatrix}$$

• $\mathbb{P}(231) = \frac{x_3 x_1}{(x_2 + x_3)(x_1 + x_2 + x_3)}$

• Eigenvalues: 1, x_3 , x_2 , x_1 and 0 twice.

Generalizations

- Umpteen generalizations!
- Different moves, more shelves.
- Infinite libraries.
- Hyperplane arrangements [Bidigare, Hanlon, Rockmore '99]
- Left regular bands (monoids) [Brown '00]
- *R*-trivial monoids [Steinberg '06]

Nonabelian sandpile model •••••••••• Representation theory of monoid

Outlook 00

Outline

2 Nonabelian sandpile model

3 Representation theory of monoids

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 의 ♥ ♥

Outlook 00

Abelian sandpile models / chip-firing games

- A graph G
- Configuration: distribution of grains of sand at each site
- Grains fall in at random
- Grains topple to the neighbor sites
- Grains fall off at sinks

Outlook 00

Abelian sandpile models / chip-firing games

- A graph G
- Configuration: distribution of grains of sand at each site
- Grains fall in at random
- Grains topple to the neighbor sites
- Grains fall off at sinks

Outlook 00

Abelian sandpile models / chip-firing games

- A graph G
- Configuration: distribution of grains of sand at each site
- Grains fall in at random
- Grains topple to the neighbor sites
- Grains fall off at sinks

• Prototypical model for the phenomenon of self-organized criticality, like a heap of sand

Nonabelian sandpile model

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook 00

Arborescences or upward rooted trees

• Arborescence \mathcal{T} : exactly one directed path from any vertex to the root r

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Arborescences or upward rooted trees

- Arborescence \mathcal{T} : exactly one directed path from any vertex to the root r
- Set of leaves *L*: vertices with in-degree zero.

Figure: An arborescence with leaves at a, g, h, j, k.

Nonabelian sandpile model

Representation theory of monoid

Outlook 00

Configurations

• Threshold T_v : maximal number of grains at vertex $v \in V$.

Promotion	Markov	chains

Nonabelian sandpile model

Representation theory of monoid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Outlook 00

Configurations

- Threshold T_v : maximal number of grains at vertex $v \in V$.
- Configuration space:

$$\Omega(\mathcal{T}) = \{(t_v)_{v \in V} \mid 0 \le t_v \le T_v\}.$$
Promotion	Markov	chains

Nonabelian sandpile model

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outlook 00

Configurations

- Threshold T_v : maximal number of grains at vertex $v \in V$.
- Configuration space:

$$\Omega(\mathcal{T}) = \{(t_v)_{v \in V} \mid 0 \le t_v \le T_v\}.$$

• Variable t_v : the number of grains of sand at $v \in V$.

Representation theory of monoids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.

Representation theory of monoids

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.
- Unlike in the abelian sandpile model, sand grains only enter at leaves.

- We define two stochastic processes on these arborescences.
- In both, sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.
- Unlike in the abelian sandpile model, sand grains only enter at leaves.
- The operators defining the entrance of sand grains are the same in both models.

Nonabelian sandpile model

Representation theory of monoid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outlook 00

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Nonabelian sandpile model

Representation theory of monoid

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outlook 00

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = \mathsf{r}).$$

Source operator: leaf $\ell \in L$

 $\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = \mathsf{r}).$$

Source operator: leaf $\ell \in L$

$$\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$$

Follow the path ℓ^{\downarrow} from ℓ to the root r

- Add a grain to the first vertex along the way that has not yet reached its threshold, if such a vertex exists.
- If no such vertex exists, then the grain is interpreted to have left the tree at the root and σ_ℓ(t) = t.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

・ロト ・四ト ・ヨト ・ヨト

æ

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Topple operators

Definition (Trickle-down sandpile model)

 $\theta_{\nu}: \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system. Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Topple operators

Definition (Trickle-down sandpile model)

 $\theta_{\nu}: \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system.

Definition (Landslide sandpile model)

 $\tau_{v}:\Omega(\mathcal{T})\to\Omega(\mathcal{T})$

 τ_v moves all grains from $v \in V$ to the first available sites along v^{\downarrow} . Grains remaining after the root exit the system. Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Topple operators

Definition (Trickle-down sandpile model)

 $\theta_{\nu}: \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

 θ_v moves one grain from $v \in V$ to the first available site along v^{\downarrow} . If no such site exists, the grain exits the system.

Definition (Landslide sandpile model)

 $\tau_{v}:\Omega(\mathcal{T})\to\Omega(\mathcal{T})$

 τ_v moves all grains from $v \in V$ to the first available sites along v^{\downarrow} . Grains remaining after the root exit the system.

Remark

If
$$t_v = 0$$
 (no grain at site v), then $\theta_v(t) = \tau_v(t) = t$.

|▲□▶|▲圖▶|▲圖▶||▲圖▶||| 題 || のへで

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Toppling in the Trickle-down sandpile model

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Toppling in the Trickle-down sandpile model

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Nonabelian sandpile model

Representation theory of monoids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outlook 00

Toppling in the Landslide sandpile model

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Toppling in the Landslide sandpile model

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Promotion	Markov	chains

Nonabelian sandpile model

Representation theory of monoid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outlook 00

Markov Chains

• The Trickle-down and Landslide models are discrete-time Markov chains on $\Omega(\mathcal{T})$.

Promotion	Markov	chains

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

- The Trickle-down and Landslide models are discrete-time Markov chains on Ω(T).
- Probability distribution: {x_v, y_ℓ | v ∈ V, ℓ ∈ L}
 x_v: probability of choosing the topple operator θ_v (resp. τ_v)
 y_ℓ: probability of choosing the source operator σ_ℓ

Representation theory of monoids

Markov Chains

2

- The Trickle-down and Landslide models are discrete-time Markov chains on Ω(T).
- Probability distribution: $\{x_v, y_\ell \mid v \in V, \ell \in L\}$ x_v : probability of choosing the topple operator θ_v (resp. τ_v) y_ℓ : probability of choosing the source operator σ_ℓ We assume that

$$0 < x_v, y_\ell \leq 1$$

$$\sum_{v \in V} x_v + \sum_{\ell \in L} y_\ell = 1$$

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

Remarks

Representation theory of monoids

Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

- Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.
- Recursive definition: Both models can be defined recursively by successively removing leaves.

Representation theory of monoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

- Threshold T_v = 1: If T_v = 1 for all v ∈ V, then the Trickle-down and Landslide sandpile models are equivalent.
- Recursive definition: Both models can be defined recursively by successively removing leaves.
- Sources on all vertices: Allow source operators at all vertices, not just leaves!

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Ergodicity

Proposition (ASST 2015)

 G_{θ} : directed graph with

- vertex set $\Omega(\mathcal{T})$
- edges given by σ_{ℓ} for $\ell \in L$ and θ_{ν} for $\nu \in V$.

Then G_{θ} is strongly connected and hence the Trickle-down sandpile model is ergodic.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Ergodicity

Proposition (ASST 2015)

 G_{θ} : directed graph with

- vertex set $\Omega(\mathcal{T})$
- edges given by σ_{ℓ} for $\ell \in L$ and θ_{ν} for $\nu \in V$.

Then G_{θ} is strongly connected and hence the Trickle-down sandpile model is ergodic.

Proposition (ASST 2015)

 G_{τ} : directed graph with

• vertex set $\Omega(\mathcal{T})$

• edges given by σ_{ℓ} for $\ell \in L$ and τ_{v} for $v \in V$.

Then G_{τ} is strongly connected and hence the Landslide sandpile model is ergodic.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chains on a line with thresholds 1

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Trickle-down sandpile model: Stationary distribution

- $L_v := \{\ell \in L \mid v \text{ is a vertex of } \ell^{\downarrow}\}$
- $Y_v := \sum_{\ell \in L_v} y_\ell$
- For $0 \le h \le T_v$

$$\rho_{\mathbf{v}}(h) := \frac{Y_{\mathbf{v}}^{h} \mathbf{x}_{\mathbf{v}}^{T_{\mathbf{v}}-h}}{\sum_{i=0}^{T_{\mathbf{v}}} Y_{\mathbf{v}}^{i} \mathbf{x}_{\mathbf{v}}^{T_{\mathbf{v}}-i}}$$

Nonabelian sandpile model

Representation theory of monoids 000000000

Outlook 00

Trickle-down sandpile model: Stationary distribution

- $L_v := \{\ell \in L \mid v \text{ is a vertex of } \ell^{\downarrow}\}$
- $Y_v := \sum_{\ell \in L_v} y_\ell$
- For $0 \le h \le T_v$

$$\rho_{\mathbf{v}}(h) := \frac{Y_{\mathbf{v}}^{h} x_{\mathbf{v}}^{T_{\mathbf{v}}-h}}{\sum_{i=0}^{T_{\mathbf{v}}} Y_{\mathbf{v}}^{i} x_{\mathbf{v}}^{T_{\mathbf{v}}-i}}$$

Theorem (ASST 2015)

The stationary distribution of the Trickle-down sandpile Markov chain defined on G_{θ} is given by the product measure

$$\mathbb{P}(t) = \prod_{v \in V} \rho_v(t_v).$$

Nonabelian sandpile model

Representation theory of monoids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outlook 00

Landslide sandpile model: Stationary distribution

$$\mu_{\nu}(h) := \begin{cases} \frac{Y_{\nu}^{h} x_{\nu}}{(Y_{\nu} + x_{\nu})^{h+1}} & \text{if } h < T_{\nu} \\ \\ \frac{Y_{\nu}^{T_{\nu}}}{(Y_{\nu} + x_{\nu})^{T_{\nu}}} & \text{if } h = T_{\nu} \end{cases}$$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Landslide sandpile model: Stationary distribution

$$\mu_{v}(h) := \begin{cases} \frac{Y_{v}^{h} x_{v}}{(Y_{v} + x_{v})^{h+1}} & \text{if } h < T_{v} \\ \\ \frac{Y_{v}^{T_{v}}}{(Y_{v} + x_{v})^{T_{v}}} & \text{if } h = T_{v} \end{cases}$$

Theorem (AST <u>2015)</u>

Let $T_v = 1$ for all $v \in V$, $v \neq r$ and $T_r = m$ for some positive integer m. Then the stationary distribution of the Landslide sandpile model defined on G_{τ} is given by the product measure

$$\mathbb{P}(t) = \prod_{v \in V} \mu_v(t_v).$$

Nonabelian sandpile model

Representation theory of monoids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2015)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda \mathbb{1}) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2015)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda \mathbb{1}) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

Eigenvalues: $y_S + x_S$ Multiplicities: T_{S^c}

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.
Representation theory of monoids

Outlook 00

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2015)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Representation theory of monoids

Outlook 00

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2015)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Mixing time: k such that $||P^k - \pi|| \le e^{-c}$

Representation theory of monoids

Outlook 00

Landslide sandpile model: Mixing time

Rate of convergence: Total variation distance from stationarity after k steps $||P^k - \pi||$. Define $p := \min\{x_v \mid v \in V\}$ and n := |V|.

Theorem (ASST 2015)

The rate of convergence is bounded by

$$||P^k - \pi|| \le \exp\left(-\frac{(kp - (n-1))^2}{2kp}\right)$$

as long as $k \ge (n-1)/p$.

Mixing time: k such that $||P^k - \pi|| \le e^{-c}$ Mixing time is at most $\frac{2(n+c-1)}{p}$.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Outline

- 2 Nonabelian sandpile model
- 3 Representation theory of monoids

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Nonabelian sandpile model

Representation theory of monoids $0 \bullet 0 0 0 0 0 0 0 0$

Outlook 00

Markov chain on reduced words

 $W = \langle s_i \mid i \in I \rangle$ finite Coxeter group

Nonabelian sandpile model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

Nonabelian sandpile model

Representation theory of monoids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set}$ of reduced words of w_0 .

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set}$ of reduced words of w_0 .

Markov chain:

 $w \in \mathfrak{R}$ Define $\partial_i : \mathfrak{R} \to \mathfrak{R}$ by prepending *i* to *w* and removing the leftmost letter in *w* that makes *iw* non-reduced.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chain on reduced words

$$W = \langle s_i \mid i \in I \rangle$$
 finite Coxeter group

Example

 $W = S_n$ symmetric group, s_i simple transpositions for $1 \le i < n$.

 w_0 longest element in W.

 $\mathfrak{R} = \mathsf{set}$ of reduced words of w_0 .

Markov chain:

 $w \in \mathfrak{R}$ Define $\partial_i : \mathfrak{R} \to \mathfrak{R}$ by prepending *i* to *w* and removing the leftmost letter in *w* that makes *iw* non-reduced.

Example

 $w = 231231 \in \Re$ for S_4 . Then $\partial_1(w) = 123121$ since 123123 = 121323 = 212323 is not reduced!

Nonabelian sandpile model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Free tree monoid

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Free tree monoid

Is there some uniform explanation?

Methods from the representation theory of monoids

Our models have exceptionally nice eigenvalues.

In fact many examples of Markov chains have similar behaviors:

- Promotion Markov chain
- Nonabelian directed sandpile models
- Toom models
- Walks on longest words of finite Coxeter groups
- Free tree monoid

Is there some uniform explanation?

Yes!

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Representation theory of monoids

Outlook 00

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Definition (Transition monoid of a Markov chain / automaton) m_i transition operators of the Markov chain E.g.: • σ_ℓ and τ_v for the Landslide sandpile model Monoid: $(\mathcal{M}, \circ) = \langle m_i \rangle$

Representation theory of monoids

Outlook 00

Approach: monoids and representation theory

A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Definition (Transition monoid of a Markov chain / automaton) m_i transition operators of the Markov chain E.g.: • σ_ℓ and τ_v for the Landslide sandpile model Monoid: $(\mathcal{M}, \circ) = \langle m_i \rangle$

Alternatively from transition matrix M of Markov chain:

$$m_i = M_{x_i=1;x_1=\cdots=x_{i-1}=x_{i+1}=\cdots=x_n=0}$$

Nonabelian sandpile model

Outlook 00

The left Cayley graph for the 1D sandpile model

Nonabelian sandpile model

Representation theory of monoids

(日)、

э

Outlook 00

The right Cayley graph for the 1D sandpile model

• This graph is acyclic: *R*-triviality

Nonabelian sandpile model

Representation theory of monoids

(日)、

э

Outlook 00

The right Cayley graph for the 1D sandpile model

- This graph is acyclic: *R*-triviality
- Not too deep

Nonabelian sandpile model

Representation theory of monoids

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Outlook 00

The right Cayley graph for the 1D sandpile model

- This graph is acyclic: *R*-triviality
- Not too deep \implies bound on the rates of convergence

Promotion	Markov	chains

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outlook 00

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$

Promotion	Markov	chains

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outlook 00

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$

• Equivalence classes on \mathcal{M} :

$$x \mathscr{R} y$$
 if $y \mathcal{M} = x \mathcal{M}$
 $x \mathscr{L} y$ if $\mathcal{M} y = \mathcal{M} x$

Promotion	Markov	chains
	000000	

Representation theory of monoids

Outlook 00

Definitions: Green relations

• Left and right preorders on \mathcal{M} :

$$\begin{array}{ll} x \leq_{\mathscr{R}} y & \text{if} \quad y \in x\mathcal{M} \\ x \leq_{\mathscr{L}} y & \text{if} \quad y \in \mathcal{M} x \end{array}$$

• Equivalence classes on \mathcal{M} :

$$x \mathscr{R} y$$
 if $y \mathcal{M} = x \mathcal{M}$
 $x \mathscr{L} y$ if $\mathcal{M} y = \mathcal{M} x$

Definition

 $\mathcal{M} \text{ is } \mathscr{R}\text{-trivial} \ (\mathscr{L}\text{-trivial}) \text{ if all } \mathscr{R}\text{-classes} \ (\mathscr{L}\text{-classes}) \text{ are singletons. Equivalently, if the preorders are partial orders. }$

Nonabelian sandpile model

Representation theory of monoids ${\scriptstyle 0000000000}$

Outlook 00

R-trivial monoid for promotion example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Nonabelian sandpile model

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outlook 00

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized

Nonabelian sandpile model

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators

Representation theory of monoids

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outlook 00

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory of monoids

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

• Simple modules are of dimension 1

Representation theory of monoids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

- Simple modules are of dimension 1
- Compute the character of a transformation module (counting fixed points)

Representation theory of monoids

Strategy

Method

- Show that \mathcal{M} is \mathscr{R} -trivial
 - \Rightarrow matrix representation can be triangularized
- Eigenvalues indexed by a lattice of subsets of the generators
- Multiplicities from Möbius inversion on the lattice

Representation theory point of view

- Simple modules are of dimension 1
- Compute the character of a transformation module (counting fixed points)
- Recover the composition factors using the character table

Nonabelian sandpile model

Representation theory of monoids 000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook 00

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

Using representation of *R*-trivial monoids?

- Steinberg '06, ...
- Not semi-simple.

Nonabelian sandpile model

Representation theory of monoids

Outlook 00

Markov chains and Representation Theory

The idea of decomposing the configuration space is not new!

Using representation theory of groups

- Diaconis et al.
- Nice combinatorics (symmetric functions, ...)

Using representation theory of right regular band

- Tsetlin library, Hyperplane arrangements, ...
- Bidigare, Hanlon, Rockmore '99, Brown '00, Saliola, ...
- Revived the interest for representation theory of monoids

Using representation of *R*-trivial monoids?

- Steinberg '06, ...
- Not semi-simple. But simple modules of dimension 1!
- Nice combinatorics

Nonabelian sandpile model

Representation theory of monoid

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outlook ●0

Outlook

\mathscr{R} -trivial machinery:

• Multitude of models fits this setting!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Outlook

\mathscr{R} -trivial machinery:

• Multitude of models fits this setting!

Mixing time for linear extensions [AST17]:

- Counting linear extensions is an important problem in practice.
- Define random-to-random promotion operator on posets via $\tau_i \tau_{i+1} \cdots \tau_j$.
- Explicit conjecture for second largest eigenvalue for random-to-random shuffling on posets.
- Conjectured mixing time is O(n² log n) (as opposed to Bubley-Dyer's result of O(n³ log n))
Representation theory of monoid

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Thank you !