Asymptotic study of the graph of zigzag diagrams

Pierre Tarrago

Workshop on Asymptotic Representation Theory February 20, 2017

Figure: Initial part of the graph of zigzag didagrams.

Asymptotic study of a branching graph

Interesting questions on a rooted graded graph \mathcal{G} :
(1) Describe the Choquet simplex $\mathcal{H}(\mathcal{G})$ of harmonic measures on \mathcal{G} (with the topology of weak convergence): functions $p: \mathcal{G} \longrightarrow \mathbb{R}^{+}$such that $p(\varnothing)=1$ and $p(\lambda)=\sum_{\lambda \neq \mu} p(\mu)$ for all $\lambda \in \mathcal{G}$.
The boundary $\partial_{\min } \mathcal{G}$ of $\mathcal{H}(\mathcal{G})$ is called the minimal boundary of the graph.
(2) Describe the Martin boundary $\partial_{M} \mathcal{G}$ of \mathcal{G} : functions $p: \mathcal{G} \longrightarrow \mathbb{R}^{+}$obtained as a weak limit of Martin Kernels K_{ν}, with $K_{\nu}(\mu)=\frac{\#\{\text { paths from } \mu \text { to } \nu\}}{\#\{\text { paths from } \varnothing \text { to } \nu\}} . \partial_{\min } \mathcal{G} \subset \partial_{M} \mathcal{G} \subset \mathcal{H}(\mathcal{G})$
(Doob's theory).
(3) Describe the behavior of a random path following a harmonic measure (implies a geometric embedding of the graph).

Young graph

Figure: First levels of the Young graph

Definition

The Young graph $\mathcal{Y}=\sqcup_{n \geq 0} \mathcal{Y}_{n}$ is the infinite graded graph such that

- vertices of rank n are partitions ($\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$) of n, and
- the edge structure is given by the Pieri rule.

Results on the Young graph (Vershik-Kerov, Logan-Shepp

1,2: $\partial_{\min } \mathcal{Y} \simeq_{\phi} \Delta^{(2)}:=\left\{\alpha_{1} \geq \alpha_{2} \geq \ldots, \beta_{1} \geq \beta_{2} \geq \ldots \mid \sum \alpha_{i}+\beta_{i} \leq 1\right\}$, and $\partial_{\min } \mathcal{Y}=\partial_{M} \mathcal{Y}$.
3: Embed $\lambda \vdash n$ in $\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ as

$$
L(\lambda)=\left(\frac{\lambda_{1}}{n}, \frac{\lambda_{2}}{n}, \ldots\right) \times\left(\frac{\lambda_{1}^{\prime}}{n}, \frac{\lambda_{2}^{\prime}}{n}, \ldots\right)
$$

(where λ^{\prime} is the conjugate partition of λ). Then for a path $\left(\lambda^{n}\right)_{n \geq 1}$ following the harmonic measure $\phi(\alpha, \beta)$, a.s

$$
L\left(\lambda^{n}\right) \longrightarrow(\alpha, \beta)
$$

If $\left(\lambda^{n}\right)_{n \geq 1}$ follows the Plancherel measure $\phi(0,0)$, then a rotated and rescaled version of λ converges almost surely to a deterministic curve Ω defined by

$$
\Omega(x)=\left\{\begin{array}{cc}
\frac{2}{\pi}\left(u \arcsin (u / 2)+\sqrt{4-u^{2}},\right. & |u| \leq 2, \\
|u|, & |u| \geq 2
\end{array}\right.
$$

Definition of the graph \mathcal{Z}

Figure: First levels of the graph \mathcal{Z}.

Definition (Viennot)

The graph of zigzag diagrams $\mathcal{Z}=\sqcup_{n \geq 0} \mathcal{Z}_{n}$ is the infinite graded graph such that

- vertices of rank n are words in $\{+,-\}$ of length $n-1$, and
- the edge structure is given by the subword order.

Paths on \mathcal{Z}

There is a bijection between paths $\left(w_{k}\right)_{0 \leq k \leq n}$ on \mathcal{Z} and sequences of permutations $\left(\sigma_{k}\right)_{0 \leq k \leq n}$ such that:

- $\sigma_{n} \in S_{n}$.
- σ_{n} is obtained from σ_{n+1} by deleting the symbol $n+1$.
- $\sigma_{n}(i)>\sigma_{n}(i+1)$ if and only if $w_{n}(i)=-: w_{n}$ is called the descent word of σ_{n}, also denoted by $w\left(\sigma_{n}\right)$.

Figure: An example of the equivalence between paths on \mathcal{Z} and sequences of coherent permutations.

Parameter space of the minimal boundary (Gnedin-Olshanski, 2006)

Denote by $U^{(2)}$ the set of pairs $\left(U_{\uparrow}, U_{\downarrow}\right)$ of open subset of $[0,1]$ such that $U_{\uparrow} \cap U_{\downarrow}=\varnothing$, with the distance

$$
d\left(\left(U_{\uparrow}, U_{\downarrow}\right),\left(V_{\uparrow}, V_{\downarrow}\right)\right)=\sup \left(d_{\text {Haus }}\left(U_{\uparrow}^{c}, V_{\uparrow}^{c}\right), d_{\text {Haus }}\left(U_{\downarrow}^{c}, V_{\downarrow}^{c}\right)\right)
$$

Mapping each element of $U^{(2)}$ to the double decreasing sequence of lengths of the interval components of U_{\uparrow} and U_{\downarrow} yields a surjective continuous map T from $U^{(2)}$ to $\Delta^{(2)}$.
Each vertex w of \mathcal{Z} yields an element $U(w)=\left(U_{\uparrow}(w), U_{\downarrow}(w)\right)$ by considering connected components of + and - . For example $\left.U_{\uparrow}(++--+)=\right] 0, \frac{2}{5}[\cup] \frac{4}{5}, 1\left[\right.$ and $\left.U_{\downarrow}(++--+)=\right] \frac{2}{5}, \frac{4}{5}[$. In this case,

$$
T\left(U_{\uparrow}(++--+), U_{\downarrow}(++--+)\right)=\left(\left(\frac{2}{5}, \frac{1}{5}, 0, \ldots\right),\left(\frac{2}{5}, 0, \ldots\right)\right)
$$

Oriented Paintbox construction (Gnedin-Olshanski,2006)

Let $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ be a sequence in $[0,1]$. The random permutation $\sigma_{U}\left(X_{1}, \ldots, X_{k}\right)$ is defined by the following rule: i is left to j in the word representation of $\sigma_{U}\left(X_{1}, \ldots, X_{k}\right)$ iff

- X_{i} and X_{j} are not in the same component of U and $X_{i}<X_{j}$, or
- X_{i} and X_{j} are in the same component of U_{\uparrow} and $i<j$, or
- X_{i} and X_{j} are in the same component of U_{\downarrow} and $j<i$.

Example

$\sigma_{\left(U_{\uparrow}, U_{\downarrow}\right)}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)=(4,6,2,3,5,1)$.

Minimal boundary of \mathcal{Z} (Gnedin-Olshanski,2006)

Let $\left(X_{1}, X_{2}, \ldots\right)$ be a sequence of i.i.d random variables in $[0,1]$, and set $\sigma_{\left(U_{\uparrow}, U_{\downarrow}\right)}(k)=\sigma_{\left(U_{\uparrow}, U_{\downarrow}\right)}\left(X_{1}, \ldots, X_{k}\right)$.
Then, $\left(w\left(\sigma_{\left(U_{\uparrow}, U_{\downarrow}\right)}(n)\right)\right)_{n \geq 0}$ is a random path on \mathcal{Z} following a harmonic measure denoted by $\psi\left(U_{\uparrow}, U_{\downarrow}\right)$.

Theorem (Gnedin, Olshanski)

- The map ψ yields a homeomorphism from $\mathcal{U}^{(2)}$ to $\partial_{\min } \mathcal{Z}$.
- If $\left(w_{n}\right)_{n \geq 0}$ follows the measure $\psi\left(U_{\uparrow}, U_{\downarrow}\right)$, then a.s

$$
U\left(w_{n}\right) \underset{n \rightarrow+\infty}{\longrightarrow}\left(U_{\uparrow}, U_{\downarrow}\right)
$$

Statements of results

(1) If $\left(w_{n}\right)_{n \geq 1}$ is a path such that $U\left(w_{n}\right)$ converges to $\left(U_{\uparrow}, U_{\downarrow}\right)$, then $K_{w_{n}}$ converges to $p_{\psi}\left(U_{\uparrow}, U_{\downarrow}\right)$. In particular, $\partial_{\text {min }}(\mathcal{Z})=\partial_{M}(\mathcal{Z})$.
(2) For $w \in \mathcal{Z}_{n}$, define the piece-wise linear function $f_{w} \in \mathcal{C}([0,1])$ by $f_{w}(0)=0$ and $f_{w}^{\prime}(x)=w(i)$ for $\left.x \in\right] \frac{i-1}{n-1}, \frac{i}{n-1}[$. Then, for $\left(w_{n}\right)_{n \geq 0}$ following the harmonic measure $\psi(\varnothing, \varnothing)$,

$$
\frac{1}{\sqrt{n}} f_{w_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} \sqrt{\frac{1}{3}} \mathcal{B}_{[0,1]} .
$$

(3) There exists a surjective map π from paths on \mathcal{Z} to paths on \mathcal{Y} such that the following square commutes:

$$
\begin{array}{ccc}
\mathcal{U}^{(2)} & \longrightarrow & \Delta^{(2)} \\
\downarrow \psi & & \downarrow \phi . \\
\partial_{\min } Z & \underset{\pi^{*}}{\longrightarrow} & \partial_{\min } \mathcal{Y}
\end{array}
$$

Interpretation of the Martin Kernel

$$
K_{\nu}(\mu)=\frac{\#\{\text { paths from } \mu \text { to } \nu\}}{\#\{\text { paths from } \varnothing \text { to } \nu\}}
$$

Equivalently, $K_{\nu}(\mu)$ is the probability that the initial part of a uniform random path ending at ν is a chosen path ending at μ.

$$
\mathbb{P}\left(\tau_{[0, m]}=\gamma\right)=K_{\nu}(\mu)
$$

In our case, for $w \in \mathcal{Z}_{n}$ and $w \in \mathcal{Z}_{k}$,

$$
K_{w}\left(w^{\prime}\right)=\mathbb{P}\left(\sigma_{\downarrow k}^{w}=\sigma\right)
$$

where σ^{w} is a uniformly distributed permutation with descent set $w, \sigma_{\downarrow k}^{w}$ denotes the permutation σ^{w} where all letters bigger than k have been deleted, and $w(\sigma)=w^{\prime}$.

Recovering the oriented Paintbox

Goal: Show that if $U\left(w_{n}\right) \longrightarrow\left(U_{\uparrow}, U_{\downarrow}\right)$, then for $k \geq 1$,

$$
\sigma_{\downarrow k}^{w_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} \sigma_{U_{\uparrow}, U_{\downarrow}}\left(X_{1}, \ldots, X_{k}\right) .
$$

Sketch of proof:

- There exist $\left(U_{\uparrow}^{w_{n}}, U_{\downarrow}^{w_{n}}\right) \in \mathcal{U}^{(2)}$ and a random vector $\left(X_{1}^{w_{n}}, \ldots, X_{n}^{w_{n}}\right)$ in $[0,1]^{k}$ such, that for $1 \leq k \leq n$,

$$
\sigma_{\downarrow k}^{w_{n}} \simeq \operatorname{Law} \sigma_{\left(U_{\uparrow}^{w_{n}}, U_{\downarrow}^{w_{n}}\right)}\left(X_{1}^{w_{n}}, \ldots, X_{k}^{w_{n}}\right) .
$$

- As n goes to infinity, $\left(U_{\uparrow}^{w_{n}}, U_{\downarrow}^{w_{n}}\right)_{n \geq 1}$ goes to $\left(U_{\uparrow}, U_{\downarrow}\right)$ and the vector $\left(X_{1}^{\omega_{n}}, \ldots, X_{k}^{w_{n}}\right)_{n \geq 1}$ converges to $\left(X_{1}, \ldots, X_{k}\right)$.
- The convergence of $\left(U_{\uparrow}^{w_{n}}, U_{\downarrow}^{w_{n}}\right)_{n \geq 1}$ and $\left(X_{1}^{w_{n}}, \ldots, X_{k}^{w_{n}}\right)_{n \geq 1}$ implies the convergence of $\sigma_{\left(U_{\uparrow}^{w_{n}}, U_{\downarrow}^{w_{n}}\right)}\left(X_{1}^{w_{n}}, \ldots, X_{k}^{w_{n}}\right)$.

Oshanin and Voituriez's probabilistic approach

Plancherel measure: $=\psi(\varnothing, \varnothing)$.
In this case, the oriented Paintbox construction $\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right)$ is simply the ranking function on $\left(X_{1}, \ldots, X_{k}\right)$. When $\left(X_{1}, \ldots, X_{k}\right)$ is a uniform random vector on $[0,1]^{k}$,

$$
\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right) \simeq \operatorname{Unif}\left(S_{k}\right)
$$

What is the asymptotic law of $w\left[\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right)\right]$?
Idea of Oshanin and Voituriez: Rather than look at $w(\sigma)$, look at $w\left(\sigma^{-1}\right)$.

$$
\sigma^{-1}(i)>\sigma^{-1}(i+1) \Leftrightarrow i \text { right to }(i+1) \text { in } \sigma \Leftrightarrow X_{i}>X_{i+1}
$$

Define the word $\tilde{w}(\sigma) \in \mathcal{Z}_{n-1}$ as $[\tilde{w}(\sigma)](i)=-$ if and only if $X_{i}>X_{i+1}$. Then,

- $\tilde{w}\left[\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right)\right] \simeq w\left[\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right)\right]$., and
- $\left(\tilde{w}\left[\sigma_{(\varnothing, \varnothing)}\left(X_{1}, \ldots, X_{k}\right)\right], X_{k}\right)_{k \geq 1}$ is a Markov process.

CLT for the Plancherel measure

Asymptotic law of $f_{w_{n}}$:
(1) By the Markov property $f_{w_{n}}\left(\frac{i_{2}}{n-1}\right)-f_{w_{n}}\left(\frac{i_{1}}{n-1}\right)$ is independent of $f_{w_{n}}\left(\frac{j_{2}}{n-1}\right)-f_{w_{n}}\left(\frac{j_{1}}{n-1}\right)$ for $i_{1} \leq i_{2}<j_{1} \leq j_{2}$, and $f_{w_{n}}\left(\frac{i_{2}}{n-1}\right)-f_{w_{n}}\left(\frac{i_{1}}{n-1}\right)$ is distributed as $f_{w_{i_{2}-i_{1}+1}}(1)$.
(2) $f_{w_{n}}(1)=\#\left\{\right.$ ascent of $\left.\sigma_{n}\right\}-\#\left\{\right.$ descent of $\left.\sigma_{n}\right\}=$
$2 \#\left\{\right.$ ascent of $\left.\sigma_{n}\right\}-(n-1)$. Moreover, the distribution of the number of ascents of a uniform permutation is known, which allows the limit formula

$$
\frac{1}{\sqrt{n}} f_{w_{n}}(1) \longrightarrow \mathcal{N}(0,1 / 3)
$$

(3) Standard tightness results conlude the proof.

RSK algorithm

(1) A finite path on \mathcal{Y} ending on λ is equivalent to a standard filling of λ.
(2) A finite path on \mathcal{Z} ending on w is equivalent to a permutation σ such that $w(\sigma)=w$.

How to relate both structures ?
Robinson-Schensted-Knuth algorithm: canonical procedure associating a pair $(P(\sigma), Q(\sigma))$ of standard filling of a Young diagram $\lambda(\sigma)$ to a permutation σ. This yields a map
$\begin{array}{ccc}\text { Finite path } \gamma \text { on } \mathcal{Z} & \rightarrow & \text { Permutation } \sigma(\gamma) \\ & \downarrow \\ \text { Pair of paths on } \mathcal{Y} & & \text { Pair of standard Young } \\ \text { ending at } \lambda[\sigma(\gamma)] & \leftarrow & \text { tableaux }(P[\sigma(\gamma)], Q[\sigma(\gamma)])\end{array}$

From paths on \mathcal{Z} to paths on \mathcal{Y}

Fact 1: If π is the map sending γ to $P(\sigma(\gamma))$, then the map respects both graph structures. Why ?

- For $\sigma \in S_{n}$, the position of the first k integers in $P(\sigma)$ only depends on their relative positions.
- If $\gamma \subset \gamma^{\prime}$ in \mathcal{Z}, then $\sigma(\gamma)$ is obtained from $\sigma\left(\gamma^{\prime}\right)$ by deleting integers larger than the length k of γ. Thus, the relative position of the first k integers is the same in $\sigma\left(\gamma^{\prime}\right)$ and $\sigma(\gamma)$.
Fact 2: π^{*} sends $\psi\left(U_{\uparrow}, U_{\downarrow}\right)$ to $\phi\left(T\left(U_{\uparrow}\right), T\left(U_{\downarrow}\right)\right)$. Why ?
- If $\left(\sigma_{n}\right)_{n \geq 0}$ is a harmonic random path on $\mathcal{Z}, \pi\left(\left(\sigma_{n}\right)_{n \geq 0}\right)$ is a harmonic random path on \mathcal{Y} (because $w\left(\sigma_{n}\right)$ can be read on $\left.Q\left(\sigma_{n}\right)\right)$.
- If $U\left(w\left(\sigma_{n}\right)\right)$ converges to $\left(U_{\uparrow}, U_{\downarrow}\right)$, then $L\left(\lambda\left(\sigma_{n}\right)\right)$ converges to $T\left(\left(U_{\uparrow}, U_{\downarrow}\right)\right.$ (requires Greene's theorem).

Perspectives

- What are the fluctuations of $U\left(w_{n}\right)$ when $\left(w_{n}\right)_{n \geq 1}$ follows a harmonic measure different from $\psi(\varnothing, \varnothing)$.
- Can we deduce the Vershik-Kerov-Logan-Shepp shape from the central limit theorem for $\psi(\varnothing, \varnothing)$?
- Let us consider Hall-Littlewood quasi-symmetric functions (introduced by Hivert): graph structure ? minimal boundary ?
- Relation with the infinite Jeu de Taquin process (idea suggested by Piotr Sniady).

Thank you for your attention!

