Asymptotic study of the graph of zigzag diagrams

Pierre Tarrago

Workshop on Asymptotic Representation Theory February 20, 2017

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 - のへで

Figure: Initial part of the graph of zigzag didagrams.

Young graph Graph of zigzag diagrams

Asymptotic study of a branching graph

Interesting questions on a rooted graded graph \mathcal{G} :

• Describe the Choquet simplex $\mathcal{H}(\mathcal{G})$ of harmonic measures on \mathcal{G} (with the topology of weak convergence): functions $p: \mathcal{G} \longrightarrow \mathbb{R}^+$ such that $p(\emptyset) = 1$ and $p(\lambda) = \sum_{\lambda \nearrow \mu} p(\mu)$ for all $\lambda \in \mathcal{G}$.

The boundary $\partial_{\min} \mathcal{G}$ of $\mathcal{H}(\mathcal{G})$ is called the minimal boundary of the graph.

- Describe the Martin boundary ∂_MG of G: functions
 p:G → ℝ⁺ obtained as a weak limit of Martin Kernels K_ν, with K_ν(μ) = #{paths from μ to ν}/#{paths from Ø to ν}. ∂_{min}G ⊂ ∂_MG ⊂ H(G) (Doob's theory).
- Oescribe the behavior of a random path following a harmonic measure (implies a geometric embedding of the graph).

▲□ → ▲ 三 → ▲ 三 → ……

3

Introduction

Asymptotic for descents of permutations Link between ${\mathcal Y}$ and ${\mathcal Z}$ Perspectives

Young graph Graph of zigzag diagrams

Young graph

Figure: First levels of the Young graph

Definition

The Young graph $\mathcal{Y} = \sqcup_{n \ge 0} \mathcal{Y}_n$ is the infinite graded graph such that

- vertices of rank *n* are partitions $(\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r)$ of *n*, and
- the edge structure is given by the Pieri rule.

Young graph Graph of zigzag diagrams

Results on the Young graph (Vershik-Kerov, Logan-Shepp

- 1,2: $\partial_{\min} \mathcal{Y} \simeq_{\phi} \Delta^{(2)} := \{ \alpha_1 \ge \alpha_2 \ge \dots, \beta_1 \ge \beta_2 \ge \dots | \sum \alpha_i + \beta_i \le 1 \}$, and $\partial_{\min} \mathcal{Y} = \partial_M \mathcal{Y}$.
 - 3: Embed $\lambda \vdash n$ in $\mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}}$ as

$$L(\lambda) = \left(\frac{\lambda_1}{n}, \frac{\lambda_2}{n}, \ldots\right) \times \left(\frac{\lambda_1'}{n}, \frac{\lambda_2'}{n}, \ldots\right)$$

(where λ' is the conjugate partition of λ). Then for a path $(\lambda^n)_{n\geq 1}$ following the harmonic measure $\phi(\alpha, \beta)$, a.s

$$L(\lambda^n) \longrightarrow (\alpha, \beta).$$

If $(\lambda^n)_{n\geq 1}$ follows the Plancherel measure $\phi(0,0)$, then a rotated and rescaled version of λ converges almost surely to a deterministic curve Ω defined by

$$\Omega(x) = \begin{cases} \frac{2}{\pi} (u \arcsin(u/2) + \sqrt{4 - u^2}, & |u| \le 2, \\ |u|, & |u| \ge 2. \\ & |u|, & |u| \ge 2. \end{cases}$$

Introduction

Asymptotic for descents of permutations Link between $\mathcal Y$ and $\mathcal Z$ Perspectives

Young graph Graph of zigzag diagrams

Definition of the graph ${\mathcal Z}$

Figure: First levels of the graph \mathcal{Z} .

Definition (Viennot)

The graph of zigzag diagrams $\mathcal{Z} = \sqcup_{n \ge 0} \mathcal{Z}_n$ is the infinite graded graph such that

- vertices of rank *n* are words in $\{+, -\}$ of length n 1, and
- the edge structure is given by the subword order.

Young graph Graph of zigzag diagrams

Paths on $\mathcal Z$

There is a bijection between paths $(w_k)_{0 \le k \le n}$ on \mathcal{Z} and sequences of permutations $(\sigma_k)_{0 \le k \le n}$ such that:

- $\sigma_n \in S_n$.
- σ_n is obtained from σ_{n+1} by deleting the symbol n+1.
- σ_n(i) > σ_n(i + 1) if and only if w_n(i) = −: w_n is called the descent word of σ_n, also denoted by w(σ_n).

$$* \longrightarrow \varnothing \longrightarrow - \longrightarrow +- \longrightarrow -+- \longrightarrow -+--$$

$$\downarrow$$

$$* \longrightarrow (1) \longrightarrow (21) \longrightarrow (231) \longrightarrow (4231) \longrightarrow (42531)$$

Figure: An example of the equivalence between paths on \mathcal{Z} and sequences of coherent permutations.

Young graph Graph of zigzag diagrams

Parameter space of the minimal boundary (Gnedin-Olshanski, 2006)

Denote by $U^{(2)}$ the set of pairs $(U_{\uparrow}, U_{\downarrow})$ of open subset of [0, 1] such that $U_{\uparrow} \cap U_{\downarrow} = \emptyset$, with the distance

$$d((U_{\uparrow}, U_{\downarrow}), (V_{\uparrow}, V_{\downarrow})) = \sup(d_{\mathsf{Haus}}(U_{\uparrow}^{c}, V_{\uparrow}^{c}), d_{\mathsf{Haus}}(U_{\downarrow}^{c}, V_{\downarrow}^{c})).$$

Mapping each element of $U^{(2)}$ to the double decreasing sequence of lengths of the interval components of U_{\uparrow} and U_{\downarrow} yields a surjective continuous map T from $U^{(2)}$ to $\Delta^{(2)}$. Each vertex w of Z yields an element $U(w) = (U_{\uparrow}(w), U_{\downarrow}(w))$ by considering connected components of + and -. For example $U_{\uparrow}(++--+) = \left]0, \frac{2}{5}\right[\cup \right]\frac{4}{5}, 1\left[$ and $U_{\downarrow}(++--+) = \right]\frac{2}{5}, \frac{4}{5}\left[$. In this case,

$$T(U_{\uparrow}(++--+), U_{\downarrow}(++--+)) = ((\frac{2}{5}, \frac{1}{5}, 0, \ldots), (\frac{2}{5}, 0, \ldots)).$$

Young graph Graph of zigzag diagrams

Oriented Paintbox construction (Gnedin-Olshanski,2006)

Let $(X_1, X_2, ..., X_k)$ be a sequence in [0, 1]. The random permutation $\sigma_U(X_1, ..., X_k)$ is defined by the following rule: *i* is left to *j* in the word representation of $\sigma_U(X_1, ..., X_k)$ iff

- X_i and X_j are not in the same component of U and $X_i < X_j$, or
- X_i and X_j are in the same component of U_{\uparrow} and i < j, or
- X_i and X_j are in the same component of U_{\downarrow} and j < i.

Introduction Asymptotic for descents of permutations Link between \mathcal{Y} and \mathcal{Z} Perspectives

Young graph Graph of zigzag diagrams

Minimal boundary of \mathcal{Z} (Gnedin-Olshanski,2006)

Let $(X_1, X_2, ...)$ be a sequence of i.i.d random variables in [0, 1], and set $\sigma_{(U_{\uparrow}, U_{\downarrow})}(k) = \sigma_{(U_{\uparrow}, U_{\downarrow})}(X_1, ..., X_k)$. Then, $(w(\sigma_{(U_{\uparrow}, U_{\downarrow})}(n)))_{n \ge 0}$ is a random path on \mathcal{Z} following a harmonic measure denoted by $\psi(U_{\uparrow}, U_{\downarrow})$.

Theorem (Gnedin, Olshanski)

- The map ψ yields a homeomorphism from $\mathcal{U}^{(2)}$ to $\partial_{\min} \mathcal{Z}$.
- If $(w_n)_{n\geq 0}$ follows the measure $\psi(U_{\uparrow}, U_{\downarrow})$, then a.s

$$U(w_n) \xrightarrow[n \to +\infty]{} (U_{\uparrow}, U_{\downarrow}).$$

Introduction

Asymptotic for descents of permutations Link between ${\mathcal Y}$ and ${\mathcal Z}$ Perspectives

Young graph Graph of zigzag diagrams

Statements of results

- If $(w_n)_{n\geq 1}$ is a path such that $U(w_n)$ converges to $(U_{\uparrow}, U_{\downarrow})$, then K_{w_n} converges to $p_{\psi(U_{\uparrow}, U_{\downarrow})}$. In particular, $\partial_{\min}(\mathcal{Z}) = \partial_M(\mathcal{Z})$.
- For w ∈ Z_n, define the piece-wise linear function f_w ∈ C([0,1]) by f_w(0) = 0 and f'_w(x) = w(i) for x ∈] ⁱ⁻¹/_{n-1}, ⁱ/_{n-1}[. Then, for (w_n)_{n≥0} following the harmonic measure ψ(Ø, Ø),

$$\frac{1}{\sqrt{n}}f_{w_n}\underset{n\to+\infty}{\longrightarrow}\sqrt{\frac{1}{3}}\mathcal{B}_{[0,1]}.$$

So There exists a surjective map π from paths on \mathcal{Z} to paths on \mathcal{Y} such that the following square commutes:

$$\begin{array}{ccccc} \mathcal{U}^{(2)} & \xrightarrow{T} & \Delta^{(2)} \\ \downarrow \psi & & \downarrow \phi \\ \partial_{\min} Z & \xrightarrow{\pi^*} & \partial_{\min} \mathcal{Y}_{a, n} & \downarrow \sigma \\ \end{array}$$

Martin boundary of \mathcal{Z} CLT for the Plancherel measure

Interpretation of the Martin Kernel

$$K_{\nu}(\mu) = \frac{\#\{\text{paths from } \mu \text{ to } \nu\}}{\#\{\text{paths from } \emptyset \text{ to } \nu\}}$$

Equivalently, $K_{\nu}(\mu)$ is the probability that the initial part of a uniform random path ending at ν is a chosen path ending at μ .

$$\begin{array}{c}
\mu \\
\gamma \\
\bullet \\
\nu
\end{array} \quad \mathbb{P}(\tau_{[0,m]} = \gamma) = K_{\nu}(\mu)$$

In our case, for $w \in \mathbb{Z}_n$ and $w \in \mathbb{Z}_k$,

$$K_w(w') = \mathbb{P}(\sigma_{\downarrow k}^w = \sigma),$$

where σ^w is a uniformly distributed permutation with descent set w, $\sigma^w_{\downarrow k}$ denotes the permutation σ^w where all letters bigger than k have been deleted, and $w(\sigma) = w'$.

Martin boundary of \mathcal{Z} CLT for the Plancherel measure

Recovering the oriented Paintbox

Goal: Show that if
$$U(w_n) \longrightarrow (U_{\uparrow}, U_{\downarrow})$$
, then for $k \ge 1$,

$$\sigma_{\downarrow k}^{w_n} \xrightarrow[n \to +\infty]{} \sigma_{U_{\uparrow}, U_{\downarrow}}(X_1, \ldots, X_k).$$

Sketch of proof:

• There exist $(U_{1}^{w_{n}}, U_{\downarrow}^{w_{n}}) \in \mathcal{U}^{(2)}$ and a random vector $(X_{1}^{w_{n}}, \ldots, X_{n}^{w_{n}})$ in $[0, 1]^{k}$ such, that for $1 \leq k \leq n$,

$$\sigma_{\downarrow k}^{w_n} \simeq_{\mathsf{Law}} \sigma_{(U_{\uparrow}^{w_n}, U_{\downarrow}^{w_n})}(X_1^{w_n}, \dots, X_k^{w_n}).$$

- As *n* goes to infinity, $(U_{\uparrow}^{w_n}, U_{\downarrow}^{w_n})_{n\geq 1}$ goes to $(U_{\uparrow}, U_{\downarrow})$ and the vector $(X_1^{w_n}, \ldots, X_k^{w_n})_{n\geq 1}$ converges to (X_1, \ldots, X_k) .
- The convergence of $(U_{\uparrow}^{w_n}, U_{\downarrow}^{w_n})_{n\geq 1}$ and $(X_1^{w_n}, \dots, X_k^{w_n})_{n\geq 1}$ implies the convergence of $\sigma_{(U_{\uparrow}^{w_n}, U_{\downarrow}^{w_n})}(X_1^{w_n}, \dots, X_k^{w_n})$.

Martin boundary of $\ensuremath{\mathcal{Z}}$ CLT for the Plancherel measure

Oshanin and Voituriez's probabilistic approach

Plancherel measure:= $\psi(\emptyset, \emptyset)$.

In this case, the oriented Paintbox construction $\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)$ is simply the ranking function on (X_1,\ldots,X_k) . When (X_1,\ldots,X_k) is a uniform random vector on $[0,1]^k$,

$$\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)\simeq \mathsf{Unif}(S_k).$$

What is the asymptotic law of $w[\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)]$?

Idea of Oshanin and Voituriez: Rather than look at $w(\sigma)$, look at $w(\sigma^{-1})$.

$$\sigma^{-1}(i) > \sigma^{-1}(i+1) \Leftrightarrow i \text{ right to } (i+1) \text{ in } \sigma \Leftrightarrow X_i > X_{i+1}.$$

Define the word $\tilde{w}(\sigma) \in \mathbb{Z}_{n-1}$ as $[\tilde{w}(\sigma)](i) = -$ if and only if $X_i > X_{i+1}$. Then,

- $\tilde{w}[\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)] \simeq w[\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)].$, and
- $(\tilde{w}[\sigma_{(\emptyset,\emptyset)}(X_1,\ldots,X_k)],X_k)_{k\geq 1}$ is a Markov process.

Asymptotic for descents of permutations Link between \mathcal{Y} and \mathcal{Z} Perspectives

CLT for the Plancherel measure

CLT for the Plancherel measure

Asymptotic law of f_{w_n} :

1 By the Markov property $f_{W_0}(\frac{i_2}{n-1}) - f_{W_0}(\frac{i_1}{n-1})$ is independent of $f_{w_n}(\frac{j_2}{n-1}) - f_{w_n}(\frac{j_1}{n-1})$ for $i_1 \le i_2 < j_1 \le j_2$, and $f_{W_n}(\frac{l_2}{n-1}) - f_{W_n}(\frac{l_1}{n-1})$ is distributed as $f_{W_{i_n-i_1+1}}(1)$. 2 $f_{w_n}(1) = \#\{\text{ascent of } \sigma_n\} - \#\{\text{descent of } \sigma_n\} =$ $2\#\{\text{ascent of } \sigma_n\} - (n-1)$. Moreover, the distribution of the number of ascents of a uniform permutation is known, which allows the limit formula

$$\frac{1}{\sqrt{n}}f_{w_n}(1)\longrightarrow \mathcal{N}(0,1/3).$$

Standard tightness results conlude the proof.

Introduction Asymptotic for descents of permutations Link between \mathcal{Y} and \mathcal{Z} Perspectives

RSK algorithm

- A finite path on *Y* ending on λ is equivalent to a standard filling of λ.
- A finite path on Z ending on w is equivalent to a permutation σ such that $w(\sigma) = w$.

How to relate both structures ?

Robinson-Schensted-Knuth algorithm: canonical procedure associating a pair $(P(\sigma), Q(\sigma))$ of standard filling of a Young diagram $\lambda(\sigma)$ to a permutation σ . This yields a map

Finite path
$$\gamma$$
 on $\mathcal{Z} \rightarrow$
Pair of paths on \mathcal{Y}
ending at $\lambda[\sigma(\gamma)] \leftarrow$
Pair of standard Young
tableaux $(P[\sigma(\gamma)], Q[\sigma(\gamma)])$

From paths on ${\mathcal Z}$ to paths on ${\mathcal Y}$

Fact 1: If π is the map sending γ to $P(\sigma(\gamma))$, then the map respects both graph structures. Why ?

- For $\sigma \in S_n$, the position of the first k integers in $P(\sigma)$ only depends on their relative positions.
- If γ ⊂ γ' in Z, then σ(γ) is obtained from σ(γ') by deleting integers larger than the length k of γ. Thus, the relative position of the first k integers is the same in σ(γ') and σ(γ).

Fact 2: π^* sends $\psi(U_{\uparrow}, U_{\downarrow})$ to $\phi(T(U_{\uparrow}), T(U_{\downarrow}))$. Why ?

- If (σ_n)_{n≥0} is a harmonic random path on Z, π ((σ_n)_{n≥0}) is a harmonic random path on Y (because w(σ_n) can be read on Q(σ_n)).
- If $U(w(\sigma_n))$ converges to $(U_{\uparrow}, U_{\downarrow})$, then $L(\lambda(\sigma_n))$ converges to $T((U_{\uparrow}, U_{\downarrow})$ (requires Greene's theorem).

Perspectives

- What are the fluctuations of U(w_n) when (w_n)_{n≥1} follows a harmonic measure different from ψ(Ø, Ø).
- Can we deduce the Vershik-Kerov-Logan-Shepp shape from the central limit theorem for $\psi(\emptyset, \emptyset)$?
- Let us consider Hall-Littlewood quasi-symmetric functions (introduced by Hivert): graph structure ? minimal boundary ?
- Relation with the infinite Jeu de Taquin process (idea suggested by Piotr Sniady).

Thank you for your attention !