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Discrete Gelfand-Tsetlin Patterns

» For each n > 1, fix x(" € Z" with xl(n) > xz(") >

» Consider all Gelfand-Tsetlin patterns, with particle positions in Z,
which satisfy an asymmetric interlacing constraint, and with the
particles on the top row in the x(" positions:

(n).

...>Xn

XF) X3E4> X2(4) X1(4)
[ I I I
y4(4) y3(4) y2(4) y1(4)
T — S N R N

3 3 3
ys? ys? Y
LR N 7
» n

L
1
Y

» Impose uniform distribution. Call this the uniformly random
discrete interlacing process.
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Asymptotic assumptions

» Assume that
1 n
725 m, — p weakly as n — oo,
n 4 ] X" /n
P

where Supp(p) < [a, b] compact.
» Note, p has density less than or equal to 1.

» Additionally assume that p is not Lebesgue measure on an interval
of length 1, a degenerate case.
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Origin of the discrete process: Tilings of a ‘half-hexagon’

» A ‘half-hexagon’ with sides of length n > 1 and m > 1. The dotted
line representing the upper boundary is considered to be ‘open’.
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Three different types of lozenges

. &

» All sides are of lenght 1.
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An example tiling

s s
“03«&»3«‘,0:3

» Fix n vertical tiles on the upper boundary.

» Impose the uniform probability measure on the set of all possible
tilings with the tiles on the upper boundary in these deterministic
positions.




Equivalent interlaced particle system.
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» Place particles in the center of each vertical tile. The particles on
the top row are deterministic, and the others are random. The set of
all particle positions completely determine the tiling.




Regular hexagon example.
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Asymptotic behaviour of the discrete process

» We showed that the discrete process is determinantal with a
correlation kernel K, : (R x {1,2,...,n})?> — C and derived an
integral representation for it. This was also done independently by L.
Petrov in [9].

» Rescaling vertical and horizontal by % interlacing implies that the
bulk of the rescaled particles asymptotically lie in
{bm elab]l x[0,1]:b=x=x+n—12=a}:

(a,1) (b,1)

(a+1,0) (b,0)
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Local asymptotic behaviour

» Fix (x,7n) in this shape.
» We examined the local asymptotic behaviour as n — o0, in a
neighbourhood of (x,n) by considering K,((x (n)vyl )) (%, "),Y2( )

where L(x("”, ™) = (x, 1) and 204", 1™) — (x, 7).
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Correlation kernel

» Kn((x1, 1), (%2, y2)) = nv2 2 (222) (27”)2J + R, where J, equals

.[ dWJ JX1;1+yrn+1(Z -2 1 T w— Xi(n)/”

J x2+y2—n (W_JE) W—2 i Z_Xi(n)/"

b

and

— ¢, contains f{X2+y2fn X2+ y—n+1,...,%}.

~ C, contains all of {1x] (. j(") > x1}, but none of
: f”) j") <x1+y— n}.

— ¢p and C, do not-intersect, and ¢, contains C,.
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Integrand

1

w—2z

n (n) Vn H
-_12 A _ 1
fo(w) = y log (W p ) p E log (W n> ,

J=Vatsp—n

5 1 n X.(n) 1 u,—1 _/
fo(2) :=E2Iog z— In - Z Iog(z—n>.

i=1 Jj=up+r,—n+1

» Integrand equals

> To first order, this approximates to 1 exp(nf(, ,,)(w) — nf, ;) (2)),
where

f(xm)(W) = J

a

b X

log(w — x)u[dx] — J o log(w — x)dx.
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Steepest descent analysis

» We used steepest descent analysis to examine the asymptotic
behaviour: It should depend only on the roots of,

e (W) = Jb uled JX o

. W— YAn—1 W — X

_ ju[d_] (DS I

W — X a W — X

X x+n—1
» )\ is Lebesgue measure.

» The cancellation between A and p on the interval [x + 7 + 1, x] will
be important!
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Liquid region

» Definition: The liquid region, L, is the set of all (x,n) for which

£,y has a unique root in H := {w € C: Im(w) > 0}.

» Theorem: The map from L to the unique root in H is a
homeomorphism. (In [4])

» We found the inverse homeomorphism, and used this to get a
complete description of 0L for a broad class of p.

» Too many cases to list, so we go to examples.

» Let ¢ : [a, b] — [0, 1] represent the density of u.
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Example 1: ¢(x) = 3 for all x € [-1,1].
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The edge in example 1

> & is the set of all (x,n) for which £/ . has a unique root of
multiplicity 2 in (1, +00) (f/, ) = f’)’< ;) =0and {7 #0).

» Theorem: The map from &; to the unique repeated root is bijective,
and is an extension of the bulk homeomorphism.

» The inverse is defined by t — (xg(t),ns(t)) for all t € (1, +00),
where

eC® _1 (e€(H —1)2

Xg(t) Z=t+m and 775(1') :=1+m,

where C : C\Supp(u) — C is the Cauchy transform of p.
» Similarly for & and (—o0, —1).

The Cusp-Airy Process



Our Model: Uniformly Random Discrete Gelfand-Tsetlin Patterns

Example 2: ¢(x) = 1 for all x € [0,1] U [2,3].
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Example 4: ¢(x) := 1 for all x € [0,
where ¢ := 5(23 + 1/217).
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Example 4: Jump points of ¢(x)

» At x = 1/3 and x = 4/3 the density ¢ jumps from 1 to 0 and at
x =1 and x = c the density jumps from 0 to 1.

» More generally, if t € Supp(u) and there exists an interval
[x — &,x + d], for some § > 0, such that ¢ —bxt8] = Xx—s,x (1),
we say that x € Ry. Similarly, if x is such that
<p|[x_57x+6] = X[x,x+5](t), we say that x € Ry.
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Example 5: ¢(x) = 22(x — 1)*(x + 1)? for all x € [-1,1].

The Cusp-Airy Process



Our Model: Uniformly Random Discrete Gelfand-Tsetlin Patterns

Example 5: Singular Parts of The Boundary

In Example 5 we note that the parameterization given by
t — (xe(t),ne(t)) from [—o0,—1) U (1,0] — JL does not parametrize
the entire part of

{(x.me(ab)x(0,1):a<x+n—1<y<b} oL
with a = —1 and b = 1 in this example. The remaining part
a‘Csing = ({(X777> € (3, b) X (07 1) ca< X+77_ 1 < X < b}ﬂaﬁ)\g7

we call the singular part of the boundary of the liquid region.
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Example 5: Singular Parts of The Boundary

In [5], we show that the geometry of Ly can be very complicated. In
fact we show that in general 0L is not homeomorphic to S!, and we may
have H(0Lsing) = +0, where H' denotes the one-dimensional
Hausdorff measure.

Moreover, we conjecture that one does not have any universal edge
behaviour on 0Lsing .
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Picture from Kenyon)
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The Cusp-Airy Process

cut-corner hexagon model.

Example: A simulat




The Cusp-Airy Process

Definition of the Cusp-Airy Kernel

For r,s € Z and &, 7 € R we define the Cusp-Airy kernel by

(=

Keca((§,r),(1,5)) := —1rseles, G—r—1)I

1 1 w1 3 1

+ J dZJ dw 3w 3T twiz,
@Cri)? )i b0 Jtrie, w—2zZ°

where the contours are defined in the figure below, and 1, is the
indicator function for a < b.
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Definition of the Cusp-Airy Kernel

N

Figure: Integration contours for the Cusp-Airy kernel.
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The Cusp-Airy Process

Basic Notation

Let {an}n {Bntm (7m0 {8 (£ 0 {1, and {y{"}, be suitably
chosen sequences convergent to a, b, t¢, t1, t2, Xc and 7. respectively.

Consider the signed measure

dv(x) = (X[a,6] (%) + X[xe.6) () )P () dx = (1 = ©(X))X[1y,x0] (X)X,

where ¢ is the density of . Then at the cusp xc + 1. — 1 = t, the
asymptotic function can be written as

F(w: xere) = F(Wixe) = fR log(w — x)dv(x).
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Assumption 1

Assume that
1 n
Ln = - ;5)([(")/” — U

as n — o0, in the sense of weak convergence of measures, where i is a
positive Borel measure on R.
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Assumption 2

Let t. € Ry and let (xc,7c) := (xe(te),ne(te)). Assume that
f'(te; XeyMe) = " (te; Xe, me) = 0 so that (xc, ) is the asymptotic cusp
point.
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The Cusp-Airy Process

Assumption 3

Assume that for every € > 0 and n large enough we have for t. € R,

1
’U/n}[tere,tle] = E Z 5k/n' (1)

|nte|<k<n(ti—e)

where x| = max{me Z: m < x}.
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The Cusp-Airy Process

Assumption 3

Assume that there is a neighbourhood U of t. such that

lim n*3(f/(z) — f'(z)) = 0 (2)

n—o0

uniformly in U.
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The Cusp-Airy Process

Rescaled Coordinate System

Fix r,s € Z and define the rescaled variables &,, 7, € R, by

x| = nxé") + %(r — c0n1/3§,,)
v =y + 1(r + con'3¢,)
Xp = nxc(") + %(5 — c0n1/37',,) ’
yo = nyi™ + 3(s + con*7,)

where ¢y is a suitable constant. We assume that

lim & =¢, lim7, =71,
n—o0 n—o0
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Rescaled Coordinate System

(nx"”, nyl™

Figure: Rescaled coordinate system at the cusp.
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Theorem

Under our assumptions and the scaling above the following result holds:

nILmOO mg)nlﬁKg)((xl,yl), (x2,¥2)) = Kca((&,r), (7,5))

uniformly for £ and 7 in some fixed compact subset of R, and where

Pn (Xz, Y2)
pn(x1, y1)

is a suitable conjugation factor.
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Theorem

Let (], r) be the rescaled coordinates for particles on line r. Fix
r,...,rm€Zandlet ¢ : Rx {r,...,rm} — [0,1] be a bounded
measurable function with compact support. Let E ) denote the
expectation with respect to the determinantal point process with kernel

K. Then,

n|i_,mooEx<n>[ IT [la- ] = det(/ — ¢Kca) 2= {n,...m})-
re{rn,....rm} J
(3)
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Cusp-Airy Process in Random Skew Plane Partition Models

This type of cusp situation in a random lozenge tiling model was also
discovered and discussed briefly by Okounkov and Reshetikhin in [8] who
called it a Cuspidal turning point. However, the integration contours in
their formula are not correct. Also, no proof is given in [8].
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A Few Proof Ideas

Non-exact Discrete Cancellation

We note that asymptotically, we have a perfect cancellation between p
and A on the interval [t., t>]. For finite n, this cancellation is not exact,
and will depend on our fixed discrete parameters r and s. More precisely,

with
ntc(")+r—1 nté”)—l
gn(w;r) =129 H (w—k)+1,—0+ 1< H (w— k)™,
k=nt{" k=nt(™ 41

we can write the integrand as

gn(w; r) en(gn1(w)—n(gn2(2))

gn(z; s) w—z

The Cusp-Airy Process



A Few Proof Ideas

Changing The Integration Contours

To preform a steepest descent analysis of e"(&n1(W)=n(&2(2)) e must
change the integration contours. This is done by using the residue
theorem.
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A Few Proof Ideas

Global descent and ascent contours

We show that away from the critical point t., we can chose the descent
and ascent contours of g, 1 and g, > to be those of the the asymptotic
function f(w; x.). The existence of these contours are proven abstractly
using the structure of the support of the signed measure y — A|[, 5 and
properties of harmonic functions.
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A Few Proof Ideas

Local descent and ascent contours

The local contours around critical point t. of g, 1 and gn > are glued
together with those of f(w; x.) outside some ball of fixed radius . The
local analysis inside the ball is done using Taylor expansion and the
convergence speed assumption of Assumption 3.
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Properties of The Cusp-Airy Kernel

Reflection Symmetry

The Cusp-Airy kernel satisfies

’CCA((& _r)’ <T7 _5>> = (_l)s_rICCA((Tv S)a (5’ r))

In particular, this implies that the correlation functions satisfies the
reflection symmetry

,On((gla 7r1)a (527 7r2)a ) (gna 7rn)) = pn((gla rl)a (527 r2)a ey (gny rn))

for all n.
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Properties of The Cusp-Airy Kernel

Representation of The Cusp-Airy Kernel

In this section we give an alternative representation of the Cusp-Airy
kernel involving the so called r-Airy integrals and certain polynomials.

Define the r-Airy integrals,

1 o
AF(uv) = > Ze%’E’%””E’($i‘;))i” da,

where r > 0 and / is a contour from 00e5™/% to c0e™/% such that 0 lies
above the contour, see [1]; compare also with the functions s(m and t(m
in [3]. Note that AF(u) = Ai(u), the standard Airy function.
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Properties of The Cusp-Airy Kernel

Representation of The Cusp-Airy Kernel

Define the polynomials P,(w, &) and p,(§) through

Pa(w,€) = e~bw v L

1,3
7 ne§W —uw
w

and

pn(u) := Pp(0, u).
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Properties of The Cusp-Airy Kernel

Representation of The Cusp-Airy Kernel

We can now give a different formula for the Cusp-Airy kernel in terms of
the r-Airy integrals.

(r—gpr

ey +Keal(&, ), (7,5)),

KCA((& r>7 (7-7 5)) = _172515>r

where Kca is given
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Representation of The Cusp-Airy Kernel

(i) for r,s =0, by

Real(e.n). (s = | " A7 (r + AT (€ + 2 dA,

(ii) for r =0, s <0, by

Real(&r)roo) = (-7 AT (r 4 NAF(E 1 N dA,
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Properties of The Cusp-Airy Kernel

Representation of The Cusp-Airy Kernel

(iii) for r <0, s =0, by
Real(e.n). (s = (-7 " AD (4 A€+ ) dA

(1 LOO et (T + NA™,(E+ A) dA
s—r—1

e
S rzpk AfrJrs k + Z ps r—1— k(g)

k=0

(iv) and for r,s <0, by

0

Ceal(.r), (7.5)) = <—1>S—'j A*,(r + M)A, (€ + A) dA

0




Similar Processes

Similar Processes

» The GUE corner process.

» The "The Cusp-Airy version of the Tacnode process”. Uses
skew-Young Tableaux. Can also be thought of a double-sided version
of the GUE corner process with an additional overlap parameter r. Is
studied in [2].
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