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2+1 dimensional growth 1

@ A model of growth in d = 2 dimension is the KPZ equation

oh
57 = VAT Q(VA) 41

for some quadratic form @ (n: local noise term)

@ Two cases behaving quite differently:
(a) Isotropic KPZ: sign(Q) = (+1,+1) or sign(Q) = (—1,—1)
- Fluctuations grow as tX for some x ~ 0.240... (numerics)

- No analytic results

(b) Anisotropic KPZ: sign(Q) = (+1, —1) (including 0 as well)



2+1 dimensional growth 2

@ Prediction from physics: for anisotropic KPZ, the non-linearity
becomes irrelevant for the fluctuations Wolf’91

e For Q = 0, we have the Edwards-Wilkinson equation

oh
9 AR
g vent

for which
Var(h(&t,t)) ~ In(t), t— o0

@ Logarithmic fluctuations shown in a special model
Prédhofer,Spohn’97

@ The model we consider in this talk is in the anisotropic KPZ
framework



2+1 dim particles

@ A model of interacting particles in the anisotropic KPZ
growth Borodin,Ferrari’08

@ State space: interlacing particles 2 € Z, 1 <k <n <N
satisfy

n+1 n n+1 n n n+1
T <wyp Sxy <Xy g...<xn§$n+1.

na
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2+1 dim particles and interface representation 4

@ Packed initial condition: z} = —n +k
@ Dynamics: particles try to jump to its right with rate 1. The
jump of a particle (k,n):
o is blocked by (k,n —1): if 2} = 2}~ 1,
o pushes (k+1,n+1) if 2} =z}

Determinantal




2+1 dim particles and interface representation 4

@ Packed initial condition: z} = —n +k
@ Dynamics: particles try to jump to its right with rate 1. The
jump of a particle (k,n):
o is blocked by (k,n —1): if 2} = 2}~ 1,
o pushes (k+1,n+1) if 2} =z}

Determinantal



2+1 dim particles and interface representation 4

@ Packed initial condition: z} = —n +k
@ Dynamics: particles try to jump to its right with rate 1. The
jump of a particle (k,n):
o is blocked by (k,n —1): if 2} = 2}~ 1,
o pushes (k+1,n+1) if 2} =z}

Determinantal



2-+1 dim particles and random interface 5

@ Key property for the analysis: the model is expressed in terms
of a Schur process and has determinantal correlations

Theorem

Consider any N (distinct) triples (z;,n;,t;) such that

t1<teo<...<tn, N1 2N2>...2NN.

Then,

IP’(at each (xj,n4,t;),j=1,...,N,
there exists a particle)
= det[K (i, i, tis x5, g, t7)]1<i j<N

for an explicit kernel K.

Determinantal



2-+1 dim particles: speed of growth 6

@ Height function h = h(x,n)
@ u, = Slope along the z-direction
@ u, = Slope along the n-direction

= Speed of growth v is given by

_ sin(mug) sin(muy,)
msin(m(ug + uy))

V(Ug, Up) =

- Using correlations at different times Borodin,Ferrari’08
- Using the definition from the dynamics Chhita,Ferrari’15

@ Is the model in the anisotropic KPZ class?

o sin(mug )? sin(muy,)?

Sin(r {1ty + )1

det(Hessian(v)) =

= Yes.

Determinantal



2+1 dim particles: the map 2 7

@ Macroscopic parametrization
n=nL, x=-nL+vL, t=7L
@ Random region is
D = {(v.n,7) € RLIVT — il < Vi < V7 + /i)
e Kenyon's map Q: D — H = {z € C|Im(z) > 0}

(my/m,my/m, 7 /) are the frequencies of the three types of
lozenge tilings. Kenyon’ 04

Determinantal
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2+1 dim particles: Gaussian Free Field 8

Theorem
Consider any (disjoints) N triples k; = (v; — n;,1;,7j), with
(vj,mj,75) € D,

M<n<...<7Tn 1 2=2n2>...>1N.

Set Hy,(k) := /7 (h(kL) —E(h(kL))). Then,

Jim E(H (k1) -~ Hy(kn))

0, odd N,
_ N/2

> 11 G(Qs2j-1), Qo25)), even N,

pairings o j=1

with G(z,w) = —(27) " 'In|(z — w)/(z — w)| is the Green function
of the Laplacian on H with Dirichlet boundary conditions.

v
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2+1 dim particles: a conjecture 9

o Conjecture Borodin,Ferrari’08
The same result holds without the requirement

MM<n<...<7TN, MZ2M2...20N

provided all the Q(r;)'s are distinct.

@ Reason: the space-time directions with constant €2 are the
" characteristic lines”, along which we expect the decorrelation
to be much slower than along any space-time directions

@ Slow decorrelations phenomena: true for the d = 1 KPZ

Ferrari’08;Corwin,Ferrari,Péché’10

Determinantal



2+1 dim particles

Is there a model in which one can prove existence of the slow
decorrelation?

Can we study the full space-time covariance?

Determinantal



2+1 dim particles: remarks

@ Discrete time versions leads to " more natural” random tiling
measure, like the Aztec diamond or lozenge tilings

Nordenstam’08;Borodin,Gorin’08;Nordenstam,Young’11

o At fixed time one has a non-intersecting line ensemble
description: it is a Schur processes (0kounkov,Reshetikin’03),
as in the Aztec diamond case Johansson’03

@ The corresponding Markov dynamics on Schur process
generalizes the one coming from the shuffling algorithm for
Aztec diamond (Elkies,Kuperbert,Larsen,Propp’92)

Borodin,Ferrari’15
@ These measures and the corresponding Markov dynamics can
also be described in terms of dimer models on Rail Yard

graphs studied in
Betea,Bouttilier,Bouttier,Chapuy,Corteel,Ramassamy’14-’15

Determinantal



2+1 dim particles: remarks

@ Not all random tiling fits in the Schur process framework.
E.g., periodic Aztec Chhita,Young’13;Chhita, Johansson’ 14

@ With periodicity one can get a "gas phase” macroscopically
flat. Proof of the Airy point field at the edge of the gas phase
was recently obtained. Beffara,Chhita,Johansson’16

v




g-Whittaker process

@ Same state space and initial condition as in the model
discussed above

- State space: interlacing particles 27 € Z, 1 < k <n < N satisfy

1:?+1<$?§x3+1<z3§...<ngz"+l

n+1-
- Packed initial condition: z}} = —n 4k
@ Dynamics: fix ¢ € (0,1). The jump rate of particle (k,n) is
given by
(L= gt (- gy

n—1

n
1— qu g1

X"
.é—ﬁk\

@ The ¢ = 0 is the determinantal model studied before

g-Whittaker




g-Whittaker process

o Key property for the analysis: the g-moments have explicit
expressions Borodin,Corwin’11

m . .
H qz?l () 4tz (t)]
i=1
m

:Hl@wi'}'{ 4 1 [ 1] =20

1<i<j<m kel =1 bk~ 9%5¢
r; (r;+1)
H <k<t<r; et dz:
. ) (T 2
i=1 [T (zig)" k=1 g
k=1

(The domain of integrations are nested contours)

g-Whittaker



g-Whittaker process - some results

Some known results on the ¢-Whittaker process

e Tracy-Widom distribution for fixed ¢, let kK > 1/(1 — ¢). Then
as N — oo,

2 (kN) — 1 (k)N @)

CQ(K))N]‘/?) - gGUE

Ferrari,Veto’13;Barraquand’14

@ Polymer models: for ¢ = e~¢ and t = 7/¢2, as ¢ — 0,

—

d)

Ny @ Nln(l/a) B InZ(7,N)

9 9

’
22
where Z(7, N) is the partition function of the semidiscrete
directed polymer model (0’Connell,Yor’01)
Borodin,Corwin’11
@ This polymer model was further used to get distribution laws
of the solution of the KPZ equation

Borodin,Corwin,Ferrari’12;+Veto’14
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g-Whittaker process - intermediate scale

In our work we consider shorter time scales:

Simulation of ¢-Whittaker particle system with N = 20 particles,
g = e ¢ and € = 0.01. The centered and diffusively scaled particle

process sc,g") (7/e) is plotted for 7 =1

g-Whittaker



g-Whittaker process - intermediate scale

In our work we consider shorter time scales:

g=¢€°, t=r1/e

Simulation of ¢-Whittaker particle system with N = 20 particles,
g = e ¢ and € = 0.01. The centered and diffusively scaled particle

process x,gn) (7/e) is plotted for 7 = 10
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g-Whittaker process - Finite N results

Law of large numbers

i -1 n/_—1 —
;355 rp(e™ ) =y (1)

where

e~ WT (M) ++yr () — j{ ?{ST NyT5 21, e ey 2p)d2y -+ d2y

with
r(r+1)

D= I (m—2) ,

1<k<t<r e

@)t T (24)" kHl (1= 2)"
k=1

—ZET
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g-Whittaker process - Finite N results

Law of large numbers

-1, .n

li =
lim &L (e 1) = g (7)

where

n) (n) "
ef(yg (M++yr (7)) — =" Jet |:Gr,7—(77/ +1-r+j- 7’)] i
7/7‘7:

with G being polynomials given by

Grr(m) = Z Z'Tl(r)mll

—7s=1)
= (m—1i—1)!

g-Whittaker



g-Whittaker process - Finite N results

Gaussian fluctuations
For any fixed NV, as ¢ — 0,
ap(r/e) = e typ(r) + e 2E(7)

where {£/(7),1 <k <n < N} is a centered Gaussian process
with explicit covariance (written in terms of contour integrals).

We would like to study the large time and large-N limit

g-Whittaker



g-Whittaker process - Large time simplification

Large time simplification allowing large-N asymptotic analysis
For any fixed T" > 0, the limit

GR(T) = lim L™Y/%¢;(LT)
exists and ¢ = {((T),1 <k <n < N} is a centered Gaussian

process with covariance given through the following formula. For
ny 2> ng,

Cov (¢PH(T) + .o+ CPLTY G2 (T) + -+ CR2(T))

1 Tzm, 2 Twm
'r17‘2 2 € 2 ©
(=202 T] oz ) T1 (wy—w)® T] o duwm)
2 —w (zm)™ (wm)"2
1 1 1<1<J<r1 m=1 \Fm 1<i<j<rg m=1 \Wm
R "1 Tzm R 2 JTwm
T G20 T] ——arden)(f TT s —w0)? [T s dwm)
1<i<j<ry m=1 (#m) 1<i<j<rg m=1 (wm)
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g-Whittaker process - Large time simplification

Using random matrix type algebra we rewrite
Cov (¢ (1), ﬁ;(T))

]{ 7{ efze™  (ppi_1(2)* (i (w))?

1) 27” To,w 27UZ —w zZMwn? <pr1 17pr1 1>n1 <pr2 1’pr2 1>n2
where p' are orthogonal polynomials with respect to the scalar

product (f, g) 27r1§F flz ¢ ~dz. Finally we have

1
Cov( (T =1),62(T = 1)) = W?{,O dw]{ﬂoyw dz
1 e
'r‘ 1 22T
</ da(w =) e du(w—u)”uM”“)

1 e?
d ri—1, ni—ri —y_— d )
. </0 y( ) Y © 2mi fi“z v(z—fu)"lvnl—ﬁ-i-l)
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g-Whittaker process - Large-N results
Asymptotic covariance in the bulk

Od.a)_ |
Let us denote P

Q(c,b) = (1 — 2b+ 2i\/b(1 — b)).

Take any a,b € (0,1), d > 0 and ¢ € (0,d]
such that Q(c,b) # Q(d, a).

N

Q(d.a) T
Then, the large N limit of the covariance is given by

Jim NCov (¢ (T = 1), GR(T = 1))
16 Q(c,b) Q(d, a)

(2 /Q(c b) dW/

VOV = (e, b)(W - e, b))\/(Z —Q(d, a))(Z - Q(d, a))

g-Whittaker
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Asymptotic results - Slow decorrelation

Slow decorrelation

Take any a,b € (0,1), d >0 and ¢ € (0,d]. Then for any T' > 1
Jim NCov (CATH(T), GN(T = 1))

lim Ncov( AN (T = 1), (N (T = 1)).

Time T

Time S

Time 0

Here we looked at space points O(NN) away. On which scale one
has non-trivial time-time correlations?

g-Whittaker




g-Whittaker process - Large-N results

Short distance behavior

hm NCOV<CadN< 1), Cch( ))
_ ;4 In(|Q(d, a) — Q(e, b)|)
o \/ImQ(d,a)\/ImQ(c,b)+O(1)

as |Q(d,a) — Q(c,b)| — 0.

g-Whittaker



Asymptotic results - Correlation around characteristics

Time correlation at O(V' N) from the characteristic lines

Fixd>0,a€(0,1),T>8>0.
For n = (n1,m2) let {(T,m; N) = NY2((T)

n=dNT + (m\/iu “a)d+ mm) VNT,
k:adNT+172\/_\/—T

=

Time S
Size ~ N l

Time 0

g-Whittaker



Asymptotic results - Correlation around characteristics

Time correlation at O(v/N) from the characteristic lines

Fixd>0,a€(0,1),T>S8>0.
For n = (1, m2) let ((T,n; N) = NY/2¢(T)

n=dNT + (n/(L = a)d + Vad) VNT,
k= adNT + nyVadVNT.

Then for 0, A, p, v € R? (all different),

i Cov (C(T 7 N) = (TS A N), (S, N) = (5,75 N))

) = Grlln = v]) = Go(IA = ) + G- (] = v)))

wd\/f( (In =l

where 7 = (T — S)/T and G, (r) = —In(r?) — T'(0,72/27)

g-Whittaker



Asymptotic results - Correlation around characteristics 25

Relation with Edwards-Wilkinson and GFF

The space-time covariance at O(v/ V) away from the characteristic
is the ones of the covariance of the Edwards-Wilkinson equation

o, ) — %Au(m,t) b e )

with £ space-time white noise and GFF initial conditions

g-Whittaker



Asymptotic analysis - key idea

N
N 1 cN 1 — %
COV( aN( )7 ch( )) (2’/T1)2 aw Fowd 7 —
0o NF(cbWX) 1 NG(cbWU
X ) G
(/ X-Ww 2771% wW+U >

eNF(1,0,2Y) NG(laZV)
/ P —
27 CZ+V

W

where

F(e,b,IW, X) =bcln(X — W)+ (1 = b)cln(X) — X,
G(e,b,W,U) = —=beln(U) — (1 = b)cln(W +U) +U + W.

g-Whittaker



Asymptotic analysis - key idea

N 1

N cN
Cov (CaN(1)7 ch(1)> (271'1)2 ﬁ aw Tow dZZ
oo eNF(c,b,W,X) 1 NG(cb wW,U)
X dX ———+——
</0 X-W 27 j{“o wW+U )
o] eNF(l,a,Z,Y) 1 NG(l a,Z,V)
X(/O W=7 megodv Z+V >

Key idea: Study H(W, X,U) = F(c,b, W, X) + G(¢,b, W, U).
W, Z are slow varying variables, X, U, Y,V are fast varying
variables.

(1) Integrate first X,U,Y, V.

(2) Integrate after that W, Z.

Difficulty: After (1), there are mixed-terms which are bounded only
along some non-explicitly known paths for W, Z. The mixed terms
vanish only after (2).

g-Whittaker
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