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2+1 dimensional growth 1

A model of growth in d = 2 dimension is the KPZ equation

∂h

∂t
= ν∆h+Q(∇h) + η

for some quadratic form Q (η: local noise term)

Two cases behaving quite differently:

(a) Isotropic KPZ: sign(Q) = (+1,+1) or sign(Q) = (−1,−1)

- Fluctuations grow as tχ for some χ ' 0.240... (numerics)

- No analytic results

(b) Anisotropic KPZ: sign(Q) = (+1,−1) (including 0 as well)
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2+1 dimensional growth 2

Prediction from physics: for anisotropic KPZ, the non-linearity
becomes irrelevant for the fluctuations Wolf’91

For Q = 0, we have the Edwards-Wilkinson equation

∂h

∂t
= ν∆h+ η

for which
Var(h(ξt, t)) ∼ ln(t), t→∞

Logarithmic fluctuations shown in a special model
Prähofer,Spohn’97

The model we consider in this talk is in the anisotropic KPZ
framework
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2+1 dim particles 3

A model of interacting particles in the anisotropic KPZ
growth Borodin,Ferrari’08

State space: interlacing particles xnk ∈ Z, 1 ≤ k ≤ n ≤ N
satisfy

xn+1
1 < xn1 ≤ xn+1

2 < xn2 ≤ . . . < xnn ≤ xn+1
n+1.
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2+1 dim particles and interface representation 4

Packed initial condition: xnk = −n+ k

Dynamics: particles try to jump to its right with rate 1. The
jump of a particle (k, n):

is blocked by (k, n− 1): if xnk = xn−1
k ,

pushes (k + 1, n+ 1) if xnk = xn+1
k+1 .

Height function h:

{h(x, n) ≥ a} = {xna ≥ x}
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2+1 dim particles and random interface 5

Key property for the analysis: the model is expressed in terms
of a Schur process and has determinantal correlations

Theorem

Consider any N (distinct) triples (xj , nj , tj) such that

t1 ≤ t2 ≤ . . . ≤ tN , n1 ≥ n2 ≥ . . . ≥ nN .

Then,

P
(
at each (xj , nj , tj), j = 1, . . . , N,

there exists a particle
)

= det[K(xi, ni, ti;xj , nj , tj)]1≤i,j≤N

for an explicit kernel K.
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2+1 dim particles: speed of growth 6

Height function h = h(x, n)

ux = Slope along the x-direction

un = Slope along the n-direction

⇒ Speed of growth v is given by

v(ux, un) = −sin(πux) sin(πun)

π sin(π(ux + un))

- Using correlations at different times Borodin,Ferrari’08

- Using the definition from the dynamics Chhita,Ferrari’15

Is the model in the anisotropic KPZ class?

det(Hessian(v)) = −4π2 sin(πux)2 sin(πun)2

sin(π(ux + un))4
< 0

⇒ Yes.
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2+1 dim particles: the map Ω 7

Macroscopic parametrization

n = ηL, x = −ηL+ νL, t = τL

Random region is

D = {(ν, η, τ) ∈ R3
+, |
√
τ −√η| <

√
ν <
√
τ +
√
η}

Kenyon’s map Ω : D → H = {z ∈ C|Im(z) > 0}

(πν/π, πη/π, πτ/π) are the frequencies of the three types of
lozenge tilings. Kenyon’04
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2+1 dim particles: Gaussian Free Field 8

Theorem

Consider any (disjoints) N triples κj = (νj − ηj , ηj , τj), with
(νj , ηj , τj) ∈ D,

τ1 ≤ τ2 ≤ . . . ≤ τN η1 ≥ η2 ≥ . . . ≥ ηN .

Set HL(κ) :=
√
π (h(κL)− E(h(κL))). Then,

lim
L→∞

E(HL(κ1) · · ·HL(κN ))

=


0, odd N,∑
pairings σ

N/2∏
j=1

G(Ωσ(2j−1),Ωσ(2j)), even N,

with G(z, w) = −(2π)−1 ln |(z −w)/(z − w̄)| is the Green function
of the Laplacian on H with Dirichlet boundary conditions.
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2+1 dim particles: a conjecture 9

Conjecture Borodin,Ferrari’08

The same result holds without the requirement

τ1 ≤ τ2 ≤ . . . ≤ τN , η1 ≥ η2 ≥ . . . ≥ ηN

provided all the Ω(κj)’s are distinct.

Reason: the space-time directions with constant Ω are the
”characteristic lines”, along which we expect the decorrelation
to be much slower than along any space-time directions

Slow decorrelations phenomena: true for the d = 1 KPZ
Ferrari’08;Corwin,Ferrari,Péché’10
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2+1 dim particles 10

Is there a model in which one can prove existence of the slow
decorrelation?

Can we study the full space-time covariance?
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2+1 dim particles: remarks 11

Discrete time versions leads to ”more natural” random tiling
measure, like the Aztec diamond or lozenge tilings

Nordenstam’08;Borodin,Gorin’08;Nordenstam,Young’11

At fixed time one has a non-intersecting line ensemble
description: it is a Schur processes (Okounkov,Reshetikin’03),
as in the Aztec diamond case Johansson’03

The corresponding Markov dynamics on Schur process
generalizes the one coming from the shuffling algorithm for
Aztec diamond (Elkies,Kuperbert,Larsen,Propp’92)

Borodin,Ferrari’15

These measures and the corresponding Markov dynamics can
also be described in terms of dimer models on Rail Yard
graphs studied in

Betea,Bouttilier,Bouttier,Chapuy,Corteel,Ramassamy’14-’15
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2+1 dim particles: remarks 12

Not all random tiling fits in the Schur process framework.
E.g., periodic Aztec Chhita,Young’13;Chhita,Johansson’14

With periodicity one can get a ”gas phase” macroscopically
flat. Proof of the Airy point field at the edge of the gas phase
was recently obtained. Beffara,Chhita,Johansson’16
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q-Whittaker process 13

Same state space and initial condition as in the model
discussed above

- State space: interlacing particles xnk ∈ Z, 1 ≤ k ≤ n ≤ N satisfy

xn+1
1 < xn1 ≤ xn+1

2 < xn2 ≤ . . . < xnn ≤ xn+1
n+1.

- Packed initial condition: xnk = −n+ k

Dynamics: fix q ∈ (0, 1). The jump rate of particle (k, n) is
given by

(1− qx
n−1
k −xnk−1)(1− qx

n
k−x

n
k−1)

1− qx
n
k−x

n−1
k−1

The q = 0 is the determinantal model studied before
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q-Whittaker process 14

Key property for the analysis: the q-moments have explicit
expressions Borodin,Corwin’11

E

[
m∏
i=1

qx
ni
1 (t)+···+xniri (t)

]

=

m∏
i=1

1

(2πi)riri!

∮
· · ·
∮ ∏

1≤i<j≤m

ri∏
k=1

rj∏
`=1

q(zi,k − zj,`)
zi,k − qzj,`

×
m∏
i=1

(−1)
ri(ri+1)

2
∏

1≤k<`≤ri
(zi,k − zi,`)2

ri∏
k=1

(zi,k)ri

ri∏
k=1

ezi,k(q−1)t

(1− zi,k)ni
dzi,k.

(The domain of integrations are nested contours)
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q-Whittaker process - some results 15

Some known results on the q-Whittaker process

Tracy-Widom distribution for fixed q, let κ > 1/(1− q). Then
as N →∞,

xN1 (κN)− c1(κ)N

c2(κ)N1/3

(d)
= ξGUE

Ferrari,Veto’13;Barraquand’14

Polymer models: for q = e−ε and t = τ/ε2, as ε→ 0,

xN1 (t)
(d)
=

τ

ε2
−N ln(1/ε)

ε
− lnZ(τ,N)

ε

where Z(τ,N) is the partition function of the semidiscrete
directed polymer model (O’Connell,Yor’01)

Borodin,Corwin’11

This polymer model was further used to get distribution laws
of the solution of the KPZ equation

Borodin,Corwin,Ferrari’12;+Veto’14
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q-Whittaker process - intermediate scale 16

In our work we consider shorter time scales:

q = e−ε, t = τ/ε.

Simulation of q-Whittaker particle system with N = 20 particles,
q = e−ε and ε = 0.01. The centered and diffusively scaled particle

process x
(n)
k (τ/ε) is plotted for τ = 1
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q-Whittaker process - Finite N results 17

Law of large numbers

lim
ε→0

ε−1xnk(ε−1τ) = ynk (τ)

where

e−(yn1 (τ)+···+ynr (τ)) =

∮
· · ·
∮

Fτ (n, r; z1, . . . , zr)dz1 · · · dzr

with

Fτ (n, r; z1, . . . , zr) =

(−1)
r(r+1)

2
∏

1≤k<`≤r
(zk − z`)2

(2πi)rr!
r∏

k=1

(zk)r

r∏
k=1

e−zkτ

(1− zk)n
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Law of large numbers

lim
ε→0

ε−1xnk(ε−1τ) = ynk (τ)

where

e−(y
(n)
1 (τ)+···+y(n)r (τ)) = e−τr det

[
Gr,τ (n+ 1− r + j − i)

]r
i,j=1

with G being polynomials given by

Gr,τ (m) =
∑
i≥0

τ i(r)m−i−1

i!(m− i− 1)!
.

Intro Determinantal q-Whittaker



q-Whittaker process - Finite N results 18

Gaussian fluctuations

For any fixed N , as ε→ 0,

xnk(τ/ε) = ε−1ynk (τ) + ε−1/2ξnk (τ)

where {ξnk (τ), 1 ≤ k ≤ n ≤ N} is a centered Gaussian process
with explicit covariance (written in terms of contour integrals).

We would like to study the large time and large-N limit
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q-Whittaker process - Large time simplification 19

Large time simplification allowing large-N asymptotic analysis

For any fixed T > 0, the limit

ζnk (T ) = lim
L→∞

L−1/2ξnk (LT )

exists and ζ = {ζnk (T ), 1 ≤ k ≤ n ≤ N} is a centered Gaussian
process with covariance given through the following formula. For
n1 ≥ n2,

Cov
(
ζ
n1
1 (T ) + . . . + ζ

n1
r1

(T ); ζ
n2
1 (T ) + . . . + ζ

n2
r2

(T )
)

=

∮ ∮
r1r2

z1 − w1

( ∏
1≤i<j≤r1

(zj − zi)
2

r1∏
m=1

eTzm

(zm)n1
dzm

)( ∏
1≤i<j≤r2

(wj − wi)
2

r2∏
m=1

eTwm

(wm)n2
dwm

)
( ∮ ∏

1≤i<j≤r1

(zj − zi)
2

r1∏
m=1

eTzm

(zm)n1
dzm

)( ∮ ∏
1≤i<j≤r2

(wj − wi)
2

r2∏
m=1

eTwm

(wm)n2
dwm

)
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q-Whittaker process - Large time simplification 20

Using random matrix type algebra we rewrite

Cov
(
ζn1
r1 (T ), ζn2

r2 (T )
)

=

∮
Γ0

dw

2πi

∮
Γ0,w

dz

2πi

1

z − w
eTzeTw

zn1wn2

(pn1
r1−1(z))2

〈pn1
r1−1, p

n1
r1−1〉n1

(pn2
r2−1(w))2

〈pn2
r2−1, p

n2
r2−1〉n2

where pnr are orthogonal polynomials with respect to the scalar

product 〈f, g〉n = 1
2πi

∮
Γ0
f(z)g(z) e

Tz

zn dz. Finally we have

Cov
(
ζn1
r1 (T = 1), ζn2

r2 (T = 1)
)

=
1

(2πi)2

∮
Γ0

dw

∮
Γ0,w

dz
1

z − w

×
(∫ ∞

0

dx(w − x)r2−1xn2−r2e−x
1

2πi

∮
Γw

du
eu

(w − u)r2un2−r2+1

)
×
(∫ ∞

0

dy(z − y)r1−1yn1−r1e−y
1

2πi

∮
Γz

dv
ev

(z − v)r1vn1−r1+1

)
.
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q-Whittaker process - Large-N results 21

Asymptotic covariance in the bulk

Let us denote

Ω(c, b) = c(1− 2b+ 2i
√
b(1− b)).

Take any a, b ∈ (0, 1), d > 0 and c ∈ (0, d]
such that Ω(c, b) 6= Ω(d, a).

Then, the large N limit of the covariance is given by

lim
N→∞

NCov
(
ζdNadN (T = 1), ζcNbcN (T = 1)

)
=

16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(d,a)

Ω(d,a)

dZ
1

Z −W

× 1√
(W − Ω(c, b))(W − Ω(c, b))

√
(Z − Ω(d, a))(Z − Ω(d, a))
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Asymptotic results - Slow decorrelation 22

Slow decorrelation

Take any a, b ∈ (0, 1), d > 0 and c ∈ (0, d]. Then for any T > 1,

lim
N→∞

NCov
(
ζdNTadNT (T ), ζcNbcN (T = 1)

)
= lim
N→∞

NCov
(
ζdNadN (T = 1), ζcNbcN (T = 1)

)
.

Here we looked at space points O(N) away. On which scale one
has non-trivial time-time correlations?
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q-Whittaker process - Large-N results 23

Short distance behavior

lim
N→∞

NCov
(
ζdNadN (T = 1), ζcNbcN (T = 1)

)
=
−4

π

ln(|Ω(d, a)− Ω(c, b)|)√
ImΩ(d, a)

√
ImΩ(c, b)

+O(1)

as |Ω(d, a)− Ω(c, b)| → 0.
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Asymptotic results - Correlation around characteristics 24

Time correlation at O(
√
N) from the characteristic lines

Fix d > 0, a ∈ (0, 1), T > S > 0.
For η = (η1, η2) let ζ(T, η;N) = N1/2ζnk (T )

n = dNT +
(
η1

√
(1− a)d+ η2

√
ad
)√

NT,

k = adNT + η2

√
ad
√
NT.
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Time correlation at O(
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Fix d > 0, a ∈ (0, 1), T > S > 0.
For η = (η1, η2) let ζ(T, η;N) = N1/2ζnk (T )

n = dNT +
(
η1

√
(1− a)d+ η2

√
ad
)√

NT,

k = adNT + η2

√
ad
√
NT.

Then for η, λ, µ, ν ∈ R2 (all different),

lim
N→∞

Cov (ζ(T, η;N)− ζ(T, λ;N), ζ(S, µ;N)− ζ(S, ν;N))

=
S

πd
√
a(1− a)

(
Gτ (|η − µ|)−Gτ (|η − ν|)−Gτ (|λ− µ|) +Gτ (|λ− ν|)

)
where τ = (T − S)/T and Gτ (r) = − ln(r2)− Γ(0, r2/2τ)
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Asymptotic results - Correlation around characteristics 25

Relation with Edwards-Wilkinson and GFF

The space-time covariance at O(
√
N) away from the characteristic

is the ones of the covariance of the Edwards-Wilkinson equation

∂tu(x, t) =
1

2
∆u(x, t) + ξ(x, t)

with ξ space-time white noise and GFF initial conditions
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Asymptotic analysis - key idea 26

Cov
(
ζNaN (1), ζcNbcN (1)

)
=

N

(2πi)2

∮
Γ0

dW

∮
Γ0,W

dZ
1

Z −W

×
(∫ ∞

0

dX
eNF (c,b,W,X)

X −W
1

2πi

∮
Γ0

dU
eNG(c,b,W,U)

W + U

)
×
(∫ ∞

0

dY
eNF (1,a,Z,Y )

Y − Z
1

2πi

∮
Γ0

dV
eNG(1,a,Z,V )

Z + V

)
,

where

F (c, b,W,X) = bc ln(X −W ) + (1− b)c ln(X)−X,
G(c, b,W,U) = −bc ln(U)− (1− b)c ln(W + U) + U +W.
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Asymptotic analysis - key idea 26

Cov
(
ζNaN (1), ζcNbcN (1)

)
=

N

(2πi)2

∮
Γ0

dW

∮
Γ0,W

dZ
1

Z −W

×
(∫ ∞

0

dX
eNF (c,b,W,X)

X −W
1

2πi

∮
Γ0

dU
eNG(c,b,W,U)

W + U

)
×
(∫ ∞

0

dY
eNF (1,a,Z,Y )

Y − Z
1

2πi

∮
Γ0

dV
eNG(1,a,Z,V )

Z + V

)
,

Key idea: Study H(W,X,U) = F (c, b,W,X) +G(c, b,W,U).
W,Z are slow varying variables, X,U, Y, V are fast varying
variables.
(1) Integrate first X,U, Y, V .
(2) Integrate after that W,Z.

Difficulty: After (1), there are mixed-terms which are bounded only
along some non-explicitly known paths for W,Z. The mixed terms
vanish only after (2).
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