LINEAR SPACES OF TILINGS

Richard Kenyon (Brown University)

Thm (Brooks, Smith, Stone, Tutte 1939): Given a rectangle tiling of a rectangle, there is a tiling of another rectangle with the same combinatorics and prescribed aspect ratios.

$$
\begin{aligned}
& +\cdot+ \\
& +\cdot-+ \\
& +\cdot \frac{+}{4} \cdot+
\end{aligned}
$$

Proof idea: Associate to a rectangle tiling a harmonic function on a planar network.

$$
\begin{aligned}
& \text { voltage }=y \text {-coordinate } \\
& \text { current }=\text { width } \\
& \text { conductance }=\text { aspect ratio } \\
& \text { energy }=\text { area }
\end{aligned}
$$

A generalization

Thm: Given a tiling of a convex polygon P with convex polygons, and, fixing slopes, a new shape (up to scale in \mathbb{R}) for every tile. Then there is a combinatorially equivalent* tiling with these shapes, of a (new) convex polygon P^{\prime}.

Lemma: When P is a k-gon, $\#$ parameters $=\#$ internal lines $+\mathrm{k}-3=\#$ tiles -1.

generic

nongeneric

Associated to a convex polygon tiling is a bipartite network...

...which has dimer covers (when we remove all but one outer edge).

Why? Because it has a fractional dimer cover:
(Dimer covers are the vertices of the polytope of fractional dimer covers.)

There is an associated $|W| \times|B|$ matrix K (a signed, weighted adjacency matrix) with $K_{b w}= \pm \ell$ if black segment b is an edge of face w of length ℓ.

sign depends on which side of edge face lies
K is a "Kasteleyn matrix": product of signs around a face is $(-1)^{k / 2+1}$.

What if we don't fix slopes, just the bipartite graph?

(follows from [K-Sheffield 2003])
Thm: The space of tilings with n segments, fixed boundary and fixed combinatorics is homeomorphic to $\mathbb{R}_{+}^{2 n}$. Global coordinates are biratio coordinates $\left\{X_{i}\right\}$.

$$
X=\frac{a c}{b d}
$$

Thm: Given a tiling of a convex polygon P with convex polygons, and, fixing slopes, a new shape (up to scale in \mathbb{R}) for every tile. Then there is a combinatorially equivalent* tiling with these shapes, of a (new) convex polygon P^{\prime}.

Proof. Let K be the signed adjacency matrix.

$\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 0 \\ f & 0 & -e & e & 0 & f \\ a-b & a & 0 & a+b & b & 0 \\ 0 \begin{array}{ll}-d & c-d \\ K_{I} & 0\end{array} & c & c+d\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)^{T}$
Find a left nullvector W for K_{I} ("interior" columns of K).
Scale tile i by x_{i}; these fit together to tile.
Since K_{I} has full rank, \exists nonzero solution.

Areas

"Tile areas determine the tiling"

Polygons (or closed polygonal curves) with fixed edge slopes

Given an n-gon, the space of closed polygonal curves with the same edge slopes is $\cong \mathbb{R}^{n-2}$.

Thm (Thurston): If P is convex, on this space the signed area is a quadratic form of signature ($1, n-3$).

Proof by picture:

For fixed area, there are two components to the space, called orientations:

Each component has a natural Riemannian metric.

The space of combinatorially equivalent tilings with fixed slopes is a linear cone. To add tilings, just add tile lengths, with sign.

Thm: For fixed slopes and orientations, the tile areas determine the tiling.
Proof: Suppose two tilings have same tile areas and orientations. Then their average tiling will have all tile areas greater than average.

Thm [Wimer, Koren, Cederbaum 1988]:

Given a rectangle tiling of a rectangle there is an isotopic tiling in which the rectangles have prescribed areas.

Question: What orientations and areas are achievable in general?

Let $\Psi:\{$ Intercepts $\} \rightarrow\{$ Areas $\}$. It is injective.

Theorem: $D \Psi=K$.

Therefore $K^{-1}:\{d$ Areas $\} \rightarrow\{d$ Intercepts $\}$, which gives dimer probabilities, has certain positivity properties...

Conclusion:
The (inverse) Kasteleyn matrix can be interpreted as a geometric object.

