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{Thm (Brooks, Smith, Stone, Tutte 1939): Given a rectangle tiling of a

rectangle, there is a tiling of another rectangle with the same combinatorics and

prescribed aspect ratios.
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At a “degenerate” vertex, choose a resolution:
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Proof idea: Associate to a rectangle tiling a harmonic function on a planar

network.

voltage = y-coordinate
current = width

conductance = aspect ratio

energy = area
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A generalization

Lemma: When P is a k-gon,

Thm: Given a tiling of a convex polygon P with convex polygons, and, fixing

slopes, a new shape (up to scale in R) for every tile. Then there is a combina-

torially equivalent* tiling with these shapes, of a (new) convex polygon P 0
.

# parameters = # internal lines + k - 3 = # tiles - 1.



generic nongeneric
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Associated to a convex polygon tiling is a bipartite network...



...which has dimer covers (when we remove all but one outer edge).
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Why? Because it has a fractional dimer cover:

(Dimer covers are the vertices of the polytope of fractional dimer covers.)



with Kbw = ±` if black segment b is an edge of face w of length `.

sign depends on which side of edge face lies

K is a “Kasteleyn matrix”: product of signs around a face is (�1)

k/2+1
.

(a signed, weighted adjacency matrix)

There is an associated |W |⇥ |B| matrix K



What if we don’t fix slopes, just the bipartite graph?
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(follows from [K-She�eld 2003])

Thm: The space of tilings with n segments, fixed boundary and fixed com-

binatorics is homeomorphic to R2n
+ . Global coordinates are biratio coordinates

{Xi}.



Proof. Let K be the signed adjacency matrix.
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Thm: Given a tiling of a convex polygon P with convex polygons, and, fixing

slopes, a new shape (up to scale in R) for every tile. Then there is a combina-

torially equivalent* tiling with these shapes, of a (new) convex polygon P 0
.
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Find a left nullvector W for KI (“interior” columns of K).
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Scale tile i by xi; these fit together to tile.

Since KI has full rank, 9 nonzero solution.



Polygons (or closed polygonal curves) with fixed edge slopes

Proof by picture: ⇤
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Areas “Tile areas determine the tiling”

Given an n-gon, the space of closed polygonal curves with the same edge slopes

is

⇠
=

Rn�2
.

Thm (Thurston): If P is convex, on this space the signed area is a quadratic

form of signature (1, n� 3).



For fixed area, there are two components to the space, called orientations:

quadrilateral
pentagon

triangle

Each component has

a natural Riemannian metric.
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Thm: For fixed slopes and orientations, the tile areas determine the tiling.

Proof: Suppose two tilings have same tile areas and orientations. Then their

average tiling will have all tile areas greater than average. ⇤

The space of combinatorially equivalent tilings with fixed slopes is a linear cone.

To add tilings, just add tile lengths, with sign.



Question: What orientations and areas are achievable in general?
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Thm [Wimer, Koren, Cederbaum 1988]:

Given a rectangle tiling of a rectangle there is an isotopic tiling in which the

rectangles have prescribed areas.





Let  : {Intercepts} ! {Areas}.

Theorem: D = K.

Therefore K�1
: {dAreas} ! {dIntercepts}, which gives dimer probabilities,

has certain positivity properties...

Conclusion:

The (inverse) Kasteleyn matrix can be interpreted as a geometric object.

It is injective.





thank you for your attention!


