Does Eulerian percolation on the square lattice percolate?

Irène Marcovici

Joint work with Régine Marchand and Olivier Garet
Institut Élie Cartan de Lorraine, Univ. de Lorraine, Nancy
IHP, January 16th, 2017

Classical Bernoulli bond percolation

$\omega \in\{0,1\}^{\mathbb{E}_{2}}$
$\left(\omega_{e}\right)_{e \in \mathbb{E}_{2}}$ i.i.d. with law $\operatorname{Ber}(p)$
$\mathbb{E}_{2}=$ set of edges of \mathbb{Z}^{2}
$\omega_{e}=1$ if edge e is colored in blue

Classical Bernoulli bond percolation

$\omega \in\{0,1\}^{\mathbb{E}_{2}}$
$\left(\omega_{e}\right)_{e \in \mathbb{E}_{2}}$ i.i.d. with law $\operatorname{Ber}(p)$

$\mathbb{E}_{2}=$ set of edges of \mathbb{Z}^{2}
$\omega_{e}=1$ if edge e is colored in blue

Classical Bernoulli bond percolation

$\omega \in\{0,1\}^{\mathbb{E}_{2}}$
$\left(\omega_{e}\right)_{e \in \mathbb{E}_{2}}$ i.i.d. with law $\operatorname{Ber}(p)$

$\mathbb{E}_{2}=$ set of edges of \mathbb{Z}^{2}
$\omega_{e}=1$ if edge e is colored in blue

Classical Bernoulli bond percolation

$p>0.5$

No infinite connected component Infinite connected component

$$
\omega \in\{0,1\}^{\mathbb{E}_{2}} \quad \mathbb{E}_{2}=\text { set of edges of } \mathbb{Z}^{2}
$$

$\omega_{e}=1$ if edge e is colored in blue

Classical Bernoulli bond percolation

No infinite connected component

Infinite connected component

$$
\omega \in\{0,1\}^{\mathbb{E}_{2}} \quad \mathbb{E}_{2}=\text { set of edges of } \mathbb{Z}^{2}
$$

$\omega_{e}=1$ if edge e is colored in blue

Eulerian percolation (= even percolation)

Bernoulli bond percolation with parameter p, conditioned on the fact that every site has an even degree

Eulerian percolation (= even percolation)

Bernoulli bond percolation with parameter p, conditioned on the fact that every site has an even degree

Probability

$$
\frac{1}{Z_{p}} p^{N_{b}}(1-p)^{N_{g}}
$$

$N_{b}=$ number of blue edges
$N_{g}=$ number of grey edges

Eulerian percolation (= even percolation)

Bernoulli bond percolation with parameter p, conditioned on the fact that every site has an even degree

Probability

$$
\frac{1}{Z_{p}} p^{N_{b}}(1-p)^{N_{g}}
$$

$N_{b}=$ number of blue edges
$N_{g}=$ number of grey edges

How to define the even percolation measure on the whole \mathbb{Z}^{2} ?

Eulerian percolation ($=$ even percolation)

Bernoulli bond percolation with parameter p, conditioned on the fact that every site has an even degree

Probability $\quad \frac{1}{Z_{p}} p^{N_{b}}(1-p)^{N_{g}}$
$N_{b}=$ number of blue edges
$N_{g}=$ number of grey edges

How to define the even percolation measure on the whole \mathbb{Z}^{2} ?
What are the connectivity properties of the random (blue) subgraph obtained?

Definition of the even percolation measure on \mathbb{Z}^{2}

Degree of vertex x in configuration ω : $d_{\omega}(x)=\sum_{e \ni x} \omega_{e}$
We want to condition the Bernoulli bond percolation to the event:

$$
\Omega_{E P}=\left\{\omega \in\{0,1\}^{\mathbb{E}_{2}} ; \forall x \in \mathbb{Z}^{2}, d_{\omega}(x) \equiv 0[2]\right\}
$$

Definition of the even percolation measure on \mathbb{Z}^{2}

Degree of vertex x in configuration ω : $d_{\omega}(x)=\sum_{e \ni x} \omega_{e}$
We want to condition the Bernoulli bond percolation to the event:

$$
\Omega_{E P}=\left\{\omega \in\{0,1\}^{\mathbb{E}_{2}} ; \forall x \in \mathbb{Z}^{2}, d_{\omega}(x) \equiv 0[2]\right\}
$$

Gibbs measures formalism:

$$
\begin{aligned}
\mu_{\Lambda, \eta}^{p}(\omega) & =\frac{1}{Z} \mathbf{1}_{\eta_{\Lambda} c \omega_{\Lambda} \in \Omega_{E P}} p^{N_{b}\left(\omega_{\Lambda}\right)}(1-p)^{N_{g}\left(\omega_{\Lambda}\right)} \\
& =\frac{1}{Z^{\prime}} \mathbf{1}_{\eta_{\Lambda} \subset \omega_{\Lambda} \in \Omega_{E P}}\left(\frac{p}{1-p}\right)^{N_{b}\left(\omega_{\Lambda}\right)}
\end{aligned}
$$

Finite box Λ
Configuration $\eta \in \Omega_{E P}$ outside Λ

Colorings and contours

| 0 | 0 | \bullet | \bullet | \bullet | \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | \bullet | \bullet | 0 | 0 |
| \bullet | \bullet | 0 | 0 | \bullet | \bullet |
| \bullet | \bullet | 0 | \bullet | \bullet | \bullet |
| \bullet | 0 | \bullet | 0 | \bullet | \bullet |
| 0 | 0 | 0 | \bullet | \bullet | \bullet |

Colorings and contours

Colorings and contours

Colorings and contours

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Colorings and contours

-	-	+	+	+	+
-	-	+	+	-	-
+	+	-	-	+	+
+	+	-	+	+	+
+	-	+	-	+	+
-	-	-	+	+	+

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

Relation with the Ising model

$$
\beta=1 / T
$$

+	+	+	+	+	-	-
-						-
+						-
+						+
+						+
+						-
+	+	+	+	-	-	+

$$
\pi_{\Lambda, \eta}^{\beta}(\omega)=\frac{1}{Z} \exp \left(\beta \sum_{i \sim j, i \text { or } j \in \Lambda} \omega_{i} \omega_{j}\right)
$$

Relation with the Ising model

$$
\beta=1 / T
$$

+	+	+	+	+	-	-
-						-
+						-
+						+
+						+
+						-
+	+	+	+	-	-	+

$$
\begin{aligned}
\pi_{\Lambda, \eta}^{\beta}(\omega) & =\frac{1}{Z} \exp \left(\beta \sum_{i \sim j, i \text { or } j \in \Lambda} \omega_{i} \omega_{j}\right) \\
& =\frac{1}{Z} \exp \left(\beta\left(N_{g}\left(\omega_{\Lambda}\right)-N_{b}\left(\omega_{\Lambda}\right)\right)\right)
\end{aligned}
$$

Relation with the Ising model

$$
\beta=1 / T
$$

$$
\begin{aligned}
\pi_{\Lambda, \eta}^{\beta}(\omega) & =\frac{1}{Z} \exp \left(\beta \sum_{i \sim j, i \text { or } j \in \Lambda} \omega_{i} \omega_{j}\right) \\
& =\frac{1}{Z} \exp \left(\beta\left(N_{g}\left(\omega_{\Lambda}\right)-N_{b}\left(\omega_{\Lambda}\right)\right)\right) \\
& =\frac{1}{Z^{\prime}} \exp \left(-2 \beta N_{b}\left(\omega_{\Lambda}\right)\right)
\end{aligned}
$$

Relation with the Ising model

$$
\beta=1 / T
$$

$$
\begin{aligned}
\pi_{\Lambda, \eta}^{\beta}(\omega) & =\frac{1}{Z} \exp \left(\beta \sum_{i \sim j, i \text { or } j \in \Lambda} \omega_{i} \omega_{j}\right) \\
& =\frac{1}{Z} \exp \left(\beta\left(N_{g}\left(\omega_{\Lambda}\right)-N_{b}\left(\omega_{\Lambda}\right)\right)\right) \\
& =\frac{1}{Z^{\prime}} \exp \left(-2 \beta N_{b}\left(\omega_{\Lambda}\right)\right)
\end{aligned}
$$

Even percolation u Ising model Parameter p un β such that $\exp (-2 \beta)=\frac{p}{1-p}$

Relation with the Ising model

$$
\begin{array}{ll}
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) & \begin{array}{l}
\beta \leq \beta_{c}: \text { a unique Gibbs measure } \\
\beta>\beta_{c}: \text { two extremal measures } \pi_{\beta}^{+}
\end{array} \text {and } \pi_{\beta}^{-}
\end{array}
$$

Relation with the Ising model

$$
\begin{array}{ll}
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) & \begin{array}{l}
\beta \leq \beta_{c}: \text { a unique Gibbs measure } \\
\beta>\beta_{c}: \text { two extremal measures } \pi_{\beta}^{+}
\end{array} \text {and } \pi_{\beta}^{-}
\end{array}
$$

Proposition

There exists a unique even percolation measure μ_{p} on \mathbb{Z}^{2} : it is the image by the contour application of any Gibbs measure for the Ising model with parameter $\beta(p)=\frac{1}{2} \log \left(\frac{1-p}{p}\right)$.

p	0		$\frac{1}{2}$		1
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$

Relation with the Ising model

$$
\begin{array}{ll}
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) & \begin{array}{l}
\beta \leq \beta_{c}: \text { a unique Gibbs measure } \\
\beta>\beta_{c}: \text { two extremal measures } \pi_{\beta}^{+}
\end{array} \text {and } \pi_{\beta}^{-}
\end{array}
$$

Proposition

There exists a unique even percolation measure μ_{p} on \mathbb{Z}^{2} : it is the image by the contour application of any Gibbs measure for the Ising model with parameter $\beta(p)=\frac{1}{2} \log \left(\frac{1-p}{p}\right)$.

p	0		$\frac{1}{2}$		1
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$

Remark: $\beta(1-p)=-\beta(p)$

Even perco μ_{p}

Even perco μ_{1-p}

Ising parameter β

Number of infinite connected components

Proposition
Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that

$$
\mu_{p}(N=k)=1
$$

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that

$$
\mu_{p}(N=k)=1
$$

(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that

$$
\mu_{p}(N=k)=1
$$

(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$
(3) Let us prove by contradiction that $\mu_{p}(N=\infty)=0$.

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that $\mu_{p}(N=k)=1$.
(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$
(3) Let us prove by contradiction that $\mu_{p}(N=\infty)=0$.
(1) Any point has a positive probability to be a trifurcation

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that $\mu_{p}(N=k)=1$.
(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$
(3) Let us prove by contradiction that $\mu_{p}(N=\infty)=0$.
(1) Any point has a positive probability to be a trifurcation
(2) In a box of size L, number of trifurcations $\propto L^{2}$.

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that $\mu_{p}(N=k)=1$.
(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$
(3) Let us prove by contradiction that $\mu_{p}(N=\infty)=0$.
(1) Any point has a positive probability to be a trifurcation
(2) In a box of size L, number of trifurcations $\propto L^{2}$.
(3) So, number of infinite connected components intersecting the box $\propto L^{2}$.

Number of infinite connected components

Proposition

Let $p \in[0,1]$, and $N=$ number of infinite connected components.
We have: $\mu_{p}(N=0)=1$ or $\mu_{p}(N=1)=1$.
(1) By ergodicity, there exists $k \in \mathbb{N} \cup\{\infty\}$ such that $\mu_{p}(N=k)=1$.
(2) We must have $k \in\{0,1, \infty\}$, indeed: for $k \geq 2, \mu_{p}(N=k)>0 \Longrightarrow \mu_{p}(N=k-1)>0$
(3) Let us prove by contradiction that $\mu_{p}(N=\infty)=0$.
(1) Any point has a positive probability to be a trifurcation
(2) In a box of size L, number of trifurcations $\propto L^{2}$.
(3) So, number of infinite connected components intersecting the box $\propto L^{2}$.
(-) But that number cannot be larger than the perimeter of the box $\propto L$, contradiction!

Number of infinite connected components

$$
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) \leftrightarrow p_{c}=1-\frac{1}{\sqrt{2}}\left(<\frac{1}{2}\right)
$$

Number of infinite connected components

$$
\beta_{c}=\frac{1}{2} \log (1+\sqrt{2}) \leftrightarrow p_{c}=1-\frac{1}{\sqrt{2}}\left(<\frac{1}{2}\right)
$$

Proposition

For the measure μ_{p} of even percolation:

- if $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component,
- if $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco		

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

If $p<p_{c}\left(\beta>\beta_{c}\right)$, a.s. no infinite connected component.
Assume there is an infinite path.

But we know that for $\beta>\beta_{c}$, under π_{β}^{+}, there are no infinite *-paths of spins -, contradiction!
[Russo 1979]

If $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.

If $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.

For $0<\beta<\beta_{c}$:

- there is an infinite $*$-path of spins + ,
- all the connected components of spins + are finite.
[Coniglia et al. 1976,
Higuchi 1993]

If $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.
For $0<\beta<\beta_{c}$:

- there is an infinite $*$-path of spins + ,
- all the connected components of spins + are finite.
[Coniglia et al. 1976, Higuchi 1993]

If $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.
For $0<\beta<\beta_{c}$:

- there is an infinite $*$-path of spins + ,
- all the connected components of spins + are finite.
[Coniglia et al. 1976, Higuchi 1993]

If $p_{c}<p<1 / 2\left(0<\beta<\beta_{c}\right)$, a.s. a (unique) infinite connected component.

$$
\text { For } 0<\beta<\beta_{c} \text { : }
$$

- there is an infinite $*$-path of spins + ,
- all the connected components of spins + are finite.
[Coniglia et al. 1976, Higuchi 1993]

The union of contours of connected components of spins + provides an infinite connected component for the even perco.

Summary

p	0	p_{c}	$\frac{1}{2}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\infty$	
μ_{p}		no perco	\mid	perco	

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$		β_{c}	0	$-\beta_{c}$	$-\infty$
μ_{p}		no perco	\mid	perco		\mid

Random Cluster model

- On a finite graph $G=(V, E)$, distribution:

$$
\phi_{p, q}(\omega)=\frac{1}{Z} p^{N_{b}(\omega)}(1-p)^{N_{g}(\omega)} q^{k(\omega)},
$$

where $k(\omega)=$ number of blue connected components.

Random Cluster model

- On a finite graph $G=(V, E)$, distribution:

$$
\phi_{p, q}(\omega)=\frac{1}{Z} p^{N_{b}(\omega)}(1-p)^{N_{g}(\omega)} q^{k(\omega)},
$$

where $k(\omega)=$ number of blue connected components.

- Extension to an infinite volume measure on \mathbb{Z}^{2}, for $q \geq 1$. Critical point for the emergence of an infinite connected component: $p_{c}^{R C}=\frac{\sqrt{q}}{1+\sqrt{q}}$ [Beffara, Duminil-Copin 2012]

Random Cluster model

- On a finite graph $G=(V, E)$, distribution:

$$
\phi_{p, q}(\omega)=\frac{1}{Z} p^{N_{b}(\omega)}(1-p)^{N_{g}(\omega)} q^{k(\omega)},
$$

where $k(\omega)=$ number of blue connected components.

- Extension to an infinite volume measure on \mathbb{Z}^{2}, for $q \geq 1$. Critical point for the emergence of an infinite connected component: $p_{c}^{R C}=\frac{\sqrt{q}}{1+\sqrt{q}}$ [Beffara, Duminil-Copin 2012]

Ising model $\longleftrightarrow \rightarrow$ Random Cluster model Parameter $\beta \leadsto$ Parameters $p=f(\beta)=1-\exp (-2 \beta), q=2$

To obtain the Random Cluster model from the Ising model, keep each edge between identical spins with probability $f(\beta)=1-\exp (-2 \beta)$, independently.

Ising model

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
+	+	-	+	-	-
+	+	+	-	-	-
+					

$\gamma_{\beta(p)}$

Ising model

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

$\gamma_{\beta(p)}$

Random cluster
μ_{p}

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

Even percolation

Ising model

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

$\gamma_{\beta(p)}$

Random cluster
μ_{p}

Even percolation

Ising model

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

$\gamma_{\beta(p)}$

$\varphi_{f(\beta(p)), 2}$

Random cluster
$\left(\mu_{p}\right)_{*}$

Even percolation

Ising model

+	+	-	-	-	-
+	+	-	-	+	+
-	-	+	+	-	-
-	-	+	-	-	-
-	+	-	+	-	-
+	+	+	-	-	-

$\gamma_{\beta(p)}$

Random cluster
Even percolation

$$
\begin{aligned}
p \leq 1 / 2 & \rightsquigarrow \beta(p) \geq 0 \\
\varphi_{f(\beta(p)), 2} & \preceq\left(\mu_{p}\right)_{*}
\end{aligned}
$$

$$
\begin{aligned}
& p \leq 1 / 2 \rightsquigarrow \beta(p) \geq 0 \\
& \varphi_{f(\beta(p)), 2} \preceq\left(\mu_{p}\right)_{*} \quad \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}
\end{aligned}
$$

$$
\begin{aligned}
p \leq 1 / 2 & \rightsquigarrow \beta(p) \geq 0 \\
\varphi_{f(\beta(p)), 2} & \preceq\left(\mu_{p}\right)_{*} \quad \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}=\varphi_{2 p, 2}
\end{aligned}
$$

$$
\begin{aligned}
& p \leq 1 / 2 \rightsquigarrow \beta(p) \geq 0 \\
& \varphi_{f(\beta(p)), 2} \preceq\left(\mu_{p}\right)_{*} \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}=\varphi_{2 p, 2} \\
& \Longrightarrow \quad\left(\varphi_{2 p, 2}\right)^{c} \preceq \mu_{1-p}
\end{aligned}
$$

$$
\begin{aligned}
& p \leq 1 / 2 \rightsquigarrow \beta(p) \geq 0 \\
& \varphi_{f(\beta(p)), 2} \preceq\left(\mu_{p}\right)_{*} \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}=\varphi_{2 p, 2} \\
& \Longrightarrow \quad\left(\varphi_{2 p, 2}\right)^{c} \preceq \mu_{1-p}
\end{aligned}
$$

Grey edges of $R C(2 p, 2) \preceq$ Blue edges of μ_{1-p}

$$
\begin{aligned}
& p \leq 1 / 2 \rightsquigarrow \beta(p) \geq 0 \\
& \varphi_{f(\beta(p)), 2} \preceq\left(\mu_{p}\right)_{*} \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}=\varphi_{2 p, 2} \\
& \Longrightarrow \quad\left(\varphi_{2 p, 2}\right)^{c} \preceq \mu_{1-p}
\end{aligned}
$$

Grey edges of $R C(2 p, 2) \preceq$ Blue edges of μ_{1-p}
For $p<p_{c}^{R C}=\frac{\sqrt{2}}{1+\sqrt{2}}$, grey edges of $R C(p, 2)$ percolate.

$$
\begin{aligned}
& p \leq 1 / 2 \rightsquigarrow \beta(p) \geq 0 \\
& \varphi_{f(\beta(p)), 2} \preceq\left(\mu_{p}\right)_{*} \Longrightarrow \quad \mu_{p} \preceq\left(\varphi_{f(\beta(p)), 2}\right)_{*}=\varphi_{2 p, 2} \\
& \Longrightarrow \quad\left(\varphi_{2 p, 2}\right)^{c} \preceq \mu_{1-p}
\end{aligned}
$$

Grey edges of $R C(2 p, 2) \preceq$ Blue edges of μ_{1-p}
For $p<p_{c}^{R C}=\frac{\sqrt{2}}{1+\sqrt{2}}$, grey edges of $R C(p, 2)$ percolate. (?) [Beffara, Duminil-Copin 2012]

Summary

p	0	p_{c}	$\frac{1}{2}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\infty$	
μ_{p}		no perco	\mid	perco	

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco	\mid	\mid

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco	\mid	$?$

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco	\mid	$?$

Unlike classical Bernoulli percolation, monotony is not obvious for the even percolation!

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco	\mid	$?$

Unlike classical Bernoulli percolation, monotony is not obvious for the even percolation!

But we are able to compare μ_{p} and μ_{1-p}.

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$	β_{c}	0	$-\beta_{c}$	$-\infty$	
μ_{p}		no perco	\mid	perco	\mid	$?$

Unlike classical Bernoulli percolation, monotony is not obvious for the even percolation!

But we are able to compare μ_{p} and μ_{1-p}.

Proposition

If $p \leq 1 / 2$, the measure μ_{p} is "less connected" than μ_{1-p}.

Rejection sampling for the even percolation

Rejection sampling for the even percolation

Rejection sampling for the even percolation

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

μ_{p}	μ_{1-p}	
		$(1-p)^{4}$
		p^{4}

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

We build simultaneously a configuration distributed according to μ_{p} and one according to μ_{1-p}.

Coupling between μ_{p} and μ_{1-p}

For each elementary square:

- either all the edges are identical
- or all the edges are opposite.

Coupling between μ_{p} and μ_{1-p}

For each elementary square:

- either all the edges are identical
- or all the edges are opposite.

So, same parity at each point.

Coupling between μ_{p} and μ_{1-p}

For each elementary square:

- either all the edges are identical
- or all the edges are opposite.

So, same parity at each point.
And the configuration distributed according to μ_{1-p} is more connected than the one distributed according to $\mu_{p_{m}}$!

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1
$\beta(p)$	$+\infty$		β_{c}	0	$-\beta_{c}$
μ_{p}		no perco		perco	\mid

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1
$\beta(p)$	$+\infty$		β_{c}	0	$-\beta_{c}$
μ_{p}		no perco		perco	

Conjecture: if G is a finite Eulerian graph, the sequence of even percolation measures $\left(\mu_{p}\right)_{p \in[0,1]}$ is stochastically non-decreasing.

Summary

p	0	p_{c}	$\frac{1}{2}$	$1-p_{c}$	1	
$\beta(p)$	$+\infty$		β_{c}	0	$-\beta_{c}$	$-\infty$
μ_{p}		no perco		perco		perco

Conjecture: if G is a finite Eulerian graph, the sequence of even percolation measures $\left(\mu_{p}\right)_{p \in[0,1]}$ is stochastically non-decreasing.

Does Eulerian percolation on \mathbb{Z}^{2} percolate?
O. Garet, R. Marchand, I. Marcovici
arXiv:1607. 01974

