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Classical Bernoulli bond percolation

p0.5 p > 0.5
No infinite connected component Infinite connected component

ω ∈ {0, 1}E2 E2 = set of edges of Z2

(ωe)e∈E2 i.i.d. with law Ber(p) ωe = 1 if edge e is colored in blue
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Classical Bernoulli bond percolation
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Eulerian percolation (= even percolation)

Bernoulli bond percolation with parameter p, conditioned on the
fact that every site has an even degree

Probability
1

Zp
pNb(1− p)Ng

Nb =number of blue edges
Ng =number of grey edges

How to define the even percolation measure on the whole Z2?
What are the connectivity properties of the random (blue)
subgraph obtained?
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Definition of the even percolation measure on Z2

Degree of vertex x in configuration ω: dω(x) =
∑

e3x ωe

We want to condition the Bernoulli bond percolation to the event:

ΩEP = {ω ∈ {0, 1}E2 ; ∀x ∈ Z2, dω(x) ≡ 0[2]}

Gibbs measures formalism:

µpΛ,η(ω) =
1

Z
1ηΛcωΛ∈ΩEP

pNb(ωΛ) (1− p)Ng (ωΛ)

=
1

Z ′
1ηΛcωΛ∈ΩEP

( p

1− p

)Nb(ωΛ)

Finite box Λ

Configuration η ∈ ΩEP outside Λ
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Colorings and contours
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Relation with the Ising model

+
+
+
+
+

+
-

+

+
+

-

-
-
-

+ + + - -

+ + + + -

β = 1/T

πβΛ,η(ω) =
1

Z
exp

(
β

∑
i∼j , i or j∈Λ

ωiωj

)

=
1

Z
exp

(
β
(
Ng (ωΛ)− Nb(ωΛ)

))
=

1

Z ′
exp

(
− 2βNb(ωΛ)

)

Even percolation ! Ising model

Parameter p ! β such that exp(−2β) =
p

1− p
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Relation with the Ising model

βc = 1
2 log(1 +

√
2)

β ≤ βc : a unique Gibbs measure
β > βc : two extremal measures π+

β and π−β

Proposition

There exists a unique even percolation measure µp on Z2: it is the
image by the contour application of any Gibbs measure for the

Ising model with parameter β(p) = 1
2 log

(
1−p
p

)
.

p 0 1
2 1

β(p) +∞ βc 0 −βc −∞

Remark: β(1− p) = −β(p)

Even perco µp
!

Blue ←→ Grey
Even perco µ1−p

Ising parameter β ! Ising parameter −β
Spin inversion on a checkerboard
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Number of infinite connected components

Proposition

Let p ∈ [0, 1], and N = number of infinite connected components.

We have: µp(N = 0) = 1 or µp(N = 1) = 1.

1 By ergodicity, there exists k ∈ N ∪ {∞} such that
µp(N = k) = 1.

2 We must have k ∈ {0, 1,∞}, indeed:
for k ≥ 2, µp(N = k) > 0 =⇒ µp(N = k − 1) > 0

3 Let us prove by contradiction that µp(N =∞) = 0.

1 Any point has a positive probability to be a trifurcation
2 In a box of size L, number of trifurcations ∝ L2.
3 So, number of infinite connected components intersecting the

box ∝ L2.
4 But that number cannot be larger than the perimeter of the

box ∝ L, contradiction!
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Number of infinite connected components

βc =
1

2
log(1 +

√
2) ! pc = 1− 1√

2

(
<

1

2

)

Proposition

For the measure µp of even percolation:

if p < pc (β > βc), a.s. no infinite connected component,

if pc < p < 1/2 (0 < β < βc), a.s. a (unique) infinite
connected component.

p 0 pc
1
2 1− pc 1

β(p) +∞ βc 0 −βc −∞

µp no perco | perco |
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If p < pc (β > βc), a.s. no infinite connected component.

Assume there is an infinite path.

+

-

+

-

-

+ -

+

-

+

-

+

-

+

-

+

But we know that for β > βc ,
under π+

β , there are no infinite
∗-paths of spins −, contradic-
tion!
[Russo 1979]
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If pc < p < 1/2 (0 < β < βc), a.s. a (unique) infinite connected
component.

For 0 < β < βc :

there is an infinite ∗-path
of spins +,

all the connected
components of spins +
are finite.

[Coniglia et al. 1976,

Higuchi 1993]

+ +
+

+
+

+
+

+ + + +
+ +

The union of contours of connected components of spins +
provides an infinite connected component for the even perco.
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Summary

p 0 pc
1
2

1− pc

1

β(p) +∞ βc 0

− βc

−∞

µp no perco | perco |

| perco
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Random Cluster model

On a finite graph G = (V ,E ), distribution:

φp,q(ω) =
1

Z
pNb(ω)(1− p)Ng (ω)qk(ω),

where k(ω) = number of blue connected components.

Extension to an infinite volume measure on Z2, for q ≥1.

Critical point for the emergence of an infinite connected

component: pRCc =
√
q

1+
√
q [Beffara, Duminil-Copin 2012]

Ising model ! Random Cluster model

Parameter β ! Parameters p = f (β) = 1− exp(−2β), q = 2

To obtain the Random Cluster model from the Ising model,
keep each edge between identical spins with probability
f (β) = 1− exp(−2β), independently.
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To obtain the Random Cluster model from the Ising model,
keep each edge between identical spins with probability
f (β) = 1− exp(−2β), independently.
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p ≤ 1/2  β(p) ≥ 0

ϕf (β(p)),2 � (µp)∗

=⇒ µp � (ϕf (β(p)),2)∗ = ϕ2p,2

=⇒ (ϕ2p,2)c � µ1−p

Grey edges of RC (2p, 2) � Blue edges of µ1−p

For p < pRCc =
√

2
1+
√

2
, grey edges of RC (p, 2) percolate. (?)

[Beffara, Duminil-Copin 2012]
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Summary

p 0 pc
1
2

1− pc

1

β(p) +∞ βc 0

− βc

−∞

µp no perco | perco |

? | perco

Unlike classical Bernoulli percolation,
monotony is not obvious for the even percolation!

But we are able to compare µp and µ1−p.

Proposition

If p ≤ 1/2, the measure µp is “less connected” than µ1−p.
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Rejection sampling for the even percolation

p4 p3(1− p) p3(1− p) · · · (1− p)3p (1− p)4
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We build simultaneously a configuration distributed according to
µp and one according to µ1−p.

µp µ1−p
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µp and one according to µ1−p.

µp µ1−p

p4

(1−p)4−p4
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We build simultaneously a configuration distributed according to
µp and one according to µ1−p.

µp µ1−p

p3(1− p)

p(1− p)3 −
p3(1− p)

p3(1− p)
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We build simultaneously a configuration distributed according to
µp and one according to µ1−p.

µp µ1−p

p2(1− p)2

Irène Marcovici Eulerian percolation



Coupling between µp and µ1−p

µp µ1−p

For each elementary square:

either all the edges are identical

or all the edges are opposite.

So, same parity at each point.
And the configuration distributed according to µ1−p is more
connected than the one distributed according to µp !
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Summary

p 0 pc
1
2 1− pc 1

β(p) +∞ βc 0 −βc −∞

µp no perco | perco | perco

Conjecture: if G is a finite Eulerian graph, the sequence of even
percolation measures (µp)p∈[0,1] is stochastically non-decreasing.

Does Eulerian percolation on Z2 percolate?
O. Garet, R. Marchand, I. Marcovici
arXiv:1607.01974
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