Quantisation in Chern-Simons theory via geometric constructions

Alessandro Malusà

Work in progress, joint with Jørgen E. Andersen

Department of Mathematics, Aarhus University, Denmark Centre for Quantum Geometry of Moduli Spaces

Geometric Quantisation

Geometric quantisation produces a quantum Hilbert space \mathcal{H} given the following data:

- A symplectic manifold (M, ω) ;
- A pre-quantum line bundle for (M, ω) , i.e. a triple (\mathcal{L}, h, ∇) with \mathcal{L} a complex line bundle over M, h a Hermitian metric on it and ∇ a connection on it so that $\nabla h = 0$ and:

 $F_{\nabla} = -i\omega$

(1)

(2)

(4)

F

• A polarisation on *M*, e.g. a Kähler structure *or* a Lagrangian foliation.

 \mathcal{H} is then the space of smooth polarised sections of \mathscr{L} , i.e. holomorphic or covariantly constant along the leaves as the case may be.

Moduli spaces of flat connections

Let Σ be a closed, oriented smooth surface of genus g, and for G = SU(n) or $SL(n, \mathbb{C})$ call \mathcal{M}_G the moduli spaces of reductive flat Gconnections. The space $T_{[A]} \mathcal{M}_G$ is isomorphic to the first A-twisted cohomology of Σ :

Polarisations and metrics

Polarisations A Riemann surface structure σ on Σ induces a splitting

$$H^1(\Sigma, d_A) = H^{1,0}(\Sigma, d_A) \oplus H^{0,1}(\Sigma, d_A)$$
(5)

The collection of the $H^{1,0}(\Sigma, d_A)$'s gives an integrable distribution on $\mathcal{M}_{\mathbb{C}}$, hence a real polarisation P_{σ} . Each leaf of P_{σ} intersects \mathcal{M} at exactly one point, transversally, which implies the following:

Fact 2:The Hilbert space induced by
$$\sigma$$
 is $\mathcal{H}_{\sigma} \simeq \mathcal{C}^{\infty}(\mathcal{M}, \mathscr{L}^k)$ (6) \mathfrak{W}

Besides the polarisation, σ also induces a complex structure on $\mathcal{M}_{\mathbb{C}}$, hence a Kähler metric $g = g_{\sigma}$ with a Ricci potential *F*.

The Hitchin-Witten connection

Functions and differential operators

<u>Definition 2</u>: Call a function $f \in C^{\infty}(\mathcal{M}_{\mathbb{C}})$ of polynomial type if its pull-back to $T^* \mathcal{M}$ is polynomial in the co-tangent variables.

To every function f of polynomial type corresponds a formal, totally symmetric tensor field T_f on \mathcal{M} whose coordinates at each point are the coefficients of the relevant polynomial. Given $\psi \in \mathcal{H}_{\sigma}$, subsequent application of a combination of ∇ and the Levi-Civita connection of g gives a section $\nabla^r \psi$ of $(T^* \mathcal{M})^{\otimes r} \otimes \mathscr{L}^k$ for every positive integer r.

Definition 3: If *T* is a tensor field on \mathcal{M} , call $\nabla^r_T \psi$ its full contraction with $\nabla^r \psi$.

These correspondences associate to every classical observable *f* of polynomial type a quantum operator. Up to weighting the *r*-th order part with $(-i\hbar)^r$ for some quantum parameter \hbar ,

 $\mathcal{T}_{[A]}(\mathcal{M}_G) \simeq H^1(\Sigma, d_A)$

 \mathcal{M}_G has a symplectic structure given by the Atiyah-Bott form:

$$\omega_G([\eta_1], [\eta_2]) = 4\pi \int_{\Sigma} \langle \eta_1 \wedge \eta_2 \rangle \tag{3}$$

For brevity we drop SU(n) and replace $SL(n, \mathbb{C})$ with \mathbb{C} when they appear as subscripts. Notice that \mathcal{M} sits inside $\mathcal{M}_{\mathbb{C}}$ as a symplectic subspace.

Chern-Simons theory

Classical theory The Chern-Simons (CS) theory is a 3-dimensional gauge field theory whose classical solutions are the flat *G*-connections up to gauge transformations. One can think of \mathcal{M}_G as the space of boundary conditions for the theory on 3-manifolds bounded by Σ .

The CS line bundle Let t = k + is be a complex parameter, k a positive integer, and fix a flat connection A on Σ . The (exponentiated) action of the SL (n, \mathbb{C}) -theory at the level t with boundary condition A is well defined, but it takes values in an abstract Hermitian line $\mathscr{L}_{[A]}^{(t)}$ which depends functorially on [A]. As [A]varies in $\mathcal{M}_{\mathbb{C}}$, these lines form a line bundle $\mathscr{L}^{(t)}$ with Hermitian structure h. Furthermore, Although \mathcal{H}_{σ} can be seen as a σ -independent vector space, Witten argues in [2] that the identification is not natural from the viewpoint of gauge field theories. However, the various spaces can be arranged to form a bundle over the Teichmüller space:

$$\mathcal{H} = \mathcal{T} \times \mathcal{C}^{\infty}(\mathcal{M}, \mathscr{L}^k) \to \mathcal{T}$$
(7)

On this bundle Witten defines a connection:

$$\tilde{\boldsymbol{\nabla}} = \boldsymbol{\nabla}^T + \frac{1}{2t}b - \frac{1}{2\overline{t}}\overline{b} + dF \tag{8}$$

Here ∇^T is the trivial connection on \mathcal{H} and dF denotes the differential of $F \in \mathcal{C}^{\infty}(\mathcal{M} \times \mathcal{T})$ along \mathcal{T} . *b* is instead a 1-form on \mathcal{T} with values in differential operators on \mathscr{L}^k , constructed from the metric *g* and its variation along \mathcal{T} .

Theorem 3: $\tilde{\nabla}$ is projectively flat, i.e. itscurvature is a complex-valued 2-form on \mathcal{T} times the identity of $\mathcal{C}^{\infty}(\mathcal{M}, \mathcal{L}^k)$.

Due to contractibility of \mathcal{T} , the holonomy of $\tilde{\nabla}$ identifies the quantum Hilbert spaces up to projective factors.

Embedding of $T^*\,\mathcal{M}$ into $\mathcal{M}_\mathbb{C}$

Let σ be fixed, $g \ge 2$ and $[A] \in \mathcal{M}$. By the Narasimhan-Seshadri correspondence, [A] defines a semi-stable holomorphic bundle E over Σ , while Serre duality gives an isomorphism:

 $H^1(\Sigma, E)^* \simeq H^0(\Sigma, K \otimes E) \tag{9}$

this is a good candidate for the quantisation of f. Viceversa, every differential operator D of finite order r defines totally symmetric tensor fields $\sigma_i(D)$ so that:

$$\operatorname{rk}(\sigma_j(D)) = j$$
 and $D = \sum_{j=0}^r \nabla^j_{\sigma_j(D)}$ (10)

Definition 4: The tensor field $\sigma_j(D)$ is called the *j*-th symbol of *D*.

This might be used for defining a star product.

Genus 1 and the A polynomial

If g = 1 and the Serre pairing is normalised properly, the embedding $T^* \mathcal{M} \to \mathcal{M}_{\mathbb{C}}$ and the Levi-Civita connection are independent on σ .

Theorem 5: For fixed *k*, the above construction gives a star product for $\hbar = s/|t|^2$.

Moreover, the Hitchin-Witten connection is *flat* and is trivialised by the gauge transformation:

$$\exp(-r\Delta)$$
 where $e^{4kr} = -\frac{k-is}{k+is}$ (11)

The star-product can be made $\tilde{\nabla}$ -invariant by conjugating the operators by this.

An important class of observables is that of the A-polynomials of knots, which in this theory correspond to constraint equations.

a geometric construction based on the action defines a parallel transport operator associated to any curve in $\mathcal{M}_{\mathbb{C}}$, thus giving a connection ∇ on $\mathscr{L}^{(t)}$ which preserves *h*.

<u>Fact 1</u>: $(\mathscr{L}^{(t)}, h, \nabla)$ is a pre-quantum line bundle for the symplectic structure

 $\omega_t := \frac{1}{2} \left(t \omega_{\mathbb{C}} + \bar{t} \bar{\omega}_{\mathbb{C}} \right)$

<u>Definition 1</u>: $(\mathscr{L}^{(t)}, h, \nabla)$ is called the Chern-Simons line bundle at the level *t*.

The restriction of $\mathscr{L}^{(t)}$ to \mathcal{M} has the topological type of \mathscr{L}^k , the *k*-th tensor power of $\mathscr{L}^{(1)}|_{\mathcal{M}}$.

The space on the left-hand side is identified with the holomorphic co-tangent space of \mathcal{M} at Σ That on the right is the space of Higgs fields on *E*, and non-Abelian Hodge theory gives an equivalence between $\mathcal{M}_{\mathbb{C}}$ and the moduli space of semi-stable Higgs bundles on Σ .

Theorem 4: The above identifications combine into an embedding $T^* \mathcal{M} \to \mathcal{M}_{\mathbb{C}}$ whoseimage is an open dense.

Although the correspondences above require $g \ge 2$, the construction can be adjusted to obtain an embedding also in the case g = 1.

Question: What does this construction give for the A-polynomial of a knot?

References

- [1] J. E. Andersen, N. L. Gammelgaard *The Hitchin-Witten Connection and Complex Quantum Chern-Simons Theory*. arXiv:1409.103
- [2] E. Witten *Quantization of Chern Simons Gauge Theory with Complex Gauge Group*. Comm. Math. Phys., 1991.

Contact Information

Alessandro Malusà malusa@qgm.au.dk