Lefschetz for non-Archimedean Jacobians

Tif Shen (Yale University)
jifeng.shen@yale.edu

Introduction

Let Y be a smooth projective variety of dimension n over a non-Archimedean field K, and let D be an ample divisor on Y. As a consequence of comparison theorems of Berkovich and of the ℓ-adic Lefschetz hyperplane theorem, the inclusion $D^{an} \hookrightarrow Y^{an}$ induces isomorphisms between the \mathbb{Q}-cohomology groups of dimensions $< n - 1$, and an injection in dimension $n - 1$.

However, unlike the case of complex analytic spaces, this does not hold in general if we replace \mathbb{Q} by \mathbb{Z}, or if we replace cohomology groups with homotopy groups.

Question. For the analytifications of specific families of projective varieties, is it possible to establish a Lefschetz hyperplane theorem for \mathbb{Z}-cohomology and homotopy groups?

Let X be a smooth projective curve over K of genus g, and let J be its Jacobian. Suppose K is algebraically closed, and choose an identification $\text{Pic}^d(X) \cong J$. Let W_d denote the locus in J of effective divisor classes of degree d.

Theorem 1 (S, 2016). For $1 \leq d \leq g - 1$, the inclusion $W_d^{an} \hookrightarrow J^{an}$ induces isomorphisms between \mathbb{Z}-cohomology (resp. homotopy) groups of dimensions $< d$, and an injection (resp. surjection) in dimension d.

Recall that W_{g-1} is equal, up to translation, to the theta divisor Θ of J. We thus obtain, as a special case of the above theorem, a Lefschetz hyperplane theorem for \mathbb{Z}-cohomology and homotopy groups for the pair (J^{an}, G^{an}).

Tropicalization

To prove Theorem 1, we tropicalize W_d^{an} and show that this tropicalization is a homotopy equivalence. Recall that X^{an} has a tropicalization Γ (see Figure 1), which is a metric graph. There is a natural tropicalization map from J^{an} to the Jacobian $J(\Gamma)$ of Γ, which sends W_d^{an} to a subset $W_d(\Gamma)$ of $J(\Gamma)$.

Theorem 2 (S, 2016). The map $W_d^{an} \rightarrow W_d(\Gamma)$ is a homotopy equivalence for all d.

The tropicalization map $\text{trop} : J^{an} \rightarrow J(\Gamma)$ is naturally identified with the map from $\text{Pic}^d(X)$ to $\text{Pic}(\Gamma)$ given by tropicalizing the divisors on X. In particular, this allows us to identify $W_d(\Gamma)$ with the locus in $\text{Pic}(\Gamma)$ of effective tropical divisor classes of degree d.

Morphisms with Projective Fibers

The natural map $\text{Sym}^d(\Gamma) \rightarrow W_d(\Gamma)$ has contractible fibers, and therefore is a homotopy equivalence. Theorem 2 can then be reduced to showing that the map $\text{Sym}^{d,an}(X) \rightarrow W_d^{an}$ is a homotopy equivalence. This is derived as a special case of the following.

Theorem 3 (S, 2016). Let $f : \tilde{Z} \rightarrow Y$ be a morphism of quasi-projective K-varieties. Suppose that there is a finite stratification $Y = \bigsqcup Y_i$ such that $f : Z \times_Y Y_i \rightarrow Y_i$ is a projective bundle of rank r_i over Y_i.

Then, there is a finite extension $K \subset L$ such that $f_L^{an} : (Z_L)^{an} \rightarrow (Y_L)^{an}$ is a homotopy equivalence.

Brown and Foster have shown, following the MMP approach developed by Mustaţă – Nicaise and Nicaise – Xu, that over $K = \mathbb{C}((t))$, if $f : Z \rightarrow Y$ is a projective bundle with Y smooth, then $f^{an} : Z^{an} \rightarrow Y^{an}$ is a homotopy equivalence.

Our proof of Theorem 3 follows a different approach, which works over K of arbitrary characteristic and allows arbitrarily bad singularities for Y. A crucial component of our argument is the theorem of Hrushovski – Loeser – Poonen stating that over K with a countable dense subset, the analytification Y^{an} of a quasi-projective K-scheme of dimension d embeds into \mathbb{R}^{2d+1}. In particular, Y^{an} is metrizable and has a countable dense subset, which allows us to apply the Vietoris-Begle-Smale mapping theorem for maps with contractible fibers.

Figure 1: The tropicalization of an analytic curve X^{an}.

We thank D. Ranganathan for permission to use the picture on the left.