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Recent Progress on the Diameter of
Polyhedra and Simplicial Complexes

Francisco Santos†
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We review several recent results on the diameter of polytopes, polyhedra and simplicial complexes, motivated by the
(now disproved, but not quite solved) Hirsch Conjecture.
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Introduction
The Hirsch Conjecture, understood in a broad sense, asked what is the maximum possible combinatorial
diameter of a convex polyhedron of dimension d and with n facets. Let us denote this number H(n, d).
Although the original conjecture H(n, d) ≤ n − d has been disproved [7, 9], the underlying problem is
still wide open:

• The known counter-examples violate the conjecture only by a constant and small factor (25% in the
case of unbounded polyhedra, 5% for bounded polytopes).

• No polynomial upper bound is known for H(n, d). All we know is H(n, d) ≤ nlog d+2 (quasi-
polynomial bound of Kalai and Kleitman [6]) and H(n, d) ≤ 2d−3n (linear bound in fixed dimen-
sion by Larman [8]).

Some recent attempts of settling this question go by looking at the problem in the more general context
of pure simplicial complexes: What is the maximum diameter of the dual graph of a simplicial (d − 1)-
sphere or (d− 1)-ball with n vertices?

Here a simplicial (d − 1)-ball or sphere is a simplicial complex homeomorphic to the (d − 1)-ball or
sphere. These complexes are necessarily pure (all the maximal simplices have the same dimension).
The dual graph of a pure simplicial complex is the graph whose vertices are the maximal simplices
(a. k. a. facets) and whose edges correspond to adjacent facets. We can also remove the sphere/ball
condition and ask the same for all pure simplicial complexes. Some recent results in this direction are:
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• For arbitrary pure simplicial complexes the diameter can be exponential, in the order of n2d/3 [5].

• For complexes in which every star is strongly connected (that is, the dual graph of every star is
connected) the Kalai-Kleitman and the Larman bounds stated above hold, essentially with the same
proofs. These complexes have been called normal or locally strongly connected in the literature.

• For complexes which are not only normal but also flag (meaning that the complex is the clique
complex of its 1-skeleton), the original Hirsch bound holds [1].

Going back to polytopes, there is also a recent bound in terms of n, d and the maximum determinant
of the system defining the polytope [2] and a recent construction of polytopes which fail to have the
k-decomposability property, for arbitrarily large k [4].
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diameter of polyhedra, preprint 2011, arXiv:1108.4272.
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