FPSAC 2013 Paris, France DMTCS proc.AS, 2013, 93-104

Network parameterizations for the
Grassmannian

Kelli Talaskdand Lauren Williams
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Abstract. Deodhar introduced his decomposition of partial flag vaseas a tool for understanding Kazhdan-Lusztig
polynomials. The Deodhar decomposition of the Grassmarisialso useful in the context of soliton solutions to
the KP equation, as shown by Kodama and the second authodhBeoomponent$p of the Grassmannian are
in bijection with certain tableau® called Go-diagrams and each component is isomorphic(§*)* x (K)® for
some non-negative integetisandb. Our main result is an explicit parameterization of eachdbeo component in
the Grassmannian in terms of networks. More specificalymfe Go-diagranD we construct a weighted network
Np and itsweight matrixi¥p, whose entries enumerate directed path¥jn By letting the weights in the network
vary overK or K* as appropriate, one gets a parameterization of the DeodimapanentSp. One application
of such a parameterization is that one may immediately aéter which Plucker coordinates are vanishing and
nonvanishing, by using the Lindstrom-Gessel-Viennot Lemie also give a (minimal) characterization of each
Deodhar component in terms of Plicker coordinates.

Résure. Deodhar a introduit une décomposition des variétésedrap pour comprendre les polyndmes de Kazhdan-
Lusztig. La decomposition de Deodhar des Grassmanniexgtesissi utile dans le contexte des solutions solitons de
I'equation KP, ce qui a été établi par Kodama et le demé auteur. Les composantes de Deodhasont en bijection
avec certains tableau® appelégliagrammes de Gat chaque composante est isomorphiEa)® x (K)® olia etb

sont des entiers positifs. Notre résultat principal est paramétrisation explicite de chaque composante de @eodh
des Grassmanniennes en termes de réseaux. Plus préctsampartir d'un diagramme de @®, nous construisons

un réseauVp et samatrice de poid$¥Vp, dont les composantes énumeérent les chemins dirigesidan En faisant
varier les poids danK ouK*, nous obtenons une paramétrisation de la composante dihB®et,. Une application

de cette paramétrisation est que nous pouvons déterauiiedies coordonnées de Pliicker s’annulent, en utiligant
lemme de Lindstrom-Gessel-Viennot. Nous donnons ausstargetérisation minimale de chaque composante en
termes de coordonnées de Plucker.

Keywords: Grassmannian, Deodhar decomposition, networks

1 Introduction

There is a remarkable subset of the real Grassmartign, (R) called itstotally non-negative part
(Gri.n)>o [7, 9], which may be defined as the subset of the real Grassarammere all Plicker coor-
dinates have the same sign. Postnikov showed(tHat ,,)>¢ has a decomposition infoositroid cells
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which are indexed by certain tableaux callediagrams. He also gave explicit parameterizations of each
cell. In particular, he showed that from eag¢tdiagram one can produce a plamatwork and that one
can write down a parameterization of the correspondingusitig theweight matrixof that network. This
parameterization shows that the cell is isomorphi®tg, for somed. Such a parameterization is con-
venient, because for example, one may read off formulaslfaker coordinates from non-intersecting
paths in the network, using the Lindstrom-Gessel-Vienmrhima.

A natural question is whether these network parameteoizafor positroid cells can be extended from
(Grg,n) >0 to the entire real Grassmanniéiry ,, (R). In this paper we give an affirmative answer to this
question, by replacing the positroid cell decompositiothwtiie Deodhar decomposition of the Grassman-
nianGry, ., (K) (hereK is an arbitrary field).

The components of the Deodhar decomposition are not in geoalts, but nevertheless have a simple
topology: by [2, 3], each one is isomorphic(&*)® x (K)°. The relation of the Deodhar decomposition
of Gry »(R) to Postnikov’s cell decomposition ¢y ) >0 is as follows: the intersection of a Deodhar
componentp =2 (R*)*x (R)® with (Gry. ) >0 is precisely one positroid cell isomorphic(f®.¢)? if b =
0, and is empty otherwise. In particular, when one intershet®©eodhar decomposition witliry. . ) >0,
one obtains the positroid cell decomposition(6fr;, »,)>0. There is a relategositroid stratificationof
the real Grassmannian, and each positroid stratum is a ofiibaodhar components.

As for the combinatorics, components of the Deodhar decaitipo are indexed bylistinguished
subexpressiong, 3], or equivalently, by certain tableaux call€b-diagramg6], which generalizel-
diagrams. In this paper we associate a network to each Guattig and write down a parameterization
of the corresponding Deodhar component using the weightixnaft that network. Our construction
generalizes Postnikov’s, but our networks are no longargyla general.

Our main results can be summed up as follows. See TheorerisaBd 4.3 and the constructions
preceding them for complete details.

Theorem. LetK be an arbitrary field.

e Every point inGry, ,,(K) can be realized as the weight matrix of a unique network astext to
a Go-diagram, and we can explicitly construct the corresfing network. The networks corre-
sponding to points in the same Deodhar component have the saderlying graph, but different
weights.

e Every Deodhar component may be characterized by the vagsdmid nonvanishing of certain
Plucker coordinates. Using this characterization, we caroaplicitly construct the network
associated to a point given either by a matrix repsreseveati by a list of Plicker coordinates.

To illustrate the main results, we provide a small example h&lore complicated examples may be
seen throughout the rest of the paper.

Example 1.1. Consider the Grassmannia#r, 4. The large Schubert cell in this Grassmannian can be
characterized as
= {A c GT’214 | ALQ(A) 7& 0},

whereA ; denotes the Ricker coordinate corresponding to the column.ééh a matrix representative of
apointinGrs 4. This Schubert cell contains multiple positroid stratalirding.Sz, whereZ is the Grass-
mann necklac& = (12,23, 34, 14). This positroid stratum can also be characterized by the aaishing
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Dl [e7} as 1 D2 Cq4 as l
as ay a2
++ 2 +/0 2
4 3 4 3

Fig. 1: The diagrams and networks associatedtg and.Sp, in Example 1.1.

of certain Plicker coordinates:
Sz ={A€Gras|A12(A) #0, Az 3(A) #0, Ag4(A) #0, Ay 4(A) # 0}.

Figure 1 shows two Go-diagrani3; and D, and their associated networks. Note that the network on
the right is not planar. The weight matrices associated &sthdiagrams are

1 0 —as —(asaq+ asaz) and 1 0 —a3 —azey
0 1 a a1a9 0 1 0 a '

The positroid stratunb’z is the disjoint union of the two corresponding Deodhar congrasSp, and
Sp,,» which can be characterized in terms of vanishing and noistémg of minors as:

Sp, ={A € Sz | A3 # 0} andSp, = {4 € Sz | Az = 0}.

Note that if one lets the;’s range overK* and letsc, range overk, then we see thafp, = (K*)* and
Sp, = (K*)? x K.

There are several applications of our construction. Fsg special case of our theorem, one may pa-
rameterize alk x n matrices using networks. Second, by applying the Lindstaessel-Viennot Lemma
to a given network, one may write down explicit formulas faiidker coordinates in terms of collections
of non-intersecting paths in the network. Third, buildingpa work of [6], we obtain (minimal) descrip-
tions of Deodhar components in the Grassmannian, in termargghing and nonvanishing of Plucker
coordinates. It follows that each Deodhar component is aruof matroid strata.

Although less well known than the Schubert decompositiath matroid stratification, the Deodhar
decomposition is very interesting in its own right. Deodbariginal motivation for introducing his de-
composition was the desire to understand Kazhdan-Lusalgnpmials. In the flag variety, one may
intersect two opposite Schubert cells, obtaining a Rickamdrariety, which Deodhar showed is a union
of Deodhar components. Each Richardson vafRety, (¢) may be defined over a finite field = F,, and
in this case, the number of points determines BpolynomialsR, .,(¢) = #(R,w(Fy)), introduced
by Kazhdan and Lusztig [4] to give a recursive formula for Kezhdan-Lusztig polynomials. Since
each Deodhar component is isomorphiq))* x (F,)" for somea andb, if one understands the de-
composition of a Richardson variety into Deodhar compaogighen in principle one may compute the
R-polynonomials and hence Kazhdan-Lusztig polynomials.

Another reason for our interest in the Deodhar decompasisidts relation to soliton solutions of the
KP equation. It is well-known that from each poidtin the real Grassmannian, one may construct a
soliton solutionu 4 (x, y, t) of the KP equation. It was shown in recent work of Kodama ardstércond
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author [6] that when the time variabléends to—oco, the combinatorics of the solutiam (x, y, t) depends
precisely on which Deodhar componehties in.

The outline of this paper is as follows. In Section 2, we giome background on the Grassmannian
and its decompositions, including the Schubert decomiposthe positroid stratification, and the matroid
stratification. In Section 3, we present our main constamctive explain how to construct a network from
each diagram, then use that network to write down a parairatien of a subset of the Grassmannian
that we call a network component. Our main result is that tigtsvork component coincides with the
corresponding Deodhar component in the GrassmannianllyFin&ection 4 we give a characterization
of Deodhar components in terms of the vanishing and nonkangj®f certain Pliicker coordinates.

ACKNOWLEDGEMENTS L.W. is grateful to Yuji Kodama for their joint work on satib solutions of
the KP equation, which provided motivation for this project

2 Background on the Grassmannian

The GrassmanniarGry, ,, is the space of alk-dimensional subspaces of ardimensional vector space
K™. In this paper we will usually leK be an arbitrary field, though we will often think of it &or C.
An element oiG'ry, ,, can be viewed as a full-rarkkx n matrix modulo left multiplication by nonsingular
k x k matrices. In other words, twk x n matrices represent the same poiniGny, ,, if and only if
they can be obtained from each other by row operations.([gét be the set of alk-element subsets of
[n] :={1,...,n}. ForI € ([Z]), let A7 (A) be thePlucker coordinatgethat is, the maximal minor of the

k x n matrix A located in the column sdt The mapA — (A;(A)), wherel ranges ove([Z]), induces

thePlucker embeddingry, ,, — KP() = into projective space.

We now describe several useful decompositions of the Grassian: the Schubert decomposition,
the positroid stratification, and the matroid stratificaticNote that the matroid stratification refines the
positroid stratification, which refines the Schubert decositipn. The main subject of this paper is the
Deodhardecomposition of the Grassmannian, which refines the pidistratification, and is refined by
the matroid stratification (as we prove in Corollary 4.4).

2.1 The Schubert decomposition of Gy,

Throughout this paper, we identify partitions with theirwfg diagrams. Recall that the partitiohs
contained in & x (n — k) rectangle are in bijection witk-element subset C [n]. The boundary of
the Young diagram of such a partitionforms a lattice path from the upper-right corner to the lower
left corner of the rectangle. Let us label thesteps in this path by the numbers.. ., n, and define

I = I()) as the set of labels on thevertical steps in the path. Conversely, we f) denote the
partition corresponding to the subdet

Definition 2.1. For each partition) contained in & x (n — k) rectangle, we define th&chubert cell
Qx = {A € Gry,n | I(A) is the lexicographically minimal subset such tisf ) (A4) # 0}.

As) ranges over the partitions contained irka (n — k) rectangle, this gives th®8chubert decomposition
of the Grassmannia@'ry, ,,, i.e.

GTk,n = |_| Q,\.
AC(n—k)F
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We now define thehifted linear order<; (for i € [n]) to be the total order ofr| defined by
1<t +1<;1+2<;---<;n<;1<---<;1—1.
One can then defingyclically shifted Schubert celtss follows.

Definition 2.2. For each partition) contained in & x (n — k) rectangle, and eache< [n], we define the
cyclically shifted Schubert cell

Q4 = {A € Gry,n | I()) is the lexicographically minimal subset with respect4q such thatA;(, # 0}.

2.2 The positroid stratification of Gry,,

Thepositroid stratificationof the Grassmanniafir;, ,, is obtained by taking the simultaneous refinement
of then Schubert decompositions with respect to thshifted linear ordersc;. This stratification was
first considered by Postnikov [9], who showed that the stxegaconveniently described in terms@&fass-
mann necklacesas well asdecorated permutatiorsnd I-diagrams Postnikov coined the terminology
positroid because the intersection of the positroid stratificatiothefreal Grassmannian with thatally
non-negative part of the Grassmanni@#ry, ,,)>o gives a cell decomposition ¢&ry, ,,) >0 (Whose cells
are calledpositroid cell3.

Definition 2.3. [9, Definition 16.1] AGrassmann necklads a sequenc&€ = (I4,...,1,) of subsets
I. C [n] such that, fori € [n], if i € I; thenI,; = (I; \ {i}) U {j}, for somej € [n]; and if i ¢ I; then
I;+1 = I,. (Here indices are taken modula.) In particular, we havel,| = --- = |I,,|, which is equal
to somek € [n]. We then say thaf is a Grassmann necklace &fpe (k,n).
Example 2.4. T = (1345,3456,3456,4567,4567,1467,1478,1348) is an example of a Grassmann
necklace of typé4, 8).
Lemma 2.5. [9, Lemma 16.3] Gived € Gry, p, letZ(A) = (I3, ..., I,) be the sequence of subsets in
[n] such that, fori € [n], I; is the lexicographically minimal subset Gﬁ]) with respect to the shifted
linear order <, such thatAy, (A) # 0. ThenZ(A) is a Grassmann necklace of tyfie n).

Thepositroid stratificationof Gry, ,, is defined as follows.
Definition 2.6. LetZ = (I3, ..., I,) be a Grassmann necklace of tyfde n). Thepositroid stratumSz
is defined to be

Sz = {A S GTk,n | I(A) = I}.

Equivalently, each positroid stratum is an intersectiomafyclically shifted Schubert cells, that is,

S7=[) QU -

=1
Grassmann necklaces are in bijection with tableaux calleéagrams
Definition 2.7. [9, Definition 6.1] Fixk, n. A I-diagram(X, D)y ,, of type(k,n) is a partition A con-
tained in ak x (n — k) rectangle together with a fillind : A — {0, +} of its boxes which has the

J-property: there is n@ which has a+ above it and at to its left® (Here, “above” means above and
in the same column, and “to its left” means to the left and ia fame row.)

In Figure 2 we give an example of kdiagram.

) This forbidden pattern is in the shape of a backwalgand hence is denotetiand pronounced “Le.”
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++]+

oO|lo|O0|Oo

+[o+][+

Fig. 2: A Le-diagramL = (X, D) n.

2.3 The matroid stratification of Gry,,,

Definition 2.8. A matroidof rank k& on the sefn] is a nonempty collectiotM C ([Z]) of k-element
subsets inn|, calledbase®of M, that satisfies thexchange axiom
Foranyl,J € M andi € I there existg € J such that(I \ {i}) U {j} € M.

Given an element € Gry, ,,, there is an associated matrdid 4 whose bases are tivesubsetd C [n]
such thatA;(A) # 0.

Definition 2.9. LetM ¢ (1) be a matroid. Thenatroid stratuns . is defined to be
Sm={A€Gryn|Ar(A) #0ifandonly ifI € M}.

This gives a stratification af'ry, ,, called thematroid stratificationor Gelfand-Serganova stratification

Remark 2.10. Clearly the matroid stratification refines the positroidattfication, which in turn refines
the Schubert decomposition.

3 The main result: network parameterizations from Go-diagrams

In this section we define certain tableaux callza diagramsthen explain how to parameterize the Grass-
mannian using networks associated to Go-diagrams. Firstilelefine more general tableaux called
diagrams

3.1 Diagrams and networks

Definition 3.1. Let A be a partition contained in & x (n — k) rectangle. Adiagramin X is an arbitrary
filling of the boxes oA with pluses+, black stone®, and white stone®.

To each diagranD we associate a networKp as follows.

Definition 3.2. Let A\ be a partition with¢ boxes contained in & x (n — k) rectangle, and lefD be a
diagram in\. Label the boxes of from 1 to ¢, starting from the rightmost box in the bottom row, then
reading right to left across the bottom row, then right td kfross the row above that, etc. Tfveeighted)
network Np associated td is a directed graph obtained as follows:

e Associate afinternal vertexo each+ and each®,;

o After labeling the southeast border of the Young diagrarh tie numbers, 2, . . ., n (from north-
east to southwest), associatbaundary vertexo each number;
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e From each internal vertex, draw an edge right to the neatestertex or boundary vertex;
e From each internal vertex, draw an edge down to the nearegertex or boundary vertex;

o Direct all edges left and down. After doing sopf the boundary vertices becorseurcesand the
remainingn — k boundary vertices beconsinks

¢ If e is a horizontal edge whose left vertex istavertex (respectively @-vertex) in box, assign
e the weighta, (respectively;). We think ofa, and ¢, as indeterminates, but later they will be
elements oK* andK respectively.

e If eis avertical edge, assignthe weightl.

Note that in general such a directed graph is not planar,aedges may cross over each other without
meeting at a vertex. See Figure 3 for an example of a diagrahtsaassociated network.

@12 a11 a1o ag

+
+

+ @+ |+
O+ @|+
O+

Fig. 3: An example of a diagram and its associated network.

We now explain how to associateneight matrixto such a network.

Definition 3.3. Let Np be a network as in Definition 3.2. Lét= {i; < i2 < --- < ix} C [n] denote
the sources. IP is a directed path in the network, let(P) denote the product of all weights alotdy If
P is the empty path which starts and ends at the same boundeaexyeve letw(P) = 1. If r is a source
ands is any boundary vertex, define

Wy =+ w(P),
P
where the sum is over all patiifromr to s. The sign is chosen (uniquely) so that

Apngryugsy(Wp) = Zw(P), where
P

WD = (Wrs>

is thek x (n — k) weight matrix We make the convention that the row3$165 are indexed by the sources
i1, ..., from top to bottom, and its columns are indexed by, . . ., n from left to right.
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Example 3.4. The weight matrix associated to the network in Figure 3 is

1 ag 0 0 agaip 0 —agaip(ain +c¢7) —agaio(aiiaiz + aiics + ag + crcs)
0O 0 1 0 =—ag O agCr agasg + agCrCs

0 0 0 1 0 0 Qa4 —Qa4Csy

0O 0 0 O 0 1 0 as

3.2 Distinguished expressions

We now review the notion of distinguished subexpressioasng?] and [8]. This definition will be
essential for defining Go-diagrams. We assume the readamigidr with the (strong) Bruhat order on
W = &,, and the basics of reduced expressions, as in [1].

Letw :=s;, ...s;,, be areduced expression forc . A subexpression of w is a word obtained
from the reduced expression by replacing some of the factors with For example, consider a reduced
expression inSy, saysssssisssess. Thenssss 1sssg 1 is a subexpression 6fs0s1538283. Given a
subexpressiom, we setv(; to be the product of the leftmostfactors ofv, if £ > 1, andygy = 1.

Definition 3.5. [8, 2] Given a subexpression of a reduced expression = s;, si, . . . si,,, We define

JS = {k’ S {1, .. .,m} | VU(k-1) < U(k)},
J\J,r = {k’ S {1, .. .,m} | V(k—1) = U(k)},
Je:={ke{l,...,m}| U(k—1) > U(k)}.

The expression is called non-decreasingif;;_1) < v(; forall j =1,...,m, e.g.Js = .

Definition 3.6 (Distinguished subexpressiongp, Definition 2.3] A subexpression of w is called dis-
tinguished if we have
v(5) < V(j—1) Si; forall j € {1, .. .,m}. (1)

In other words, if right multiplication by;; decreases the length of;_), then in a distinguished subex-
pression we must have;) = v(;_1)si,-
We writev < w if v is a distinguished subexpressionvef

Definition 3.7 (Positive distinguished subexpressiangéje call a subexpressionof w a positive distin-
guished subexpression (or a PDS for short) if
’U(jfl) < U(j,l)Sij for all j S {1,,7’71} (2)

In other words, it is distinguished and non-decreasing.
Lemma 3.8. [8] Given v < w and a reduced expressian for w, there is a unique PD$., for v in w.

3.3 Go-diagrams

In this section we explain how to index distinguished sulbeggions by certain tableaux call&b-
diagrams which were introduced in [6]. Go-diagrams are fillings ofuvig diagrams by pluses, black
stones®, andwhite stone®.

() 1n KW2, we used a slightly different convention and used klaoxes in place of-'s.
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S5 | S4| 83 | S2|S1 15114 |13|12|11 151121916 |3
86 | S5 | S4 | S3 | S2 1019876 14111 8| 5| 2
87|86 | S5 | S4|S3 51413211 13110 714 |1

Fig. 4: The labeling of a the boxes of a partition by simple genesatgrand two reading orders.

Fix k andn. LetWy = (s1,52,...,8nk,---,S,—1) be a parabolic subgroup & = &,,. Let W*
denote the set of minimal-length coset representativé®/df/,.. Recall that adescenbf a permutation
7 is a positionj such thatr(j) > 7(j + 1). ThenW* is the subset of permutations &f, which have at
most one descent; and that descent must be in positietk.

It follows from [11] and [10] that elements of W'* can be identified with partitions,, contained in a
k x (n— k) rectangle. More specifically, |€)* be the poset whose elements are the boxes:of &n — k)
rectangle; ifbt; andb, are two adjacent boxes such thais immediately to the left or immediately above
b1, we have a cover relatiol < b, in Q*. The partial order orf)” is the transitive closure of. Now
label the boxes of the rectangle with simple generatpras in the figure below. 16 is a box of the
rectangle, then let, denote its label by a simple generator. k€t € W* denote the longest element
in Wk. Then the set of reduced expressions/§fcan be obtained by choosing a linear extensio@bf
and writing down the corresponding word in thgs. We call such a linear extensionr@ading order
two linear extensions are shown in the figure below. Adddibn given a partition\ contained in the
k x (n — k) rectangle (chosen so that the upper-left corner of its Yaliagram is aligned with the upper-
left corner of the rectangle), and a linear extension of tieoset ofp* comprised of the boxes of,
the corresponding word isy’s is a reduced expression of a minimal length coset reptatessw ¢ WF.
The elementy € W* depends only on the partition, not the linear extension adinéduced expressions
of w can be obtained by varying the linear extension. Finalig, thrrespondence is a bijection between
partitions)\,, contained in thé: x (n — k) rectangle and elements € W*.

Definition 3.9. [6, Section 4] Fixk andn. Letw € W, letw be a reduced expression for, and letv be

a distinguished subexpressionwf Thenw andw determine a partitiom\,, contained in & x (n — k)
rectangle together with a reading order of its boxes. Bwdiagramassociated tor andw is a filling
of \,, with pluses and black and white stones, such that: for daeh.J{ we place a white stone in the
corresponding box; for each € J? we place a black stone in the corresponding boxgf and for each
k € J we place a plus in the corresponding box\qf.

Remark 3.10. By [6, Section 4], the Go-diagram associatedwand w does not depend ow, only
onw. Moreover, whether or not such a filling of a partitidn, is a Go-diagram does not depend on the
choice of reading order of the boxesXf.

Definition 3.11. We define thetandard reading ordef the boxes of a partition to be the reading order
which starts at the rightmost box in the bottom row, then gedgdht to left across the bottom row, then

right to left across the row above that, then right to left@&s the row above that, etc. This reading order
is illustrated at the right of the figure below.

By default, we will use the standard reading order in thisguap
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Example 3.12.Letk = 3 andn = 7, and letA = (4, 3,1). The standard reading order is shown at the
right of the figure below.

S4|83]|82|81 ‘ 817165
S5 | S4 | S3 4 2
S6 1

Then the following diagrams are Go-diagrams of shape

O|0|0|0O + OO+ ® +| +|O
O|0|0 +O|+ + OO
O O +

They correspond to the expressionSssysss15253S4, Slsallsassl, andlsssylsi11sy. The first and
second are positive distinguished subexpressions (P8id)the third one is a distinguished subexpres-
sion (but not a PDS).

Remark 3.13. The Go-diagrams associated to PDS's are in bijection witdiagrams, see [6, Section
4]. Note that the Go-diagram associated to a PDS containg phises and white stones. This is precisely
a I-diagram.

3.4 The main result

To state the main result, we now consider Go-diagrams (ftrary diagrams), the corresponding net-
works (Go-network}, and the corresponding weight matrices.

Definition 3.14. Let D be a Go-diagram contained infax (n — k) rectangle. We define a subset,

of the Grassmanniat¥ry, ,, by letting each variable,; of the weight matrix (Definition 3.3) range over
all nonzero element&*, and letting each variable; of the weight matrix range over all elemeris We
call Rp thenetwork component associatediio

We will not define the Deodhar decomposition of the Grassnaamibut refer to [2, 3, 8] for details.

Theorem 3.15.Let D be a Go-diagram contained infax (n — k) rectangle. Suppose that hast pluses
andu black stones. TheR p is isomorphic to the corresponding Deodhar component, arghiticular

is isomorphic to(K*)* x K*. Furthermore,Gry, ,, is the disjoint union of the network componeRts,
as D ranges over all Go-diagrams contained irka (n — k) rectangle. In other words, each point in the
Grassmanniariiry, ,, can be represented uniquely by a weighted network assddiaiz Go-diagram.

Corollary 3.16. Every matrix can be represented by a unique weighted netasskciated to a Go-
diagram.
4 A characterization of Deodhar components by minors

In this section we characterize Deodhar components in thegBrannian by a list of vanishing and non-
vanishing Plucker coordinates.
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Definition 4.1. [6, Definition 5.4] Letl = &,,, letw = s;, ...s;  be areduced expression farc W*
and chooser < w. This determines a Go-diagram of shape\ = \,,. Let] = I(\). Itis not hard to
checkthal = w{n,n—1,...,n —k+1}.

Letb be any box ofD. Note that the set of all boxes &f which are weakly southeast bfforms a
Young diagram\i; also the complement of" in \ is a Young diagram which we calp"t (see Example
4.2 below). By looking at the restriction of to the positions corresponding to boxes\§f, we obtained
a reduced expressiowi” for some permutation”, together with a distinguished subexpressigh for
some permutation®. Similarly, by using the positions corresponding to boXegt", we obtainedv{",
wp't, vout andup™. When the bok is understood, we will often omit the subscript

If b contains a+, definel, = v"(w™)~'7 € (). If b contains a white or black stone, define
Ib — vinsb(win)flj c ([Z])

Example 4.2. LetW = &7 andw = s455525354565551525354 be a reduced expression far ¢ W3,
Letv = s4s511s41s55111s4 be a distinguished subexpression. 8o= (3,5,6,7,1,2,4) andv =
(2,1,3,4,6,5,7). We can represent this data by the pasgtand the corresponding Go-diagram:

S4 |83 | S2 | S1 o _|_ + O
S5 | S4 | 83 | S2 o O _|_ _|_
56 | S5 | 54 + OO

Letb be the box of the Young diagram which is in the second row angebond column (counting from
left to right). Then the diagram below shows: the boxes'dfand \°“*; a reading order which puts the
boxes of\°"t after those of\i"; and the corresponding labeled Go-diagram. Using this fagdrder,

Wit = 5455525354, WOU' = 555551525354, VI = 54551154, andvoit = 1sgs;11sy.
out|out| out out 11109 | 8
out| in| in| in 7151413
out| in| in 6121

Theorem 4.3. Let D be a Go-diagram of shapecontained in & x (n — k) rectangle. Letd € Gry .
ThenA lies in the Deodhar componeAfis if and only if the following conditions are satisfied:

1. Ay, (A) = 0 for all boxes inD containing a white stone.

2. A, (A) # 0 for all boxes inD containing a+.

3. Az (4) #0.

4. A;(A) = 0for all k-subsets/ which are lexicographically smaller thah(\).

Corollary 4.4. The Deodhar decomposition of the Grassmannian is a coargenfithe matroid stratifi-
cation: in other words, each Deodhar component is a unionatfoid strata.
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Remark 4.5. Theorem 4.3 implicitly gives an algorithm for determinirng tDeodhar component and
corresponding network of a point of the Grassmannian, ghwea matrix representative or by a list of its
Plucker coordinates. The steps are as follows.

1. Find the lexicographically minimal nonzeroifeker coordinateA;. Then the Go-diagram has
shape\(7). Fix a reading order for this shape.

2. We determine how to fill each box, working in the readingegrds follows. First check whether
the boxb is forced to contain a black stone. If nétmust contain a white stone&;;) = 0, andb
must contain a plus iA; ;) # 0. This process will completely determine the Go-diagram.

3. Given the Go-diagram, we know the underlying graph of thigvark. To determine the weights
on horizontal edges, work in the reading order again. ThigcRér coordinated ;) will only use
edge weights; (whenb contains a+) or ¢, (whenb contains a black stone) and weights and
¢y corresponding to boxds which are earlier tharb in the reading order. Thus, we may use the
Lindstrom-Gessel-Viennot Lemma recursively to determine eadhivej or cy.
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