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Matroids over a ring
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Abstract. We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the
ground set an R-module according to some axioms. When R is a field, we recover matroids. When R = Z, and
when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids,
respectively. More generally, whenever R is a Dedekind domain, we extend the usual properties and operations
holding for matroids (e.g., duality), and we compute the Tutte-Grothendieck group of matroids over R.

Résumé. Nous introduisons la notion de matroı̈de M sur un anneau commutatif R, qui assigne à chaque partie
d’un ensemble E un R-module selon certains axiomes. Quand R est un corps, on retrouve les matroı̈des. Lorsque
R = Z, et lorsque R est un anneau de valuation discrète, nous obtenons (structures qui contiennent toutes les
données) respectivement des matroı̈des quasi-arithmétiques et des matroı̈des valués. En plus de généralité, quand R
est un anneau de Dedekind, nous étendons les propriétés et operations habituelles pour les matroı̈des (par exemple, la
dualité), et nous calculons le groupe de Tutte-Grothendieck des matroı̈des sur R.

Keywords: arithmetic matroids, valuated matroids, tropical flag variety, Dedekind domains, Tutte polynomial, Tutte-
Grothendieck group

1 Introduction
The notion of a matroid axiomatizes the linear algebra of a list of vectors. Matroid theory has proved
to be a versatile language to deal with many problems on the interfaces of combinatorics and algebra.
In the years since 1935, when Whitney first introduced matroids, a number of enriched variants thereof
have arisen, among them oriented matroids [2], valuated matroids [8], complex matroids [1], and (quasi-)
arithmetic matroids [13, 5]. Each of these structures retains some information about a vector configuration,
or an equivalent object, which is richer than the purely linear algebraic information that matroids retain.

As a running motivating example, let us focus on quasi-arithmetic matroids. A quasi-arithmetic matroid
endows a matroid with a multiplicity function, whose values (in the representable case) are the cardinal-
ities of certain finite abelian groups, namely, the torsion parts of the quotients of an ambient lattice Zn
by the sublattices spanned by subsets of vectors. From a list of vectors with integer coordinates one may
produce objects like a toric arrangement, a partition function, and a zonotope. In order to have a combina-
torial structure from which these objects may be read off, one needs to keep track of arithmetic properties
of the vectors, and this is what quasi-arithmetic matroids provide.
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It is natural to ask how well these generalizations of matroids can be unified under one framework. Such
a unification was sought by Dress in his program of matroids with coefficients, represented for example
in his work with Wenzel [8] wherein valuated matroids are matroids with coefficients in a “fuzzy ring”.

In the present paper we suggest a different approach to such unification, by defining the notion of a
matroid M over a commutative ring R. Such an M assigns, to every subset A of a ground set, a finitely
generated R-module M(A) according to some axioms (Definition 2.1). We find this definition to have
multiple agreeable features. For one, by building on the well-studied setting of modules over commutative
rings, we get a theory where the considerable power and development of commutative algebra can be
easily brought to bear. For another, unlike arithmetic and valuated matroids, a matroid over R is not
defined as a matroid decorated with extra data; there are only two axioms, and we suggest that they are
comparably simple to the matroid axioms themselves. In particular, a representable matroid over R is
precisely a vector configuration in a finitely generated R-module.

When R is a field, a matroid M over R is nothing but a matroid: the data M(A) is a vector space,
which contains only the information of its dimension, and this directly encodes the rank function of M .
When R = Z, every module M(A) is an abelian group, and by extracting its torsion subgroup we get a
quasi-arithmetic matroid. When R is a discrete valuation ring (DVR), we may similarly extract a valuated
matroid. More generally, whenever R is a Dedekind domain, we can extend the usual properties and
operations holding for matroids, such as duality.

The idea of matroids over rings was suggested by features of the theory of quasi-arithmetic matroids.
Some significant information about an integer vector configuration is not retained in the multiplicity func-
tion, as many finite abelian groups can have the same cardinality. Recording the whole structure of these
groups is desirable in several situations, for example, in developing a combinatorial intersection theory for
the arrangements of subtori arising as characteristic varieties. The properties of the multiplicity function
of a quasi-arithmetic matroid turn out to be just shadows of group-theoretic properties.

One of the most-loved invariants of matroids is their Tutte polynomial TM (x, y). It thus comes as no
surprise that the Tutte polynomial has been considered for generalizations of matroids as well. A quasi-
arithmetic matroid M̂ has an associated arithmetic Tutte polynomial MM̂ (x, y), which has proved to be
a useful tool in studying toric arrangements, partition functions, zonotopes, and graphs ([13, 7, 3]). More
strongly, the authors of [3] define a Tutte quasi-polynomial of an integer vector configuration, interpolating
between TM (x, y) and MM̂ (x, y), which is no longer an invariant of the quasi-arithmetic matroid (as it
depends on the groups, not just their cardinalities).

Among its properties, the Tutte polynomial of a classical matroid is the universal deletion-contraction
invariant. In more algebraic language, following [4], the class of a matroid in the Tutte-Grothendieck
group for deletion-contraction relations is exactly its Tutte polynomial. While the arithmetic Tutte poly-
nomial and Tutte quasi-polynomial are deletion-contraction invariants, neither is universal for this prop-
erty. Our generalization of the Tutte polynomial for matroids over a Dedekind ring R is also the class in
the Tutte-Grothendieck group, so it retains the universality of the usual Tutte polynomial, and we obtain
the two generalizations of Tutte just mentioned as evaluations of it.

This paper is organized as follows. In Section 2 we give the basic definitions for matroids over a
commutative ring, including representability, and we explain how they generalize the classical ones.

We introduce the assumption that R is a Dedekind domain, and do some groundwork, in Section 3.
This assumption on R remains for the most part in force from this section onward. Its first application
comes in Section 4, where we establish the existence and the properties of the dual of a matroid over a
Dedekind domain R.
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In Section 5 we develop the local theory, with a structure theorem for matroids over a DVR. We show
connections with the Hall algebra and with the tropical Plücker relations for the flag variety. Finally, we
describe how to recover valuated matroids.

The global theory is developed in Section 6. We describe the structure of a matroid over a Dedekind
ring R in terms of the structure of all its localizations (completely described in the previous section) plus
some global information coming from the Picard group of R . This also explains the connection between
matroids over Z and quasi-arithmetic matroids.

Finally, in Section 7 we compute the Tutte-Grothendieck group. In particular, given a matroid over Z,
we present its Tutte quasi-polynomial as an evaluation of its class in K(Z-Mat).

This paper is an extended abstract of the article [10], to which the interested reader is suggested to refer
for many details and for all the proofs, which are omitted here.

2 Matroids over a ring
By R-Mod we mean the category of finitely generated R-modules over a commutative ring R. We write
“f.g.” for “finitely generated” throughout.

Definition 2.1 Let R be a commutative ring. A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A) satisfying the following axioms:

(M1) For any A ⊆ E and b ∈ E \ A, there exists a surjection M(A) � M(A ∪ {b}) whose kernel is a
cyclic submodule of M(A).

(M2) For any A ⊆ E and b 6= c ∈ E \A, there exists a pushout

M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

where all four morphisms are surjections with cyclic kernel.

Polymatroids can be defined similarly (see [10, Definition 2.2]). Clearly, Axiom (M1) is redundant if
|E| ≥ 2, and the choice of the modules M(A) is only relevant up to isomorphism. For concision, we will
hereafter let M(Ab) abbreviate M(A ∪ {b}), M(Abc) stand for M(A ∪ {b, c}), and so forth.

The fundamental way of producing matroids over R is from vector configurations in an R-module.
Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N , the matroid MX of X associates
to the sublist A of X the quotient

MX(A) = N
/(∑

x∈A
Rx

)
. (2.1)

For each x ∈ X there is a quotient map from MX(A) to MX(A∪{x}), which quotients out by the image
of Rx in MX(A); this system of maps satisfies axioms (M1) and (M2).

The following definition captures this concisely. Let B(E) be the category of the Boolean poset of
subsets of E, where inclusions of sets are the morphisms.
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Definition 2.2 A matroid M over R is representable (or realizable) if it is the map on objects of some
functor F : B(E) → R-Mod, and axioms (M1) and (M2) are satisfied by choosing the morphisms
F (A→ Ab). A representation (or realization) of M is a choice of such an F .

So MX is a representable matroid, and X gives a representation thereof. We have chosen to cast
Definition 2.2 as we did, as opposed to in a more down-to-earth way involving MX , to emphasize the
way in which a representable matroid is a matroid. A representation of a matroid over R is a functor
from B(E), with both objects and morphisms having images. A general matroid over R is what is gotten
by retaining only the objects as data, discarding the morphisms and merely requiring that they can be
resupplied to look like a represented matroid over R in any square of covering relations in B(E).

Fact 2.3 If a matroid M over R is representable, corresponding to the functor F , then it is the matroid
MX of a vector configuration (N,X = {xa}), whereN is F (∅), and xa is a generator of kerF (∅ → {a})
for each a ∈ E. Indeed, in this above setting, the pushout axiom (M2) applied to F guarantees that
equation (2.1) holds for all A ⊆ E.

Our having chosen to call these objects “matroids over R” is appropriate, as they are a generalization
of matroids in the classical sense, as we show in Proposition 2.5. There is one hitch in the equivalence,
corresponding to the ability to choose a vector configuration that does not span its ambient space. Ac-
cordingly, let us say that a matroid M over R is full-rank if no nontrivial projective module is a direct
summand of M(E). Lemma 2.4 shows that very little is lost in restricting to full-rank matroids.

Before getting there we must generalize some standard operations on matroids. Let M and M ′ be
matroids over R on respective ground sets E and E′. We define their direct sum M ⊕M ′ on the ground
set E q E′ by

(M ⊕M ′)(AqA′) = M(A)⊕M ′(A′).

If i is an element of E, we define two matroids over R on the ground set E \ {i}: the deletion of i in M ,
denoted M \ i, by

(M \ i)(A) = M(A)

and the contraction of i in M , denoted M \ i, by

(M/i)(A) = M(A ∪ {i}).

It is easily seen that the class of representable matroids is closed under minors and direct sums.
If N is an R-module, let the empty matroid for N be the matroid over R on the ground set ∅ which

maps ∅ to N . By a projective empty matroid we mean an empty matroid for a projective module.

Lemma 2.4 Every matroid M over R is the direct sum of a full-rank matroid over R and a projective
empty matroid.

Recall that the corank cork(A) of a setA in a classical matroid is equal to rk(E)−rk(A), where rk(E)
is the rank of the matroid.

Proposition 2.5 Let K be a field. Full-rank matroids M over K are equivalent to (classical) matroids.
If M is a full-rank matroid over K, then dimM(A) is the corank of A in the corresponding classical
matroid. Furthermore, a matroid over K is representable if and only if, as a classical matroid, it is
representable over K.
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The proof of this fact is simple, and relies on the fact that finitely generated modules over K are the
finite-dimensional K-vector spaces, which are completely classified up to isomorphism by dimension. So
we may replace M(A) by its K-dimension without losing information.

Let R → S be a map of rings. Then every matroid over S is naturally also a matroid over R. Further-
more, given such a map R → S, the tensor product — ⊗R S is a functor R-Mod → S-Mod. One can
use this to perform base change of matroids over R. If M is a matroid over R, define M ⊗R S be the
composition of M with —⊗R S, so that for every A

(M ⊗R S)(A) = M(A)⊗R S.

Proposition 2.6 If M is a matroid over R, then M ⊗R S is a matroid over S.

Two special cases of this construction will be of fundamental importance for our theory.

1. For every prime ideal m of R, let Rm be the localization of R at m. We call Mm
.
= M ⊗R Rm the

localization of M at m.

2. If R is an integral domain, let Frac(R) be the fraction field of R. Then we call Mgen
.
= M ⊗R

Frac(R) the generic matroid of M .

Our approach will be much based on studying the matroid M via these localizations.
Notice that every matroid over Rm induces a matroid over the residue field Rm/(m); the latter, as well

as Mgen, is by Proposition 2.5 equivalent to a classical matroid (except that it may be not full-rank).

3 Dedekind domains
In several ways, Definition 2.1 yields a theory best parallelling the theory of classical matroids just when
R is a Dedekind domain. The reason for that is explained in [10, Lemma 3.1 and Example 3.2].

We next recall some structural results about modules over a Dedekind domain R. Given an R-module
N , let Ntors ⊆ N denote the submodule of its torsion elements, and Nproj denote the projective module
N/Ntors. Then N is the direct sum of Ntors and of a projective module isomorphic to Nproj. We recall
the following fact.

Proposition 3.1 [9, exercises 19.4–6] Every torsion R-module may be written uniquely up to isomor-
phism as a sum of submodules R/mk for m a maximal prime of R and k ∈ Z>0.

Every nonzero projective R-module is uniquely isomorphic to Rh ⊕ I for some h ≥ 0 and nonzero
ideal I , up to differing isomorphic choices of I . For ideals I and J , we have I ⊕ J ∼= R⊕ (I ⊗ J).

We recall the following definitions. The Picard group of R, Pic(R), is the set of the isomorphism
classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a
projective module of rank n, the exterior algebra ΛnP is a f.g. projective module of rank

(
n
n

)
= 1. We

call determinant, and denote by det(P ), its class in Pic(R).
We will also find useful a description of the algebraic K-theory group K0(R) of f.g. R-modules:

that is, the abelian group generated by isomorphism classes [N ] of f.g. R-modules, modulo the relations
[N ] = [N ′] + [N ′′] for any exact sequence

0→ N ′ → N → N ′′ → 0.
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Proposition 3.2 There is an isomorphism of groups

Φ : K0(R) −→ Z⊕ Pic(R).

In fact, when P is a projective module, the map above is simply given by Φ([P ]) = (rk(P ),det(P )).
In virtue of the isomorphism above, from now on we will denote by det(N) the class of any f.g. R-

module N in the Picard group, i.e. the second summand of Φ([N ]). In the same way, by rk(N) we
denote the first summand of Φ([N ]): this coincides with the rank of Nproj, i.e. with the dimension of
N ⊗ Frac(R).

Note in particular that Φ extends the usual map from invertible ideals to Pic(R).
The potential nontriviality of this summand Pic(R) ⊆ K0(R) has global consequences for matroids

over R: see Proposition 4.3 below.

4 Duality for matroids over Dedekind domains
In this section R will be a Dedekind domain. Let M be a matroid over R, on ground set E. Fix a free
module F that surjects on M(∅). For any A ⊆ E and maximal flag of subsets ∅ = A0 ( A1 ( · · · (
A|A| = A, we obtain a composite surjection

F →M(∅)→M(A1)→ · · · →M(A).

Using the horseshoe lemma, we may assemble minimal projective resolutions of each step of this compo-
sition into a projective resolution of F/M(A), yielding a projective resolution

P (A)• : 0→ P2(A)→ P1(A)
d1→ F →M(A)→ 0

of M(A). As usual, we write ∨ for the contravariant functor Hom(—, R).

Definition 4.1 Define the module M∗(E \A) as the cokernel of the map dual to d1 in P (A)•, that is

M∗(E \A)
.
= coker

(
F∨

d∨1−→ P1(A)∨
)
.

This is well-defined ([10, Lemma 4.2]). We define M∗, the dual matroid over R to M , to be the collection
of these modules M∗(E \A).

Theorem 4.2 If R is a Dedekind domain, and M is a matroid over R, then its dual M∗ is a full-rank ma-
troid over R. Furthermore, M is the direct sum of M∗∗ and the projective empty matroid for M(E)proj;
in particular, if M is full-rank, M∗∗ = M .

If M is representable, also M∗ is.

The last statement above gives a generalization of the classical Gale duality of vector configurations.
Furthermore, duality of matroids over rings is well-behaved with respect to deletion, contraction, direct

sums, and tensor products, as shown in [10, Proposition 4.9].

Proposition 4.3 Let M be a matroid over R. The element

det(M)
.
= det(M(A)proj) + det(M∗(E \A)proj) + det(M(A)tors)

of Pic(R) is independent of the choice of A ⊆ E.
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5 Structure of matroids over a DVR
In this section and the next we record some structure theorems for matroids over R in terms of structure
theorems for the modules over R themselves. Our analysis of general Dedekind domains in the next
section will make much use of base changing to localizations of R, so we begin here with the local case.

For the whole of this section, R will be a DVR with maximal ideal m. We first recall the structure
theory of f.g.R-modules: any indecomposible f.g.R-module is isomorphic to eitherR orR/mn for some
integer n ≥ 1. We will sometimes formally subsume R into the latter family by writing it as R/m∞. So,
if N is a f.g. R-module and i ≥ 1 is an integer, define

di(N)
.
= dimR/m(mi−1N/miN),

and d≤i(N)
.
=
∑i
j=1 dj(N), and for convenience di(N) = d≤i(N) = 0 if i ≤ 0. Let d•(N) denote the

infinite sequence of these. We have

di(R/m
n) =

{
1 0 < i ≤ n
0 i > n

,

where n may be∞. The following is a quick consequence.

Proposition 5.1 Isomorphism types of f.g. R-modules are in bijection with nonincreasing infinite se-
quences d• of nonnegative integers indexed by positive integers, the bijection being given by

N ←→ d•(N).

This bijection permits a straightforward identification of those isomorphism classes of modules which
permit maps satisfying axioms (M1) and (M2).

Theorem 5.2 Let N and N ′ be f.g. R-modules. There exists a surjection φ : N → N ′ with cyclic kernel
if and only if

(L1) for each n ≥ 1,
dn(N)− dn(N ′) ∈ {0, 1}.

Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four surjections with cyclic kernels
forming a pushout square

M(∅)

y

φ //

ψ

��

M(1)

ψ′

��
M(2)

φ′
// M(12)

if and only if (L1) is satisfied for each pair M(A),M(Ab), and moreover

(L2a) for each n ≥ 1,

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2)) + d≤n(M(12)) ≥ 0;
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(L2b) for any n ≥ 1 such that dn(M(1)) 6= dn(M(2)), equality holds above:

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2)) + d≤n(M(12)) = 0.

Condition (L2a) asserts that A 7→ −d≤n(M(A)) is a submodular function.
In the case that N and N ′ have finite length, condition (L1) follows from facts about the Hall algebra

[11]. Indeed, it is equivalent that N have finite length and that di(N) stabilize to 0 for i � 0. In this
case di is a partition, and its conjugate partition is the one usually used to label N . For a cyclic module,
this conjugate partition has a single row. Then, under the specialization taking the Hall polynomials to the
Littlewood-Richardson coefficients, condition (L1) is a consequence of the Pieri rule.

The structure of matroids over R in fact has interesting tropical-geometric import (for background on
tropical geometry, see [12]). The first inkling of this is in three-element matroids:

Proposition 5.3 Let M be a matroid over R on the ground set [3], and let n be a natural or ∞. Then,
among the three quantities

d≤n(M(1)) + d≤n(M(23)), d≤n(M(2)) + d≤n(M(13)), d≤n(M(3)) + d≤n(M(12)),

the minimum is achieved at least twice.

Let M be a matroid over R with ground set E. For A ⊆ E, define pA to be d≤n(M(A)). Proposi-
tion 5.3 applied to the 3-element minors of M can be taken to say that the tropicalizations of the relations

pAbpAcd − pAcpAbd + pAdpAbc = 0 (5.1)

hold of the numbers p•, where we continue abbreviating A ∪ {b, c} as Abc and similarly.
The relations (5.1) are among the Plücker relations for the full flag variety (of type A). We can show

[10, Proposition 5.6] that the p• satisfy some of the other Plücker relations, which imply that for every r
the point (pA : |A| = r) lies on the Dressian Dr(r, n). The Dressian is one Grassmannian-like space in
tropical geometry: it is the parameter space for tropical linear spaces. That is, there is a tropical linear
space determined by (pA : |A| = r). Corollary 5.4 follows.

Corollary 5.4 Let M be a matroid over a DVR (R,m). Then the function A 7→ dimR/mM(A) makes
the generic matroid of M into a valuated matroid, in the sense of Dress and Wenzel [8].

To be precise, our sign convention is the opposite of the one adopted in [8]; for perfect agreement we
would have to negate this function. But our sign convention is frequently adopted in tropical geometry.

Conjecture 5.5 The collection of the pA satisfies every tropical Plücker relation, i.e. gives a point on the
Dressian analogue of the tropical full flag variety.

We expect that Conjecture 5.5 follows directly from Proposition 5.3, and needs no further matroidal
arguments. The main obstruction to proving 5.5 seems to be only that the tropical full flag variety has
been little studied.
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6 Global structure of matroids over a Dedekind domain
Throughout this section R will be a Dedekind domain. Let us recall that given a R-module N , by det(N)
we will denote its class in the Picard group Pic(R), as defined in Section 3. The next Theorem gives a
complete characterization of the structure of matroids over R, in terms of their localizations for which we
have Theorem 5.2.

Theorem 6.1 Let N and N ′ be f.g. R-modules. There exists a surjection N → N ′ with cyclic kernel if
and only if there exists such a surjection Nm → N ′m after localizing at each maximal prime m of R, and

• if rk(N)− rk(N ′) = 0 then det(Nproj) = det(N ′proj), whereas

• if rk(N)− rk(N ′) = 1 then det(N) = det(N ′).

Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four surjections with cyclic kernels
forming a pushout square

M(∅)

y
//

��

M(1)

��
M(2) // M(12)

if and only if the same is true after localizing at each maximal prime m, and the above conditions on
classes are true of each (N,N ′) = (M(A),M(Ab)).

6.1 Quasi-arithmetic matroids
If M is a matroid over Z, then we can define a corank function of M as the corank function of the generic
matroid M ⊗Z Q described above, that is cork(A) = rkZ(M(A)proj).

As before, we let M(A)tors denote the torsion submodule (subgroup, in this case) of M(A). Then we
define

m(A)
.
= |M(A)tors|.

Corollary 6.2 The triple (E, cork,m) is a quasi-arithmetic matroid, i.e (E, cork) defines a matroid, and
m satisfies the following properties:

(A1) Let be A ⊆ E and b ∈ E; if b is dependent on A, then m(A∪ {b}) divides m(A); otherwise m(A)
divides m(A ∪ {b});

(A2b) if A ⊆ B ⊆ E and B is a disjoint union B = A ∪ F ∪ T such that for all A ⊆ C ⊆ B we have
rk(C) = rk(A) + |C ∩ F |, then

m(A) ·m(B) = m(A ∪ F ) ·m(A ∪ T ).

Furthermore it satisfies the following property:

(A2a) if A,B ⊆ E and rk(A ∪ B) + rk(A ∩ B) = rk(A) + rk(B), then m(A) ·m(B) divides m(A ∪
B) ·m(A ∩B)
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In fact properties (A1), (A2a), (A2b) follow from (L1), (L2a), (L2b) respectively. This corollary estab-
lishes that matroids over Z recover many of the essential features of the second author’s theory of arith-
metic matroids from [5]. To be precise, the objects we have recaptured are quasi-arithmetic matroids: see
[10, Remark 6.4]. In fact the two objects are not truly equivalent, in that the information contained in
matroids over Z is richer, because there are many finite abelian groups with the same cardinality.

7 The Tutte-Grothendieck group
In this section we continue to let R be a Dedekind domain. All matroids over R in this section are full-
rank. As we defined the operations of deletion and contraction in Section 2, any element may be deleted
or contracted. However, suppose a ∈ E is a (generic) coloop of a matroid M over R, that is a coloop of
the generic matroid, equivalently an element such that M(E \ {a}) has a nontrivial projective summand.
In this case, M \ a is not full-rank. The dual of this situation is the case where a is a (generic) loop, i.e. a
loop of the generic matroid, and one contracts a.

Essentially following Brylawski [4], define the Tutte-Grothendieck group of matroids overR, which we
here denote K(R-Mat), to be the abelian group generated by a symbol TM for each unlabelled full-rank
matroid M over R with nonempty ground set, modulo the relations

TM = TM\a + TM/a

whenever a is not a generic loop or coloop (so that we avoid the above situations). We have omitted empty
matroids for technical reasons, though they cause no essential problem; the interested reader can refer to
[10, Remark 7.2]. By “unlabelled”, we mean that we consider two matroids M and M ′ over R to be
identical if there is a bijection σ : E

∼→ E′ of their ground sets such that M(A) ∼= M ′(σ(A)) for each
subset A of E.

The ring K(R-Mat) turns out to be best understood in terms of the monoid ring of the monoid of R-
modules under direct sum, as in Theorem 7.1 below. Define Z[R-Mod] to be the ring with a Z-linear
basis {uN} with an element uN for each f.g. R-module N up to isomorphism, and product given by
uNuN

′
= uN⊕N

′
.

Theorem 7.1 The Tutte-Grothendieck group K(R-Mat) is a ring without unity, with product given by
TM ·TM ′ = TM⊕M ′ . As a ring it injects into Z[R-Mod]⊗Z[R-Mod], and under this injection, the class
of M maps to

TM =
∑
A⊆E

XM(A)YM
∗(E\A), (7.1)

where {XN} and {Y N} are the respective bases of the two tensor factors Z[R-Mod].
If we include empty matroids, the ring K(R-Mat) is the subring of Z[R-Mod]⊗Z[R-Mod] generated by

XP and Y P as P ranges over rank 1 projective modules, and (XY )N asN ranges over torsion modules.

Here (XY )N abbreviates XNY N . We immediately compare Theorem 7.1 with the case of matroids
over a field, where the Tutte-Grothendieck invariant is the familiar Tutte polynomial TM . If R is a field,
then Z[R-Mod] is the univariate polynomial ring Z[u], and then Z[R-Mod]⊗Z[R-Mod] is, appropriately,
a bivariate polynomial ring. If we call the generators of the two tensor factors x− 1 and y− 1 rather than
X and Y , then equation (7.1) in fact gives the classical Tutte polynomial, since dimM(A) is the corank
of A and dimM∗(E \A) is its nullity.



Matroids over a ring 199

Since decomposing a matroid M over a ring into M \ i and M/i is not a unique decomposition in the
sense of [4], and the irreducibles for direct sum are not all single-element matroids, Theorem 7.1 does not
follow directly from the bidecomposition methods of [4].

7.1 Arithmetic Tutte polynomial and quasi-polynomial
In this subsection, M is a matroid over Z. We show that the arithmetic Tutte polynomial of its asso-
ciated quasi-arithmetic matroid M̂ , and its Tutte quasi-polynomial, are each images of TM under ring
homomorphisms. When R = Z, the Picard group is trivial, and

TM =
∑
A⊆E

(XR)corkM (A)(Y R)nullityM (A)(XY )M(A)tors .

where we use the notation nullityM (A) = corkM∗(E \A) = dimM∗(E \A).
We may define a specialization of TM by specializing XR to (x − 1), Y R to (y − 1), and (XY )N to

the cardinality of N for each torsion module N . This specialization is the arithmetic Tutte polynomial
MM̂ (x, y) of the quasi-arithmetic matroid M̂ defined by M :

MM̂ (x, y) =
∑
A⊆E

m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

This polynomial proved to have several applications to toric arrangements, partition functions, zonotopes,
and graphs with labeled edges (see [13, 6, 5]). Notice that an ordinary matroid M̃ can be trivially made
into an arithmetic matroid M̂ by setting all the multiplicities to be equal to 1, and then MM̂ (x, y) is
nothing but the classical Tutte polynomial TM̃ (x, y).

The polynomial MM̂ (x, y) is not the universal deletion-contraction invariant of M̂ : for instance, the or-
dinary Tutte polynomial TM̃ (x, y) of the matroid M̃ obtained from M̂ by forgetting of its arithmetic data
is also a deletion-contraction invariant of M̂ , which is not determined by MM̂ (x, y). This led the authors
of [3] to define a Tutte quasi-polynomial QM (x, y), interpolating between TM̃ (x, y) and MM̂ (x, y). This
invariant is stronger, but still not universal, and more importantly, it is not an invariant of the arithmetic
matroid, as it depends on the groups M(A)tors and not just on their cardinalities. In fact QM (x, y) is an
invariant of the matroid over Z, and we show explicitly how to compute it from the universal invariant.

For every positive integer q, let us define a function Vq as Vq((XY )Z/p
k

) = 1 if pk divides q, while
Vq((XY )Z/p

k

) = pk−j if pk does not divide q and j ≥ 0 is the largest integer such that pj divides q. We
will extend this to define Vq((XY )N ) multiplicatively for any torsion abelian group N . Then we define a
specialization of TM to the ring of quasipolynomials by specializing XR to (x− 1), Y R to (y − 1), and
(XY )N to V(x−1)(y−1)((XY )N ). This gives

QM (x, y) =
∑
A⊆E

|M(A)tors|
|(x− 1)(y − 1)M(A)tors|

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

Since (q+ |G|)G = qG holds for any finite group G, it follows that QM (x, y) is a quasi-polynomial in
q = (x− 1)(y − 1). In particular, when |M(A)tors| divides (x− 1)(y − 1), then the group (x− 1)(y −
1)M(A)tors is trivial and QM (x, y) coincides with MM̂ (x, y); while when |M(A)tors| is coprime with
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(x − 1)(y − 1), then QM (x, y) coincides with TM̃ (x, y). Then in some sense QM (x, y) interpolates
between the two polynomials.

Notice that while MM̂ and TM̃ (x, y) only depend on the induced quasi-arithmetic matroid M̂ , TM

and QM (x, y) are indeed invariants of the matroid over Z, M . Also the chromatic quasi-polynomial and
the flow quasi-polynomial defined in [3] are actually invariants of the matroid over Z: by [3, Theorem 9.1]
they are specializations of QM (x, y), and hence of the universal invariant TM .
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