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The module of affine descent classes of a
Weyl group
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Abstract. The goal of this paper is to introduce an algebraic structure on the space spanned by affine descent classes
of a Weyl group, by analogy and in relation to the structure carried by ordinary descent classes. The latter classes span
a subalgebra of the group algebra, Solomon’s descent algebra. We show that the former span a left module over this
algebra. The structure is obtained from geometric considerations involving hyperplane arrangements. We provide a
combinatorial model for the case of the symmetric group.

Résumé. Le but de cet article est d’introduire une structure algébrique sur l’espace engendré par les classes de de-
scente affines d’un groupe de Weyl, par rapport à l’ structure possédé par les classes de descente finies. Ces dernières
engendrent une sous-algèbre de l’algèbre de groupe, l’algèbre de Solomon. Nous montrons que les premières en-
gendrent un module à gauche sur cette algèbre. La structure est obtenue par moyens géométriques impliquant des
arrangements d’hyperplans. Un modèle combinatoire est fourni pour le cas du groupe symétrique.

Keywords: Weyl group, Coxeter complex, hyperplane arrangement, Tits product, Solomon’s descent algebra, Stein-
berg torus

1 Introduction
LetW be a finite Coxeter group with simple reflections S = {s1, . . . , sn} and corresponding simple roots
∆ = {α1, . . . , αn}. For w ∈W , let D(w) denote the set of right descents of w, i.e.,

D(w) = {1 ≤ i ≤ n : `(w) > `(wsi)} = {1 ≤ i ≤ n : wαi < 0}.

For any J ⊆ [n] := {1, 2, . . . , n}, let

xJ :=
∑

D(w)⊆J

w

denote the sum, in the group ring ZW , of all elements ofW whose descent set is contained in J . As J runs
over the subsets of [n], the elements xJ span a subring of ZW , denoted Sol(W ), and called Solomon’s
descent algebra (or ring).
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The descent algebra was introduced by Solomon [22] and has been the object of many subsequent
works including [2, 3, 4, 5, 7, 9, 12, 13, 15, 17, 20].

The purpose of this paper is to describe a certain left module over Solomon’s descent ring. This module
is defined in terms of affine descent sets, a notion introduced by Cellini [9], and further studied in [10, 11,
18]. This is reviewed next.

We assume that the finite Coxeter group W is irreducible and crystallographic [14]. In this case, there
is a unique highest root α̃ and a corresponding affine Coxeter group W̃ generated by W and the affine
reflection through this highest root (see Section 2.2). Let α0 = −α̃. By analogy with ordinary descent
sets, the affine descent set, D̃(w), of an element w ∈W , is defined as follows:

D̃(w) = {0 ≤ i ≤ n : wαi < 0}.

Thus, D(w) ⊆ D̃(w), and the only difference occurs when w does not take α0 to a positive root. Notice
that every element has at least one affine descent, and no element can have more than n affine descents.

We emphasize that although the construction of the affine descent module (in Section 3) relies heavily
on features of the affine group W̃ , the set D̃(w) is defined only for elements w of the finite Coxeter group
W , and not for general elements of W̃ .

For any proper nonempty subset J of [n] := {0, 1, . . . , n}, let

xJ :=
∑

D̃(w)⊆J

w.

While the elements xJ do not span a subring of ZW , we show that they span a left module over Sol(W ).
We remark that Cellini showed that the elements

∑
|J|=k xJ , as k runs from 1 to n, do span a subring (in

fact, a commutative nonunital subring) of ZW .
We follow the geometric approach of Tits (in his appendix to Solomon’s paper [22]), as developed

by Bidigare [6] and Brown [8, Section 4.8]. These works relate the algebraic structure of Sol(W ) to the
geometric structure of the Coxeter complex. Specifically, the elements xJ correspond toW -orbits of faces
in the Coxeter complex. Work of Dilks, Petersen, and Stembridge [10] shows that the xJ correspond to
W -orbits in the Steinberg torus, an object obtained by taking the quotient of the affine Coxeter complex
by the co-root lattice.

Here we show that the faces of the Coxeter complex act on the faces of the affine Coxeter complex, and
that this action passes through the quotient to an action on the Steinberg torus.

The action on affine faces admits a simple geometric description. An affine hyperplane arrangement
splits the ambient space into a set of faces. The hyperplane at infinity is similarly decomposed into a set
of faces. The latter set is a monoid under the Tits product and the former a right module over it. In the
case of the affine arrangement of W , the faces at infinity constitute the Coxeter complex, affine faces are
acted upon by co-root translations, and the quotient by this action is the set the faces of the Steinberg
torus. It follows that the set of faces of the Steinberg torus is a right module over the Coxeter complex.
The structure is equivariant with respect to the Weyl group, and we may consider the induced structure on
orbits. This results in the left module structure of affine descent classes over Solomon’s descent ring.

Section 2 describes these geometric aspects, providing background on both finite and affine Coxeter
complexes and how they can both be viewed inside the closure of the Tits cone. We discuss the Steinberg
torus as well, and give combinatorial models for faces of all these complexes in TypeAn−1. (For the affine
Coxeter complex and the Steinberg torus, this model appears to be new.) Section 3 relates the geometric
actions to the module structures.
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We thank the referees for pointing out the work of Moszkowski concerning modules over Solomon’s
descent algebra [16]. We plan to explore possible connections to this work and also to that of Saliola [19,
21] in the future. This extended abstract is a condensed version of a longer article; many details and most
of the proofs have been omitted.

2 Products of faces in the Tits cone
LetW be a finite Coxeter group with a crystallographic root system Φ embedded in a real Euclidean space
V with inner product 〈· , ·〉. (SoW is a Weyl group.) For any root β ∈ Φ, letHβ := {λ ∈ V : 〈λ, β〉 = 0}
be the hyperplane orthogonal to β and let sβ denote the orthogonal reflection through Hβ . If we fix a set
of simple roots ∆ = {α1, . . . , αn} ⊂ Φ, then S = {s1, . . . , sn} denotes the corresponding set of simple
reflections.

Having fixed a choice of simple roots, every root β either belongs to the nonnegative span of the
simple roots and is designated positive, or else belongs to the nonpositive span of the simple roots and is
designated negative. We write β > 0 or β < 0 accordingly. Let Π = {β ∈ Φ : β > 0} denote the set of
positive roots.

2.1 The finite Coxeter complex
The set of hyperplanes H(Φ) := {Hβ : β ∈ Π} is the Coxeter arrangement associated to Φ (we take
β > 0 for convenience since Hβ = H−β). A face F of the arrangement is any subset of V obtained
by choosing, for each β ∈ Π, either the hyperplane Hβ or one of the open half-spaces it bounds, and
intersecting all these sets. A face F is determined by its sign vector:

σ(F ) = (σβ(F ))β∈Π,

where if λ is any point in F , σβ(F ) = +,−, or 0, according to whether 〈λ, β〉 is positive, negative, or
zero. Let Σ be the set of faces ofH(Φ).

We partially order Σ by inclusion of the face closures, i.e., F ≤ G⇔ F ⊆ G. This partial order gives
Σ a structure isomorphic to the Coxeter complex of W , defined abstractly as the set of cosets of parabolic
subgroups of W , ordered by reverse inclusion.

There is a monoid structure on the faces of the Coxeter arrangement, given geometrically as follows.
For two faces F and G in Σ, their product FG is the first face of Σ entered upon traveling a small positive
distance on a straight line from a point of F to a point in G. See Figure 1. This product is associative and
admits the following characterization in terms of sign vectors [1, Proposition 2.82]:

σβ(FG) =

{
σβ(F ) if σβ(F ) 6= 0,

σβ(G) if σβ(F ) = 0.
(1)

An alternative characterization of the faces of the Coxeter complex is given in terms of the action of the
group W on Σ. The choice of simple roots ∆ is equivalent to designating a dominant chamber, namely:

C∅ := {λ ∈ V : 〈λ, α〉 > 0 for all α ∈ ∆}.

This is the unique face with sign vector (+,+, . . .). The closure of the dominant chamber is a fundamental
domain for the action of W on V , and thus every face has the form wCJ , where w ∈W , J ⊆ [n], and

CJ := {λ ∈ V : 〈λ, αj〉 = 0 for j ∈ J, 〈λ, αj〉 > 0 for j ∈ [n]− J}.

The set J is uniquely determined by the face, but in general the element w is not.
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The rays (1-dimensional faces) have the form wCJ where J = [n]−{j} for some j. If we assign color
j to all such rays, we obtain a balanced coloring of Σ; i.e., every maximal face (chamber) has exactly one
vertex (extreme ray) of each color. We see that in general a face wCJ has color set Jc = [n]− J .

For a positive root β and λ ∈ CJ , we have 〈wλ, β〉 = 〈λ,w−1β〉, so we can characterize sign vectors
as follows:

σβ(wCJ) =


0 if w−1β ∈ Span{αj : j ∈ J}
+ if w−1β ∈ Π− Span{αj : j ∈ J}
− if − w−1β ∈ Π− Span{αj : j ∈ J}.

In particular, notice that if wαi = −β < 0, i.e., if i is a descent of w, then w−1β = −αi and we
have 〈λ,−αi〉 ≤ 0. Thus the descents of w are encoded among the zeroes and minus signs of σ(wCJ).
Conversely, if σwαi(wCJ) = +, then i cannot be a descent of w.

As seen from (1), the product of a face F with a chamber C always results in another chamber (none
of the entries are zero), the Tits projection of F onto C.

In particular, we can characterize projections onto the fundamental chamber as follows. Since the
fundamental chamber has sign vector σ(C∅) = (+,+, . . .), Equation (1) gives:

σβ(FC∅) =

{
σβ(F ) if σβ(F ) 6= 0,

+ if σβ(F ) = 0.

Let wF denote the unique element of W such that wFC∅ = FC∅. Since + signs cannot correspond to
descents, we have the following.

Proposition 2.1 For any face F of Σ, D(wF ) ⊆ col(F ). Moreover, for any w ∈ W and any J with
D(w) ⊆ J ⊆ [n], there is a J-colored face F such that w = wF .

There is a well-known combinatorial model for the Coxeter complex of Type An−1; see Figure 1. The
faces are encoded with set compositions of [n], i.e., set partitions with a linear order on the set of blocks.
The partial order on faces is given by refinement. The product of two faces is given by refining the first
set composition according to the second. For example, 3567|4|12 · 26|35|17|4 = 6|35|7|4|2|1, where the
blocks are separated by bars and the set of blocks is ordered from left to right.

123

13|2

2|13

3|12 12|3

23|1

1|23 1|2|3

2|1|3

3|1|2

3|2|1

1|3|2

2|3|1

•

•

Fig. 1: The product of faces in the Coxeter arrangement of type A2: 12|3 · 23|1 = 2|1|3.

The color of a face corresponds to the positions of the vertical bars, and the element wF is the per-
mutation obtained by writing the elements of the blocks in increasing order and removing the bars. For
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example, if F = 3|4|156|2, col(F ) = {1, 2, 5}, and wF = 341562. Since the elements of the blocks are
written in increasing order, descents can only occur between blocks, i.e., in the locations of the bars.

2.2 The affine Coxeter complex
The affine Weyl group W̃ is generated by reflections sβ,k through the affine hyperplanes

Hβ,k := {λ ∈ V : 〈λ, β〉 = k} (β ∈ Φ, k ∈ Z).

Alternatively, one may construct W̃ as the semidirect product W n ZΦ∨, where ZΦ∨ denotes the lattice
generated by all co-roots β∨ = 2β/〈β, β〉 (β ∈ Φ). The action of W̃ on V extends the action of W by
linear reflections and the action of ZΦ∨ by translations.

Suppose from now on that Φ is irreducible. Then it has a unique highest root α̃, and it is well-known
that W̃ is generated by S̃ := S ∪ {sα̃,1} and that (W̃ , S̃) is an irreducible Coxeter system.

The affine Coxeter arrangement is

H̃(Φ) := {Hβ,k : β ∈ Π, k ∈ Z}.

The set of faces of H̃(Φ) is isomorphic to the affine Coxeter complex of W̃ . We denote it by Σ̃.
A face can again be encoded by a sign vector that records whether the face is “above”, “below”, or “on”

a particular hyperplane. (That the sign vector is now infinite is not a problem. See [1, Section 2.7].) We
have σ(F ), for F a nonempty face in Σ̃, given by

σ(F ) = (σβ,k(F ))β∈Π,k∈Z, (2)

where σβ,k(F ) is +,−, or 0, according to whether 〈λ, β〉 − k is positive, negative, or zero. Notice,
however, that for a given positive root β, we have a unique j such that

(. . . , σβ,−1(F ), σβ,0(F ), σβ,1(F ), . . .) = (. . . ,+,+, σβ,j(F ),−,−, . . .),

where σβ,j(F ) is either + or 0. Therefore, for each β we need no more than the pair (j, σβ,j). Thus, let
us write instead

σ(F ) = ( (kβ(F ), σβ(F )) )β∈Π, (3)

where for any point λ of F , kβ(F ) = j means j ≤ 〈λ, β〉 < j + 1, and σβ(F ) = 0 or + according to
whether 〈λ, β〉 is equal to or greater than j. We refer to (2) as the expanded sign vector of F and (3) as
the compact sign vector of F .

The product of two faces of Σ̃ is defined exactly as in the finite case. However, we can do more via the
Tits cone.

2.3 The Tits cone
The Tits cone is a collection of polyhedral cones. We can explicitly realize this cone by embedding V in a
vector space of one dimension higher and taking the cone over Σ̃ by a point not in V . The finite Coxeter
complex Σ is the boundary of the cone. That is, once linearized by taking the cone point to be the origin,
all parallel hyperplanes in H̃ converge to a common hyperplane in the space parallel to V and containing
the cone point. See Figures 2 and 3.

The faces of Σ can thus be endowed with an expanded sign vector as follows. If F ∈ Σ, σβ,k(F ) =

σβ(F ) for all k. The Tits cone shows us how to extend our geometric product to a product of a face F ∈ Σ̃
with a face G ∈ Σ. In terms of expanded sign vectors we have the following.
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• • • • •

•

· · · · · ·Σ̃:

Σ:

Fig. 2: The Tits cone, with Σ̃ in the interior, Σ on the boundary.

Proposition 2.2 Let F ∈ Σ̃ and G ∈ Σ̃ ∪ Σ.

σβ,k(FG) =

{
σβ,k(F ) if σβ,k(F ) 6= 0,

σβ,k(G) if σβ,k(F ) = 0.
(4)

This product is associative, i.e., F (G1G2) = (FG1)G2 for all F ∈ Σ̃, G2 ∈ Σ, and G1 in either Σ̃
or Σ. The fact that the hyperplane arrangement is infinite is not a problem, since the geometric definition
requires only that each face has only a finite number of faces in a small enough neighborhood. Note how-
ever that the reverse product, from G ∈ Σ to F ∈ Σ̃ is ill-defined. Every (full-dimensional) neighborhood
of G contains infinitely many hyperplanes, so there is no “first” face to enter in walking toward F .

It is clear from this characterization that both the set C̃ of alcoves (maximal simplices in Σ̃) and the set
C of chambers take faces of Σ̃ to alcoves, since both types of products do not leave any 0 entries in the
sign vector.

We now interpret the faces of Σ̃ in terms of W̃ acting on V . The action of W̃ on alcoves is simply
transitive, and the fundamental alcove

A∅ := C∅ ∩ {λ ∈ V : 〈λ, α̃〉 < 1}

is tied to the choice of S̃ in the sense that the W̃ -stabilizer of every point in the closure ofA∅ (a fundamen-
tal domain) is generated by a proper subset of S̃. The compact sign vector of A∅ is ((0,+), (0,+), . . .)).

We index the faces of A∅ by subsets of [n] so that the J-th face is

AJ :=

{
CJ ∩ {λ ∈ V : 〈λ, α̃〉 < 1} if 0 /∈ J,

CJ\{0} ∩ {λ ∈ V : 〈λ, α̃〉 = 1} if 0 ∈ J .

Note that AJ is the empty face (or the cone point in the Tits cone) when J = [n].
Since the closure of A∅ is a fundamental domain for the action of W̃ , each face in this complex has the

form µ + wAJ (µ ∈ ZΦ∨, w ∈ W , J ⊆ [n]). Note that the vertices of Σ̃ are of the form µ + wA{j}c ,
where Jc := [n]− J . If we assign color j to each of the vertices µ+wA{j}c , then the vertices of the cell
µ+ wAJ are assigned color-set Jc (without repetitions), so this coloring is balanced.

2.4 Translational invariance and the Steinberg torus
Translations are identified with 0-colored vertices, and in terms of compact sign vectors, we find

kβ(µ+ wAJ) = kβ(µ) + kβ(wAJ) and σβ(µ+ wAJ) = σβ(wAJ). (5)
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Fig. 3: The product of an affine face with a face at infinity is translation invariant. Elements of the co-root lattice
ZΦ∨ are indicated with stars.

Thus for a face F we see that σβ is completely determined by wAJ , while kβ is almost entirely controlled
by µ, since kβ(wAJ) can only be −1, 0, or 1.

In particular, since products with faces at infinity only change signs from 0 to +, we see that products
with faces of Σ are translation invariant. See Figure 3.

Proposition 2.3 Let F ∈ Σ̃, G ∈ Σ, and µ ∈ ZΦ∨. Then (µ+ F )G = µ+ FG.

As mentioned, the product of a face F ∈ Σ̃ with a chamber C ∈ Σ is an alcove, µ + wA∅, which
we may again refer to as the Tits projection of F onto C. By Proposition 2.3, it suffices to characterize
projections for faces wAJ , i.e., with µ = 0.

Just as with faces wCJ in Σ, we find that for i > 0, if αi = w−1β and (kβ(wAJ), σβ(wAJ) = (0,+),
we know i is not an ordinary descent of w.

If 0 ∈ J , we also have

(kβ(wAJ), σβ(wAJ)) =

{
(1, 0) if w−1β = α̃

(−1, 0) if w−1β = −α̃.

Thus, if wα0 = −β < 0, i.e., if 0 is an affine descent of w, then w−1β = −α0 = α̃, and we get

0 < 〈λ,w−1β〉 = 〈λ, α̃〉 ≤ 1.

Therefore if kβ(wAJ) = −1 we know 0 is not an affine descent of w.
For F ∈ Σ̃, let wF denote the unique element of W such that µF + wFA∅ = FC∅. While µF is

uniquely determined by this projection, its exact nature does not concern us as much as wF . Equation (4)
shows that all zeroes in the expanded sign vector become +, and following our analysis of affine descents
above allows us to generalize Proposition 2.1.

Proposition 2.4 For any face F of Σ̃, we have D̃(wF ) ⊆ col(F ). Moreover, for any w ∈ W , and any J
with D̃(w) ⊆ J ⊆ [n], there is a J-colored face F such that w = wF .
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Fig. 4: (a) A spin necklace; (b) another spin necklace; (c) the product of a spin necklace and a set composition.

As the translation subgroup of W̃ , the co-root lattice ZΦ∨ acts as a group of color-preserving automor-
phisms of Σ̃. Letting T denote the n-torus V/ZΦ∨, it follows that the image of Σ̃ under the projection
π : V → T is a balanced Boolean complex,

Σ := Σ̃/ZΦ∨.

Following [10], we refer to Σ as the Steinberg torus.
An alternative construction of the Steinberg torus is given by identifying maximal opposite faces of the

W -invariant convex polytope

PΦ = {λ ∈ V : −1 ≤ 〈λ, β〉 ≤ 1 for all β ∈ Φ}.

This polytope is the union of the closures of the alcoves wA∅ (w ∈W ). Note that there is a bijection with
maximal faces: w ↔ wA∅ + ZΦ∨ for each w ∈W . Let C denote the set of maximal faces of Σ.

Since products of faces of Σ̃ with faces of Σ are translation invariant (Proposition 2.3), we have a well-
defined product FG with F ∈ Σ and G ∈ Σ. We remark, however, that products of two faces of Σ̃ are
not translation invariant, and so the projection π does not give a well-defined product of faces of Σ.

We can describe faces of Σ̃(An−1) and Σ(An−1) in terms of a combinatorial model similar to set
compositions, which we call labeled spin necklaces. These objects encode both the color of the face F
and the representativewF a straightforward way. (For Σ̃(An−1) there is some mild bookkeeping involving
the co-root µF which we will not describe here.)

First, recall the affine descent set of a permutation w ∈ W = Sn is the set of cyclic descents, i.e., the
descent in 0 occurs when wn > w1. For example, D̃(78345612) = {2, 6} while D̃(134625) = {0, 4}.

A spin necklace consists of a cyclically ordered set partition (B1, . . . , Bk) of [n], together with labeled
edges (e1, . . . , ek), with ei joining Bi to Bi+1 clockwise (and indices modulo k). The labels are the
elements of the color set written in increasing order and the block Bi consists of the elements between
positions ei−1 + 1 and ei in wF (read cyclically). Note that the difference of consecutive edge labels is
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the size of the intermediate block: ei − ei−1 ≡ |Bi| mod n. If F is such that wF = 78345612 and
col(F ) = {2, 3, 5, 6}, its spin necklace is shown in Figure 4 (a).

This restriction on the edge labels, along with the fact that D̃(wF ) ⊆ col(F ), allows us to uniquely
recover F from a given spin necklace, e.g., the necklace in Figure 4 (b) haswF = 26384571 and col(F ) =
{2, 4, 6, 7}.

The partial order on faces corresponds to refinement of spin necklaces. The product of a face F in Σ̃
or in Σ with a face G in Σ is similar to the case of two faces of Σ. The only difference between taking
F ∈ Σ̃ versus F ∈ Σ is that in the former case µ may change if 0 /∈ col(F ). We omit the details of this
change, and describe only the change in the spin necklaces.

Proposition 2.5 Let F be a face of Σ̃(An−1) or Σ(An−1) with spin necklace ((e1, B1), . . . , (ek, Bk)).
Let G = C1| · · · |Cl be a face of Σ(An−1). Then the spin necklace in the product of F and G has its
blocks given by all pairwise intersections of the blocks, Bi,j = Bi ∩ Cj , with edge labels ei,j such that
ei,1 = ei and ei,j+1 = ei,j + |Bi,j |.

For example, see Figure 4 (c).

3 Modules over Solomon’s descent ring
Let ZΣ denote the monoid ring of Σ and consider the subring (ZΣ)W of W -invariants. Bidigare [6]
showed that the latter is anti-isomorphic to Solomon’s descent ring. We follow here the proof of this fact
by Brown [8, Section 9.6], and obtain counterparts for Σ̃ and Σ.

The product given in Equation (1) gives the set Σ the structure of a monoid. The product in (4) turns
the set Σ̃ into a right Σ-module.

From the translational invariance of Proposition 2.3, it follows that the Steinberg torus Σ is a quotient
right Σ-module of Σ̃. The projection π : Σ̃→ Σ is thus a morphism of right Σ-modules.

The Weyl group W acts on both ZΦ∨ and Σ̃, and these actions and the action of ZΦ∨ on Σ̃ are related
by the semilinearity condition

w · (µ+ F ) = w · µ+ w · F (6)

for w ∈ W , µ ∈ ZΦ∨, and F ∈ Σ̃. It follows that W acts on Σ and that π is a morphism of left
W -modules.

The Weyl group W also acts on the monoid Σ and we have

w · (FG) = (w · F )(w ·G) (7)

for w ∈W , G in Σ and F in either Σ, Σ̃, or Σ.
We linearize the sets Σ̃ and Σ, obtaining abelian groups ZΣ̃ and ZΣ. We emphasize that ZΣ̃ consists of

finite linear combinations of elements of W̃ . For this reason, 0 is the only element of ZΣ̃ invariant under
the action of W̃ . We consider the action ofW on the groups ZΣ̃ and ZΣ, and the corresponding subgroups
of W -invariant elements. It follows from (7) that (ZΣ̃)W is a right module over the ring (ZΣ)W , and also
that the map π : Σ̃→ Σ restricts to a morphism of right (ZΣ)W -modules π : (ZΣ̃)W → (ZΣ)W .

The set of chambers C is a two-sided ideal of the monoid Σ. The right action of Σ on C is trivial:
CF = C for every C ∈ C and F ∈ Σ. The product of a face of Σ (or a face of Σ̃, or of Σ) and a chamber
of Σ is a chamber of Σ (or an alcove of Σ̃, or a maximal face of Σ). This gives rise to three maps

ZΣ→ EndZ(ZC) ZΣ̃→ HomZ(ZC,ZC̃) ZΣ→ HomZ(ZC,ZC) (8)
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denoted in every case by Φ and given by Φ(F )(C) := FC (and extended by Z-linearity).
The abelian group EndZ(ZC) is a ring under composition, while both HomZ(ZC,ZC̃) and HomZ(ZC,ZC)

are right EndZ(ZC)-modules in the same manner. Associativity for the product of Σ (or for the right ac-
tion of Σ on Σ̃, or on Σ) translates into the fact that Φ(FG) = Φ(F ) ◦ Φ(G) for G ∈ Σ and F in either
Σ, Σ̃, or Σ. This says that the first map in (8) is a morphism of rings, while the other two maps are mor-
phisms of right Σ-modules, where HomZ(ZC,ZC̃) and HomZ(ZC,ZC) are viewed as right ZΣ-modules
by restriction via Φ : ZΣ→ EndZ(ZC).

The sets C, C̃, and C are stable under the action ofW , and hence the groups EndZ(ZC), HomZ(ZC,ZC̃),
and HomZ(ZC,ZC) are acted upon by W from the left. The action is (w · f)(C) = w · f(w−1 · C) for
w ∈ W , C ∈ C, and f in either EndZ(ZC), HomZ(ZC,ZC̃), or HomZ(ZC,ZC). Equation (7) implies
that Φ(w · F ) = w · Φ(F ) for w ∈ W and F in either Σ, Σ̃, or Σ. It follows that each map Φ restricts as
follows:

(ZΣ)W → EndZ(ZC)W , (ZΣ̃)W → HomZ(ZC,ZC̃)W , (ZΣ)W → HomZ(ZC,ZC)W .

These maps are still denoted by Φ. The first one is a morphism of rings and the other two are morphisms
of right (ZΣ)W -modules.

Since the action of W on C is free and transitive, we have isomorphims

EndZ(ZC)W = EndZW (ZC) ∼= ZC, HomZ(ZC,ZC̃)W = HomZW (ZC,ZC̃) ∼= ZC̃,

HomZ(ZC,ZC)W = HomZW (ZC,ZC) ∼= ZC,
given in every case by f 7→ f(C∅), where C∅ is the fundamental chamber of Σ.

We may further identify C with W by means of w ↔ w · C∅, where C∅ is the fundamental chamber of
Σ. Consider the composite isomorphism of abelian groups

EndZW (ZC) ∼= ZW. (9)

A group element u ∈W corresponds to the endomorphism f such that f(C∅) = u·C∅. If another element
v ∈ W corresponds to the endomorphism g, then (f ◦ g)(C∅) = f(v · C∅) = v · f(C∅) = vu · C∅, so
f ◦ g corresponds to vu. Therefore, the isomorphism of rings (9) reverses products.

Similarly, we have C̃ ∼= W̃ and C ∼= W via the actions of these groups on the fundamental alcoves of
these complexes. This gives rise to isomorphisms of right EndZW (ZC)-modules

HomZW (ZC,ZC̃) ∼= ZW̃ and HomZW (ZC,ZC) ∼= ZW

where now ZW̃ and ZW are first viewed as left ZW -modules by multiplication, and then as right
EndZW (ZC)-modules via the antimorphism (9).

Composing the maps Φ with the preceding isomorphisms we obtain three maps

(ZΣ)W → ZW, (ZΣ̃)W → ZW̃ , (ZΣ)W → ZW, (10)

denoted in every case by Ψ and given by Ψ (
∑
F aF F ) =

∑
F aF FC∅, where in each case

∑
F aF F

stands for a W -invariant element of ZΣ, ZΣ̃, or ZΣ.
The first map in (10) is an anti-morphism of rings and the other two are morphisms of right (ZΣ)W -

modules, where ZW̃ and ZW are first viewed as left ZW -modules by multiplication, and then as right
(ZΣ)W -modules via the antimorphism Ψ : (ZΣ)W → ZW .
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The actions of W on Σ, Σ̃ and Σ are color-preserving. Therefore (ZΣ)W is a free abelian group with
basis

σJ :=
∑
F∈ΣJ

F,

where J runs over the subsets of [n]. Similarly, (ZΣ̃)W and (ZΣ)W are free abelian groups with bases

σ̃J,µ :=
∑

F∈Σ̃J,µ

F and σJ :=
∑
F∈ΣJ

F,

where for J ⊆ [n] and µ ∈ ZΦ∨, we let Σ̃J,µ denote the set of faces in the orbit of µ + AJc and ΣJ
denotes the set of J-colored faces of Σ.

For each J ⊆ [n], define elements xJ ∈ ZW by

xJ :=
∑

w∈W :D(w)⊆J

w.

Similarly, for µ ∈ ZΦ∨ and J ⊆ [n], define x̃J,µ ∈ ZW̃ and xJ ∈ ZW by

x̃J,µ :=
∑

w∈W : D̃(w)⊆J

(w,w · µ), and xJ :=
∑

w∈W : D̃(w)⊆J

w.

As J varies, the sets {w ∈W : D(w) = J} and {w ∈W : D̃(w) = J} are disjoint. Therefore, each set
{xJ}, {x̃J,µ}, and {xJ} is linearly independent.

Proposition 3.1 The maps Ψ behave as follows:

Ψ(σJ) = xJ , Ψ(σ̃J,µ) = x̃J,µ, Ψ(σJ) = xJ .

In particular, Ψ is injective in every case.

Defining Sol(W ) = Span{xJ : J ⊆ [n]}, S̃ol(W ) = Span{x̃J,µ : J ⊆ [n], µ ∈ ZΦ∨}, and
Sol(W ) = {xJ : J ⊆ [n]}, we have our main result.

Theorem 3.2 The map Ψ gives the followings anti-isomorphisms:

(ZΣ)W → Sol(W ), (ZΣ̃)W → S̃ol(W ), and (ZΣ)W → Sol(W ).

In particular, S̃ol(W ) and Sol(W ) are left Sol(W )-modules.
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[7] C. Bonnafé and G. Pfeiffer. Around Solomon’s descent algebras. Algebr. Represent. Theory,
11(6):577–602, 2008.

[8] Kenneth S. Brown. Semigroups, rings, and Markov chains. J. Theoret. Probab., 13(3):871–938,
2000.

[9] Paola Cellini. A general commutative descent algebra. J. Algebra, 175(3):990–1014, 1995.

[10] Kevin Dilks, T. Kyle Petersen, and John R. Stembridge. Affine descents and the Steinberg torus.
Adv. in Appl. Math., 42(4):423–444, 2009.

[11] Jason Fulman. Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting. J.
Algebra, 231(2):614–639, 2000.

[12] Jason Fulman. Descent algebras, hyperplane arrangements, and shuffling cards. Proc. Amer. Math.
Soc., 129(4):965–973, 2001.

[13] Adriano M. Garsia and Christophe Reutenauer. A decomposition of Solomon’s descent algebra.
Adv. Math., 77(2):189–262, 1989.

[14] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[15] Andrew Mathas and Rosa C. Orellana. Cyclotomic Solomon algebras. Adv. Math., 219(2):450–487,
2008.
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