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Abstract. The simplicial rook graph SR(d,n) is the graph whose vertices are the lattice points in the nth dilate of
the standard simplex in R¢, with two vertices adjacent if they differ in exactly two coordinates. We prove that the
adjacency and Laplacian matrices of SR(3,n) have integral spectra for every n. We conjecture that SR(d, n) is
integral for all d and n, and give a geometric construction of almost all eigenvectors in terms of characteristic vectors
of lattice permutohedra. For n < (‘21), we give an explicit construction of smallest-weight eigenvectors in terms of
rook placements on Ferrers diagrams. The number of these eigenvectors appears to satisfy a Mahonian distribution.

Resumé. Le graphe des tours simplicials SR(d,n) est le graphe dont les sommets sont les points du réseau dans
le niéme dilation du simplexe standard dans R?; deux sommets sont adjacents s’ils différent dans exactement deux
coordonnées. Nous montrons que tous les valeurs propres des matrices d’adjacence et laplacienne de SR(3,n)
sont entiers, pour tous les n. Nous conjecturons que les valeurs propres sont entiers pour tous d et n, et donnons une
construction géometrique de presque tous les vecteurs propres en termes des vecteurs caractéristiques de permutoedres
treillis. Pour n < (g) nous donnons une construction explicite des vecteurs propres de plus petits poids en termes des
placements des tours sur diagrammes de Ferrers. Le nombre de ces vecteurs propres semble satisfaire une distribution
Mahonian.
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1 Introduction
Let d and n be nonnegative integers. The simplicial rook graph SR(d, n) is the graph with vertices

d
V(d,n):=qx=(21,...,24): 0 < 2; <n, in =n
i=1
n+d—1
d—1
and is regular of degree § = (d — 1)n. Geometrically, let A?~! denote the standard simplex in R< (i.e.,
the convex hull of the standard basis vectors eq, ..., eq) and let nA?~! denote its n'” dilate (i.e., the
convex hull of ney, ..., ney). Then V(d, n) is the set of lattice points in nA%~1 with two points adjacent
if their difference is a multiple of e; — e; for some 7, j. Thus the independence number of SR(d, n) is

with two vertices adjacent if they agree in all but two coordinates. This graph has N = ( ) vertices
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the maximum number of nonattacking rooks that can be placed on a simplicial chessboard with n + 1
“squares” on each side. For d = 3, this independence number is |(2n + 3)/3] Blackburn et al|(2011);
Nivasch and Levl|(2005).

Fig. 1: The graph SR(3, 3).

As far as we can tell, the class of simplicial rook graphs has not been studied before. For some small
values of the parameters, SR(d, n) is a well-known graph: SR(2,n) and SR(d, 1) are complete of orders
n + 1 and d respectively; SR(3,2) is isomorphic to the octahedron; and SR(d,2) is isomorphic to the
Johnson graph J(d + 1,2). On the other hand, simplicial rook graphs are not in general strongly regular
or distance-regular, nor are they line graphs or noncomplete extended p-sums (in the sense of (Cvetkovic
et al.L|1988, p. 55)). They are also not to be confused with the simplicial grid graph, in which two vertices
are adjacent only if their difference vector is exactly e; —e; (as opposed to some scalar multiple) nor with
the triangular graph T,,, which is the line graph of K,, (Brouwer and Haemers| 2012, p.23), (Godsil and
Royle, 2001} §10.1).

Let G be a simple graph on vertices [n] = {1,...,n}. The adjacency matrix A = A(G) is the
n X m symmetric matrix whose (7, j) entry is 1 if 45 is an edge, 0 otherwise. The Laplacian matrix is
L = L(G) = D — A, where D is the diagonal matrix whose (7,%) entry is the degree of vertex i. The
graph G is said to be integral (resp. Laplacian integral) if all eigenvalues of A (resp. L) are integers. If G
is regular of degree §, then these conditions are equivalent, since every eigenvector of A with eigenvalue A
is an eigenvector of L with eigenvalue § — A.

We can now state our main theorem.

Theorem 1.1 For every n > 1, the simplicial rook graph SR(3,n) is integral and Laplacian integral,
with eigenvalues as follows:

If n =2m + 1is odd:

Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector
-3 dm+5=2n+3 ) H, .
-2,-1,....m—3 3m+5...,4dm+4 3 Py
m—1 3m+3 2 R
m,....2m—1=n—-2 2m+3...,3m+2 3 (O]%
dm 42 =2n 0 1 J



On the Spectra of Simplicial Rook Graphs 407

If n = 2m is even:

Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector
-3 dm+3=2n+3 mh H, .
—-2,—1,....m—14 3m+4,...,4m + 2 3 Py
m—3 3m+3 2 R
m-—1,....2m—-2=n—-2 2m+2,...,3m+1 3 Qx
dm = 2n 0 1 J

Integrality and Laplacian integrality typically arise from tightly controlled combinatorial structure in
special families of graphs, including complete graphs, complete bipartite graphs and hypercubes (classi-
cal; see, e.g., (Stanleyl [1999, §5.6)), Johnson graphs Krebs and Shaheen| (2008)), Kneser graphs [Lovasz
(1979) and threshold graphs Merris|(1994)). (General references on graph eigenvalues and related topics
include Balinska et al.| (2002); Brouwer and Haemers| (2012); Cvetkovi¢ et al.| (1988); |Godsil and Royle
(2001).) For simplicial rook graphs, lattice geometry provides this combinatorial structure. To prove
Theorem we construct a basis of R("2°) consisting of eigenvectors of A(SR(3,n)), as indicated in
the tables above. The basis vectors H, ; . for the largest eigenspace are signed characteristic vectors for
hexagons centered at lattice points in the interior of nA? (see Figure. The other eigenvectors Py, R, Qp,
can be expressed as certain sums of characteristic vectors of lattice lines.

Theorem together with Kirchhoff’s matrix-tree theorem (Godsil and Royle} 2001, Lemma 13.2.4)
implies the following formula for the number of spanning trees of SR(d, n).

Corollary 1.2 The number of spanning trees of SR(3,n) is

"1 2n+2

322n+3) (") [ @@

a=n+2 . .

f dd,
S+ 1) (n 1 2)@n 5P IO
no1y 2n+2

32(2n + 3)( 2) 1 e«

a=nt? if n is even
3(n+1)(n+2)2(3n+4)3 '

Based on experimental evidence gathered using Sage Stein et al.| (2012)), we make the following con-
jecture:

Conjecture 1.3 The graph SR(d, n) is integral for all d and n.

We discuss the case of arbitrary d in Section 3] The construction of hexagon vectors generalizes as
follows: for each permutohedron whose vertices are lattice points in nA%~1, its signed characteristic
vector is an eigenvector of eigenvalue — (‘21) (Proposition . This is in fact the smallest eigenvalue of
SR(d,n) whenn > (‘21) Moreover, these eigenvectors are linearly independent and, for fixed d, account
for “almost all” of the spectrum as n — oo, in the sense that

i dim (span of permutohedron eigenvectors) 1
1m =
n—roo |V (d,n)|

Whenn < (g) , the simplex nA?~! is too small to contain any lattice permutohedra. On the other hand,
the signed characteristic vectors of partial permutohedra (i.e., intersections of lattice permutohedra with
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SR(d,n)) are eigenvectors with eigenvalue —n. Experimental evidence indicates that this is in fact the
smallest eigenvalue of A(d,n), and that these partial permutohedra form a basis for the corresponding
eigenspace. Unexpectedly, its dimension appears to be the Mahonian number M (d, n) of permutations in
G4 with exactly n inversions (sequence #A008302 in Sloane| (2012))). We construct a family of eigenvec-
tors by placing rooks (ordinary rooks, not simplicial rooks!) on Ferrers boards.

The reader is referred to|Martin and Wagner| (2012) for the full version of this article, including proofs
of all results. The authors thank Cristi Stoica for bringing their attention to references Nivasch and Lev
(2005) and Blackburn et al.[| (2011), and Noam Elkies and several other members of the MathOverflow
community for a stimulating discussion. The open-source software package Sage Stein et al.|(2012)) was
a valuable tool in carrying out this research.

2 Proof of the Main Theorem

We begin by reviewing some basic algebraic graph theory; for a general reference, see, e.g., |Godsil and
Royle| (2001). Let G = (V, E) be a simple undirected graph with IV vertices. The adjacency matrix A(G)
is the N x N matrix whose (i, 7) entry is 1 if vertices ¢ and j are adjacent, O otherwise. The Laplacian
matrix is L(G) = D(G) — A(G), where D(G) is the diagonal matrix of vertex degrees. These are both
real symmetric matrices, so they are diagonalizable, with real eigenvalues, and eigenspaces with different
eigenvalues are orthogonal (Godsil and Royle}, 2001} §8.4).

Proposition 2.1 The graph SR(d,n) has N = ("Jdrﬁzl) vertices and is regular of degree (d — 1)n. In

particular, its adjacency and Laplacian matrices have the same eigenvectors.

Proof: Counting vertices is the classic “stars-and-bars” problem (with n stars and d — 1 bars). For each
x € V(d,n) and each pair of coordinates 4, j, there are =; 4+ x; other vertices that agree with x in all
coordinates but i and j. Therefore, the degree of zis 3, ;. (zi+ ;) = (d—1) S x = (d—1)n.
- <i<g<

In the rest of this section, we focus exclusively on the case d = 3, and regard n as fixed. We fix
N := ("}?), the number of vertices of SR(3,n), and abbreviate A = A(3,n). The matrix A acts on
the vector space R with standard basis {e;;r: (i,j,k) € V(3,n)}. We will sometimes consider the
standard basis vectors as ordered lexicographically, for the purpose of showing that a collection of vectors
is linearly independent.

2.1 Hexagon vectors

Let (a,b,c) € V(3,n) with a, b, ¢ > 0. The corresponding hexagon vector is defined as

Ha,b,c = €a—1,b,c+1 — €a,b—1,c+1 + €a+1,b—1,c — €a+1,b,c—1 + €4.b+1,c—1 — €a—1,b+1,c-

Geometrically, this is the characteristic vector, with alternating signs, of a regular lattice hexagon centered
at the lattice point (a, b, ) in the interior of nA? (see Figure [2).

It is not hard to check that the vectors H, ; . are linearly independent, and each is an eigenvector of
A(d,n) with eigenvalue —3. The number of possible “centers” (a, b, ¢) is (”gz), so there are still 3n
eigenvectors to determine (since 3n is the number of vertices of SR(d,n) with at least one coordinate

Zero).
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Fig. 2: (left) The graph SR(3,3). (center) The vector X; and the lattice line it supports. (right) H1 1 1.

Define

Xi = Z eijk, Yj = Z eijk, Zk = Z eijk.

Jjtk=n—i i+k=n—j i+j=n—k

These vectors X;, Y, Z;, are the characteristic vectors of lattice lines in nA?; see Figure 2} It can be
checked that they span a vector space W of dimension 3n, and that each one is orthogonal to every
hexagon eigenvector. Therefore W is the span of all the other eigenvectors. Moreover, the symmetric
group &3 acts on SR(3,n) (hence on each of its eigenspaces) by permuting the coordinates of vertices.

Theorem 2.2 The eigenvectors of A(d,n) are as follows.
o LetIJ =31 X, =>" Y, =" Z;. Then J is an eigenvector with eigenvalue 2n.

o Letm = |n/2]and R := X, — Y, — Xpnt1 + Yoi1. Then the Sz-orbit of R is an eigenspace
with dimension 2 and eigenvalue (n — 6)/2 if n is even, or (n — 3)/2 if n is odd.

e Foreachkwith0 < k < |52, let

n—k—1
Ppi= —(n—2k—1)(n—2k - 2)Zy g+ > [2(1' k= 1)Zi+ (2 — )X+ YD)
i=k41

Then the G3-orbit of Py, is an eigenspace with dimension 3 and eigenvalue k — 2.
o Foreachkwith0 <k < L%*QJ let

n—k
Qi =(n—2k+1)(n—2k+2)Z+ »_ [(2j—n)(xj+Yj) —2(n—j—k+1)Z;|.
j=k

Then the G3-orbit of Py, is an eigenspace with dimension 3 and eigenvalue n — k — 2.

We omit the proof, which is a more or less direct calculation, requiring the action of A(d,n) on the
vectors X;, Y ;, Zj and several summation identities.
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3 Simplicial rook graphs in arbitrary dimension

We now consider the graph SR(d, n) for arbitrary d and n, with adjacency matrix A = A(d,n). Re-

call that SR(d,n) has N := ("gf;l) vertices and is regular of degree (d — 1)n. If two vertices
a=(ay,...,aq),b= (by,...,bq) € V(d,n) differ only in their i*" and j*" positions (and are therefore

adjacent), we write a ~ b.

i
Let G, be the symmetric group of order d, and let 2; C &, be the alternating subgroup. Let € be the

sign function
1 for o € Ay,
g(o) =
-1 foro & Ay.

Let 7;; € G4 denote the transposition of ¢ and j. Note that G4 = 04 U 2y7;; for each i, j.
In analogy to the vectors X, Y, Z used in the d = 3 case, define

X0 =eq+ Y. es. 3.1
B: Brea

That is, X((li J) is the characteristic vector of the lattice line through « in direction e; — e;. In particular, if

a ~ (3, then ng J) — Xg’j ). Moreover, the column of A indexed by « is
]

d .
_ (4.4)
Ae, = <2> e, + E X (3), 3.2)

1<i<j<d

since e, itself appears in each summand Xg‘ 9,

3.1 Permutohedron vectors

We now generalize the construction of hexagon vectors to arbitrary dimension. The idea is that for each
point p in the interior of nA%~! and sufficiently far away from its boundary, there is a lattice permutohe-
dron centered at p, all of whose points are vertices of SR(d,n) (see Figure, and the signed characteristic
vector of this permutohedron is an eigenvector of A(d,n).

Specifically, let w = ((1 — d)/2,(3 —d)/2,...,(d —3)/2,(d — 1)/2) € R Let p € Z (if d is odd)
or (Z + ) (if d is even). Then

H,= Z e(0)epto(w)
ISP

is the signed characteristic vector of the smallest lattice permutohedron with center p; we call H, a
permutohedron vector.

Proposition 3.1 Fix d,n € N, and let p, w, H, be as above.
1. If{p+o(w): o € &4} are distinct vertices of SR(d, n), then H,, is an eigenvector of A(d,n) with
eigenvalue — (‘21)

_ (d=1)(d=2)
2. The set of all such eigenvectors H,, is linearly independent, and its cardinality is (” g3 )
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Fig. 3: A permutohedron vector (n = 6, d = 4).

This result says that we can construct a large eigenspace by fitting many congruent permutohedra into
the dilated simplex. In fact, the permutohedron eigenvectors account for “almost all” of the eigenvectors
in the following sense: if H,4., C RY is the linear span of the eigenvectors constructed in Prop. then
for each fixed d, we have

(n_ (d—1)(d—2)
. dim Hd n . d—f
lim S tdn _ o L dd S g (3.3)

The characteristic vectors of lattice lines in R? can be shown to be orthogonal to H4,,. We conjecture
that those characteristic vectors in fact span the orthogonal complement. We have verified this statement
computationally for d = 4 and n < 11, and for d = 5 and n = 7,8,9. We do not have a proof of the
general statement; part of the difficulty is that it is not clear what subset of the X((li 9)
(in contrast to the case d = 3).

ought to form a basis

Proposition 3.2 Suppose that d > 1 andn > (g) Then the smallest eigenvalue of SR(d,n) is — ((21)

We omit the short proof, whose main idea was suggested to the authors by Noam Elkies. The smallest
eigenvalue is significant in spectral graph theory; for instance, it is related to the independence num-

ber (Godsil and Roylel, 2001, Lemma 9.6.2).
3.2 The small-n case and Mahonian numbers

When n < (g), there are no permutohedron vectors — the simplex nA?~! is too small to contain any
lattice permutohedra.

Experimental evidence indicates that the smallest eigenvalue of SR(d,n) is —n, and moreover that
the multiplicity of this eigenvalue equals the number M (d,n) of permutations in G, with exactly n
inversions. The numbers M (d, n) are well known in combinatorics as the Mahonian numbers, or as the
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coefficients of the g-factorial polynomials; see (Sloanel 2012, sequence #A008302). In the rest of this
section, we construct M (d,n) linearly independent eigenvectors of eigenvalue —n; however, we do not
know how to rule out the possibility of additional eigenvectors of equal or smaller eigenvalue

We review some basics of rook theory; for a general reference, see, e.g., [Butler et al.| (2012). For
a sequence of positive integers ¢ = (cq,...,cq), the skyline board Sky(c) consists of a sequence of d
columns, with the i*" column containing ¢; squares. A rook placement on Sky (c) consists of a choice of
one square in each column. A rook placement is proper if all d squares belong to different rows.

An inversion of a permutation 7 = (71, ...,74) € Sy is a pair 4, j such that ¢ < j and m; > ;. Let
Ga,n denote the set of permutations of [d] with exactly n inversions.

Definition 3.3 Let m € S4,,. The inversion word of 7 is a = a(w) = (a1, ..., aq), where
a,=#{jeld:i<jandm; > m;}.

Note that a is a weak composition of n with d parts, hence a vertex of SR(d,n). A permutation o € Sy,
is m-admissible if o is a proper skyline rook placement on Sky (a1 + 1, ..., a4 + d); that is, if

z(o) =a(n)+w—o(w) =a(r) +id—0o

is a lattice point in nAY~1. Note that the coordinates of x(c) sum to n, so admissibility means that its
coordinates are all nonnegative. The set of all m-admissible permutations is denoted Adm(r); that is,

Adm(r) ={c€64:a;,—0; +i>0 Vi=1,...,d}.
The corresponding partial permutohedron is
Parp(m) = {z(0): 0 € Adm(n)}.

That is, Parp(r) is the set of permutations corresponding to lattice points in the intersection of nAY~!
with the standard permutohedron centered at a(m) + w. The partial permutohedron vector is the signed
characteristic vector of Parp(r), that is,

F,T = Z E(U)em(g).

o€Parp(n)

Example 3.4 Let d = 4 and 7 = 3142 € S, Then m has n = 3 inversions, namely 12, 14, 34. Its
inversion word is accordingly a = (2,0,1,0). The m-admissible permutations are the proper skyline
rook placements on Sky(2 + 1,0 4+ 2,1+ 3,0 + 4) = Sky(3,2,4,4), namely 1234, 1243, 2134, 2143,
3124, 3142, 3214, 3241 (see Figure E]) The corresponding lattice points x(o) can be read off from
the rook placements by counting the number of empty squares above each rook, obtaining respectively
2010, 2001, 1110, 1101, 0120, 0102, 0030, 0003; these are the neighbors of a in Parp(rw). Thus F, =
€2010 — €2001 — €1110 + €1101 — €0120 1+ €0102 T €0030 — €0003; See Figure@

Theorem 3.5 Let m1 € &4, and A = A(d,n). Then F is an eigenvector of A with eigenvalue —n.
Moreover, for every pair d,n withn < (g), the set {F: w € &y} is linearly independent. In particular,
the dimension of the (—n)-eigenspace of A is at least the Mahonian number M (d, n).
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Fig. 5: The partial permutohedron Parp(3142) in SR(4, 3).

Proof: We include the proof in order to illustrate the connections to (non-simplicial) rook theory. First,
linear independence follows from the observation that the lexicographically leading term of F is €4(),
and these terms are different for all m € G,y,.

Second, let o € Adm(7). Then the coefficient of e, (5 in Fr is e(¢0) € {1, —1}. We will show that
the coefficient of e, (,) in AF is —ne(0), i.e., that

e(0) Y elp) = —n, (3.4)

p

the sum over all p such that p ~ o and p € Parp(n). (Here and subsequently, ~ denotes adjacency in
SR(d,n).) Each such rook placement p is obtained by multiplying o by the transposition (i j), that is, by
choosing a rook at (7, 0;), choosing a second rook at (7, o;) with o; > o, and replacing these two rooks
with rooks in positions (4, ;) and (j, o;). For each choice of ¢, there are (a; + ¢) — o; possible j’s, and
> .(a; + i — 0;) = n. Moreover, the sign of each such p is opposite to that of o, proving (3.4).

Third, let y = (y1,...,y4) € V(d,n) \ Parp(m). Then the coefficient of e,(, in F is 0. We show
that the coefficient of e, in AF is also 0, i.e., that

> e(o)=0. (3.5)

ceN

where N = {p : z(p) ~ y} N Parp(m). In order to prove this, we construct a sign-reversing involution
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on N. Leta = a(m) andletb = (by,...,bq) = (a1 +1 —y1,a2 +2 — ya,...,aq + d — y4). Note that
b; < a; + i for every i; therefore, we can regard b as a rook placement on Sky(a; + 1,...,aq + d). (It
is possible that b; < 0 for one or more i; we will consider that case shortly.) To say that y ¢ F is to
say that b is not a proper 7-skyline rook placement; on the other hand, we have > b; = (dgl) (as would
be the case if b were proper). Hence the elements of N are the proper 7-skyline rook skyline placements
obtained from b by moving one rook up and one other rook down, necessarily by the same number of
squares. Let b(i 1 ¢, | r) denote the rook placement obtained by moving the i*" rook up to row ¢ and
the j*" rook down to row r.

We now consider the various possible ways in which b can fail to be proper.

Case 1: b; < 0 for two or more 4. In this case N = (), because moving only one rook up cannot produce
a proper w-skyline rook placement.

Case 2: b; < 0 for exactly one 7. The other rooks in b cannot all be at different heights, because that
would imply that >>b; <0+ (24 ---+d) < (d;rl). Therefore, either N = {), or else b; = by, for some
J, k and there are rooks at all heights except ¢ and r for some ¢, r < b; = by.

Then b(i 1 ¢, | r) is proper if and only if b(i 1 ¢,k | r) is proper, and likewise b(i 1 r,j | q) is
proper if and only if b(¢ 1 7, k | ¢) is proper. Each of these pairs is related by the transposition (j k), so
we have the desired sign-reversing involution on V.

Case 3: b; > 1 for all i. Then the reason that b is not proper must be that some row has no rooks and
some row has more than one rook. There are several subcases:

Case 3a: For some q # r, there are two rooks at height ¢, no rooks at height r, and one rook at every
other height. But this is impossible because then > b; = (d‘gl) +q—r# (d‘QH).

Case 3b: There are four or more rooks at height g, or three at height ¢ and two or more at height . In
both cases N = ().

Case 3c: We have b; = b; = by; no rooks at heights ¢ or r for some ¢ < r; and one rook at every other
height. Then

N C { b(itrjla), b(itrilq), bktrilq), }
SUbitrkla), bGtrkla), bktrila).

For each column of the table above, its two rook placements are related by a transposition (e.g., (j k) for
the first column) and either both or neither of those rook placements are proper (e.g., for the first column,
depending on whether or not b; < r). Therefore, we have the desired sign-reversing involution on V.

Case 3d: We have b; = b; = q; by, = by = 7, and one rook at every other height except heights s and ¢.
Now the desired sign-reversing involution on N is toggling the rook that gets moved down; for instance,
b(j 1 s,k | t)is proper if and only if b(j 1 s, £ | t) is proper.

This completes the proof of (3.3), which together with (3.4) completes the proof that F is an eigen-
vector of A(d, n) with eigenvalue —n. O

Conjecture 3.6 If n < (g) then in fact T(SR(d,n)) = —n, and the dimension of the corresponding
eigenspace is the Mahonian number M (d, n).

We have verified this conjecture, using Sage, for all d < 6. It is not clear in general how to rule out the
possibility of a smaller eigenvalue, or of additional (—n)-eigenvectors linearly independent of the F' .

The proof of Theorem implies that every partial permutohedron Parp(7) induces an n-regular
subgraph of SR(d, n). Another experimental observation is the following:

Conjecture 3.7 For every m € &g, the induced subgraph SR(d,n)|parp(x) is Laplacian integral.
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We have verified this conjecture, using Sage, for all permutations of length d < 6. We do not know what
the eigenvalues are, but these graphs are not in general strongly regular (as evidenced by the observation
that they have more than 3 distinct eigenvalues).

4 Corollaries, alternate methods, and further directions
4.1 The independence number

The independence number of SR(d,n) can be interpreted as the maximum number of nonattacking
“rooks” that can be placed on a simplicial chessboard of side length n + 1. By (Godsil and Royle,
2001, Lemma 9.6.2), the independence number «(G) of a §-regular graph G on N vertices is at most
—7N/(§ — 7), where T is the smallest eigenvalue of A(G). For d = 3 and n > 3, we have 7 = —3,
which implies that the independence number a(SR(d, n)) is at most 3(n + 2)(n + 1)/(4n + 6). This is
of course a weaker result (except for a few small values of n) than the exact value | (3n + 3)/2| obtained
in|N1ivasch and Lev| (2005) and Blackburn et al.| (2011).

Question 4.1 What is the independence number of SR(d,n)? That is, how many nonattacking rooks can
be placed on a simplicial chessboard?

Proposition [3.2]implies the upper bound

a(SR(d,n)) < — X4+ 1) (n+d1>

2n+d)d-1)\ d—1

forn > (‘21), but this bound is not sharp (for example, the bound for SR(4, 6) is o < 21, but computation
indicates that o = 16).

The theory of interlacing and equitable partitions|[Haemers|(1995)), (Godsil and Royle}, 2001}, chapter 9)
may be useful in describing the spectrum of SR(d, n). Briefly, given a graph G, one constructs a square
matrix P whose columns and rows correspond to orbits of vertices under the action of the automorphism
group of G; under suitable conditions, every eigenvalue of P is also an eigenvalue of A(G). When
G = SR(n,d), the spectrum of P(G) appears to be a proper subset of that of A(G); on the other hand,
in all cases we have checked computationally (d = 4,n < 30; d = 5,n < 25), the matrices P(SR(n,d))
have integral spectra, which is consistent with Conjecture[I.3]

Question 4.2 Is SR(d,n) determined up to isomorphism by its spectrum?
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