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Abstract. We study sorting operators A on permutations that are obtained composing Knuth’s stack sorting operator
S and the reverse operator R, as many times as desired. For any such operator A, we provide a bijection between the
set of permutations sorted by S ◦A and the set of those sorted by S ◦R ◦A, proving that these sets are enumerated
by the same sequence, but also that many classical permutation statistics are equidistributed across these two sets.
The description of this family of bijections is based on an apparently novel bijection between the set of permutations
avoiding the pattern 231 and the set of those avoiding 132 which preserves many permutation statistics. We also
present other properties of this bijection, in particular for finding families of Wilf-equivalent permutation classes.

Résumé. On étudie les opérateurs A de tri de permutations obtenus en composant l’opérateur S de tri par une pile
de Knuth et l’opérateur R de miroir, un certain nombre de fois. Pour tout opérateur A de cette forme, on donne
une bijection entre l’ensemble des permutations triées par S ◦ A et l’ensemble de celles triées par S ◦ R ◦ A,
démontrant ainsi que ces ensembles ont la même séquence d’énumération, mais aussi que de nombreuses statistiques
classiques sur les permutations ont la même distribution sur ces deux ensembles. La description de cette famille de
bijections repose sur une bijection apparemment nouvelle entre l’ensemble des permutations qui évitent le motif 231
et l’ensemble de celles qui évitent 132, qui préserve de nombreuses statistiques. On présente aussi d’autres propriétés
de cette bijection, en particulier pour trouver des familles de classes de permutations équivalentes au sens de Wilf.
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1 Introduction
Partial sorting algorithms were one of the early motivations for the study of permutation patterns. For
instance, Knuth (1975) considered the problem of sorting a permutation of length n, i.e. of the set [n] =
{1, 2, . . . , n}, using only a stack. If such a permutation, π, is written in one line notation as αnβ, then
π is sortable if and only if: each of α and β is sortable (thought of as permutations of the values they
contain); and each value in α is less than any value in β (or simply α < β). The first condition is clearly
necessary – the second condition is also necessary as, when n is the first element remaining to be added
to the stack, the entire stack must be emptied to have any hope of success, otherwise n will precede some
other element in the output, and the output will not be sorted. In the same fashion, the stack must at all
times obey the Hanoi condition that it never has a greater element lying on top of a lesser one. That the
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conditions are sufficient is also clear – the requisite operations are: sort and output α; add n to the stack;
sort and output β; remove n from the stack. Figure 1 shows an example of performing stack sorting on a
permutation. This simple behavior prompted many other investigations of stack sorting and its variations
and extensions beginning with works by Pratt (1973) and Tarjan (1972).

6 1 3 2 7 5 4

6

1

3
2

7 5 4

7

1 2 3 6 5 4 1 2 3 6 4 5 7

Fig. 1: Some steps of the stack sorting procedure applied to π = 61 3 2 7 5 4. Thus, S(π) = 1 2 3 6 4 5 7.

Stack sorting can be considered as an operator or procedure, S, applied to permutations. It is defined
recursively as: S(αnβ) = S(α)S(β)n. With this definition S(π) is the result of attempting to sort π using
a stack, maintaining the condition that the items in the stack must always be ordered from least to greatest
when read from top to bottom. We adopt the viewpoint throughout that any sequence of distinct values
can be interpreted as a permutation and “n” always denotes the maximum element of such a sequence.
West (1993) described the permutations that can be sorted using S◦S, and Zeilberger (1992) subsequently
confirmed a conjecture of West’s on their enumeration.

Bousquet-Mélou (2000) also considered the operator S and characterized, given π, the set S−1(π). We
shall be extending her results, and will discuss them in more detail later. Central to her analysis is the
observation that the operator S can be described in the following terms: given a permutation π form the
unique decreasing binary tree Tin(π) whose in-order reading is π, then S(π) is the post-order reading of
this tree.

A second operator on permutations is the reversal operator, that reads permutations from right to left
– it can also be modeled by using a stack where we are obliged to input the entire permutation to the
stack before performing any output. The reversal operator, R, is one of eight natural symmetries on the
collection of permutations. Bouvel and Guibert (2012) considered the enumeration of permutations sorted
by S ◦R ◦ S as well as the sets defined similarly with other symmetries in place of R. In experimental
investigations aimed at providing extensions to their results they noticed an interesting phenomenon that
can be expressed as:

Conjecture 1 For any composition, A, of the operators S and R the number of permutations sorted by
S ◦A and by S ◦R ◦A is the same. Moreover, many permutation statistics are equidistributed across
these two sets.

It is the primary purpose of this article to prove that this is indeed the case. To do so, we make use
of another classical description of stack sortable permutations. It is simply derived from their descrip-
tion by Knuth (1975) that we reported at the beginning of this section. Stack sortable permutations are
those that may not contain subwords (not necessarily consecutive) of the form bca where a < b < c.
Such permutations are said to avoid the pattern 231, and the collection of all such is denoted Av(231).
More generally and more formally, a permutation π = π(1)π(2) · · ·π(k) is a pattern of a permutation
σ = σ(1)σ(2) · · ·σ(n) when there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that π is order isomor-
phic to σ(i1)σ(i2) · · ·σ(ik). If π is not a pattern of σ then we say that σ avoids π. We denote by
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Av(π, π′, · · · , π′′) the set of all permutations that avoid simultaneously the patterns π, π′, · · · , π′′. Such
a collection of permutations defined by the avoidance of a given set of permutations is also called a per-
mutation class.

With the characterization of stack sortable permutations as Av(231), proving Conjecture 1 is equivalent
to showing that there is a bijection between the elements of Av(231) belonging to the image of A, and
the elements of Av(231) belonging to the image of R ◦A, with the additional condition that the bijection
preserves the number of preimages under A (resp. R ◦ A). Equivalently, we can replace this latter set
by the elements of Av(132) belonging to the image of A, since the self-inverse operator R immediately
provides a bijection between Av(231) and Av(132).

In establishing this result we demonstrate an apparently novel bijection between Av(231) and Av(132)
which preserves many permutation statistics. We also present some other properties of this bijection.

2 Preimages of permutations in the image of S
As noted earlier, the description of the elements of S−1(π) for π in the image of S was carried out by
Bousquet-Mélou (2000). This description is central to our work, so we review it here.

There exists for any permutation σ a unique decreasing binary tree, Tin(σ) whose in-order reading is σ.
As usual, Tin(σ) is recursively defined: if σ = αnβ then the root of Tin(σ) is n and its left (resp. right)
subtrees are Tin(α) (resp. Tin(β)). The recursive description of S given above (S(αnβ) = S(α)S(β)n)
then shows that S converts in-order reading of decreasing binary trees to post-order reading. Therefore,
describing S−1(π) is equivalent to describing the decreasing binary trees, T , with post-order reading π.
For convenience we denote the post-order reading of a tree T by Post(T ).

Definition 2 A decreasing binary tree is canonical if it has the following property: any node, z, that has
a left child, x, also has a right child, and the leftmost value y in the subtree of the right child of z is less
than x.

From (Bousquet-Mélou, 2000, Proposition 2.6), we know that for π in the image of S there is a unique
canonical tree Tπ with Post(Tπ) = π. In fact, the permutation σ obtained from the in-order reading of Tπ
is the element of S−1(π) having the greatest number of inversions. Moreover, any decreasing binary tree
whose post-order reading is π (and only such trees) can be obtained from Tπ by a sequence of operations
of the following type: take a node z with no left child, and one of its descendants y on the leftmost branch
of its right subtree; remove the subtree rooted at y and make it the left subtree of z. It follows that |S−1(π)|
depends only on the structure of the tree Tπ and not on its labeling.

Example 3 The canonical tree associated with π = 5 1 8 2 3 6 4 7 9 is Tπ =

9
8

5 1
7

6
3

2

4. Its in-

order reading, σ = 5 8 1 9 6 3 2 7 4 gives the permutation with the largest number of inversions subject to
S(σ) = π. The four other decreasing binary trees with the same post-order reading are shown in Figure 2.
Thus |S−1(π)| = 5. If the labels 8 and 7, and 5 and 4, were exchanged in the original tree, corresponding
to π′ = 4 1 7 2 3 6 5 8 9 then, because the tree is still canonical, the method for constructing permutations
in S−1(π′) is still the same, and in particular |S−1(π′)| = |S−1(π)|.
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Fig. 2: The four non canonical decreasing trees whose post-order reading is π = 51 8 2 3 6 4 7 9.

3 A recursive bijection between Av(231) and Av(132)

In this section we introduce a bijection, P , between permutations in Av(231) and those in Av(132). It
is very easy to describe P recursively using the sum, ⊕, and skew sum, 	, operations on permutations.
These operations are easily understood on the diagrams corresponding to permutations. The diagram
of any permutation σ of length n is the set of n points in the plane at coordinates (i, σ(i)). If α is a
permutation of [a] and β of [b] we define:

α⊕ β = α (β + a) whose diagram is α
β

α	 β = (α+ b)β whose diagram is
α

β .

Here for example β + a is just the sequence obtained by adding a to every element of the sequence β and
α represents the diagram of permutation α.

Example 4 Let α = 2 3 1 and β = 3 1 4 2. Then α⊕ β = 2 3 1 6 4 7 5, while α	 β = 6 7 5 3 1 4 2.

Any permutation σ that can be written as a sum α⊕ β (resp. skew sum α	 β) is said ⊕-decomposable
(resp. 	-decomposable). Otherwise, we say that σ is ⊕-indecomposable (resp. 	-indecomposable).

Any π ∈ Av(231) is either the empty permutation ε or has a unique decomposition in the form α ⊕
(1 	 β) where α, β ∈ Av(231) (and are possibly empty), and conversely any permutation of this latter
form lies in Av(231). This is simply because the elements preceding the maximum in a 231-avoiding
permutation must all be less than those following the maximum, and the prefix before and suffix after the
maximum must also avoid 231. Conversely, if a permutation has this structure it cannot involve 231. This
decomposition makes it easy to define the bijection P recursively: P (ε) = ε and

if π = α⊕ (1	 β) then P (π) = (P (α)⊕ 1)	 P (β).

Alternatively, with diagrams:

α

β
P−→

P (α)

P (β)

.

As the 132-avoiding permutations have a generic decomposition of the form shown on the right above,
and since P (1) = 1 maps the unique 231-avoiding permutation of length 1 to the unique 132-avoiding
permutation of length 1, induction immediately implies that P : Av(231) → Av(132) is a bijection.
Notice that the restriction of P to the set Av(231, 132) is the identity map.

Example 5 For π = 1 5 3 2 4 9 8 6 7 ∈ Av(231), we have P (π) = 7 8 5 4 6 9 3 1 2.
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We recall a definition from the introduction:

Definition 6 For any permutation π, Tin(π) is the decreasing binary tree whose in-order reading is π.

It follows immediately by induction from the recursive description of P that:

Observation 7 Both Tin(π) and Tin(P (π)) have the same underlying unlabeled tree, or briefly “P pre-
serves the shape of in-order trees”. An example is provided in Figure 3.

Tin(π) =

9
5

1 4
3

2

8
7

6
Tin(P (π)) =

9
8

7 6
5

4

3
2

1

Fig. 3: Tin(π) and Tin(P (π)) for the permutation π = 15 3 2 4 9 8 6 7 of Example 5.

It is for this reason that P preserves many permutation statistics. Recall that, for π a permutation of
length n, a left-to-right (resp. right-to-left) maximum of π is an element π(i) such that for all j < i
(resp. j > i), π(j) < π(i), and that the up-down word of π is wπ ∈ {u, d}n−1 with wπ(i) = u (resp. d)
if π(i) < π(i+ 1) (resp. π(i) > π(i+ 1)).

Observation 8 P preserves the following statistics: the number and positions of the right-to-left maxima,
the number and positions of the left-to-right maxima and the up-down word.

Proof: All of these follow from Observation 7, since the value of each statistic mentioned for a permuta-
tion π is determined by the shape of Tin(π). 2

Among all the statistics reported in (Claesson and Kitaev, 2008/09, Section 2), the only ones that are
preserved by P are the ones that depend only on the shape of in-order trees.

4 Proof of Conjecture 1
4.1 Preparation
In addition to the results of Section 2, the principal ingredients in the proof to follow are a pair of obser-
vations concerning P and operators A which are compositions of S and R.

Observation 9 Let τ be any permutation, and A be any composition of the operators S and R. Suppose
that x, y ∈ [n] and that in τ there are no values larger than max(x, y) occurring between x and y. Then
the same holds in A(τ).

Proof: It suffices to prove the result for S and R individually. For R it is trivial and for S it is not hard to
prove that it follows by induction from the recursive description: S(αnβ) = S(α)S(β)n. 2

For the second observation we introduce a notational convention that we shall continue to use through-
out. Let π ∈ Av(231) be given. We think of the sequence P (π) as describing a relabeling of the values
that occur in π according to a certain permutation λπ , specifically P (π) = λπ ◦ π.
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Observation 10 Let π ∈ Av(231) be given and suppose that x, y ∈ [n], x < y, and in π there are no
values larger than max(x, y) occurring between x and y. Then λπ(x) < λπ(y).

Proof: The proof shall not be detailed here. Observation 10 simply says that λπ preserves the ordering
among elements of π which do not contain a larger element between them. This follows from the con-
struction of P since the only way that one element can be moved above another one is to (at some point
in the recursion) have a larger element in between. 2

4.2 The main argument
In this section we prove the main result. Recall that A is an operator formed by some composition of S
and R. For any such operator, we shall write π ∈ A to denote that π is in the image of A.

As above we consider λπ as a relabeling of the elements of [n]. We extend its effect to permutations,
trees etc. that carry labels from [n]: applying λπ to such an object will simply mean to apply λπ to each
of its labels.

Definition 11 We define a function ΦA from the set of permutations sorted by S ◦ A to the set of all
permutations as follows. For θ a permutation sorted by S ◦A, since A(θ) ∈ Av(231), we have λA(θ)

defined by P (A(θ)) = λA(θ) ◦A(θ) and we then set ΦA(θ) = λA(θ) ◦ θ.

In other words ΦA relabels a permutation θ sorted by S ◦A in the same way that A(θ) is relabeled to
produce P (A(θ)). We will prove (see Corollary 15) that ΦA is a bijection from the set of permutations
sorted by S ◦A to the set of those sorted by S ◦R ◦A. The key to this argument of course is to establish
that A(ΦA(θ)) = P (A(θ)).

We are concerned with operators A which are compositions of S and R. We say that such an operator
respects P if it has the following property:

For each π ∈ Av(231) ∩A,
• For each θ such that A(θ) = π, we have A(ΦA(θ)) = P (π) = λπ ◦ π and

Tin(ΦA(θ)) = λπ(Tin(θ)), and
• the correspondence ΦA : θ 7→ ΦA(θ) is a bijection between A−1(π) and A−1(P (π)).

In the above, notice that because A(θ) = π we actually have ΦA(θ) = λπ ◦ θ.

Proposition 12 If A respects P then so does A ◦R.

Proof: We shall only give the main arguments of the proof.
Let π ∈ Av(231) ∩ (A ◦R) and θ be such that (A ◦R)(θ) = π. Let τ = R(θ). Then A(τ) = π and

since A respects P , A(ΦA(τ)) = P (π) and Tin(ΦA(τ)) = λπ(Tin(τ)).
Because R is an involution on permutations that acts only on positions whereas λπ acts on values only,

it can be proved that R
(
ΦA◦R(θ)

)
= ΦA(τ). It follows that (A ◦R) (ΦA◦R(θ)) = A(ΦA(τ)) = P (π).

Moreover, applying R to a permutation is equivalent to recursively exchanging left and right subtrees in
its in-order tree. This is how we deduce Tin(ΦA◦R(θ)) = λπ(Tin(θ)) from Tin(ΦA(τ)) = λπ(Tin(τ)).
Finally, the correspondence ΦA◦R is the composition of three bijections: R, ΦA and R−1 = R, and so
is also a bijection. 2

Proposition 13 If A respects P then so does A ◦ S.
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Proof: For brevity, we only sketch the proof and omit the details.
Let π ∈ Av(231) ∩ (A ◦ S) and θ be such that (A ◦ S)(θ) = π. Let τ = S(θ). Then A(τ) = π and

since A respects P , A(ΦA(τ)) = P (π) and Tin(ΦA(τ)) = λπ(Tin(τ)).
We first define τ ′ = λπ ◦ τ = ΦA(τ) and show that τ ′ ∈ S. From Bousquet-Mélou (2000), we know

that it is enough to prove that τ ′ is the post-order reading of some decreasing binary tree. Denoting T the
unique canonical tree such that Post(T ) = τ , and defining T ′ = λπ(T ), we remark that Post(T ′) = τ ′,
hence τ ′ ∈ S. Moreover, it can be proved that the tree T ′ is canonical, so that T ′ is the unique canonical
tree such that Post(T ′) = τ ′.

Defining furthermore θ′ = λπ ◦ θ, we next prove that Tin(θ′) = Tin(θ)′ (i.e. the result of applying λπ
to the labels of Tin(θ)) and S(θ′) = τ ′. From Bousquet-Mélou (2000) again, because S(θ) = τ , we know
that Tin(θ) has been obtained from T by a series of moves of the following form:

Take a node z with no left child, and one of its descendants y on the leftmost branch of its
right subtree. Remove the subtree rooted at y and make it the left subtree of z.

Applying the same sequence of operations to T ′, that is, creating a tree with the same underlying structure
as Tin(θ), but with the labels arising from T ′, we obtain a decreasing tree (because the operations cannot
create an increasing pair) whose in-order reading is θ′, and whose post-order reading is τ ′, and hence
Tin(θ′) = Tin(θ)′ and S(θ′) = τ ′.

This implies that
• Tin(ΦA◦S(θ)) = Tin(λπ ◦ θ) = λπ(Tin(θ));
• A ◦ S(ΦA◦S(θ)) = A ◦ S(θ′) = A(S(θ′)) = A(τ ′) = A(ΦA(τ)) = P (π).

The correspondence θ 7→ θ′ is a bijective map between S−1(τ) and S−1(τ ′) (a consequence of
Proposition 2.7 of Bousquet-Mélou (2000)), and the correspondence ΦA◦S between (A ◦ S)−1(π) and
(A◦S)−1(P (π)) is just the union of all these correspondences on the disjoint sets S−1(τ) for τ ∈ A−1(π)
and to the disjoint sets S−1(τ ′) for τ ′ ∈ A−1(P (π)). So it is a bijection, and A ◦ S respects P . 2

Combining the two preceding propositions with the fact that from Observation 7 the identity operator
respects P we obtain our main theorem:

Theorem 14 Every operator that is formed by composition from {S,R} respects P .

Corollary 15 For any composition A of operators from {S,R}, ΦA is a bijection between the set of
permutations sorted by S ◦A and those sorted by S ◦R ◦A.

Corollary 15 proves the first part of Conjecture 1, namely that the number of permutations sorted by
S ◦A and by S ◦R ◦A is the same.

We now study the properties of bijections ΦA in somewhat greater detail. This will prove the second
part of Conjecture 1, that deals with permutation statistics equidistributed over the set of permutations
sorted by S ◦A and the set of those sorted by S ◦R ◦A.

4.3 Statistics preserved by the bijections ΦA

In this section, A denotes any composition of operators from {S,R}.

Theorem 16 The shape of the in-order tree is preserved by ΦA.
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Proof: For θ a permutation sorted by S ◦A, writing π = A(θ) ∈ Av(231) we have ΦA(θ) = λπ ◦ θ.
From Theorem 14, A respects P , so that Tin(λπ ◦ θ) and Tin(θ) have the same shape. 2

Because the shape of the in-order tree determines many permutation statistics, we have:

Corollary 17 ΦA preserves the following statistics: the number and positions of the right-to-left maxima,
the number and positions of the left-to-right maxima and the up-down word (and hence also the many
classical permutation statistics determined by the up-down word).

Zeilberger (1992) introduced a statistic to aid in the enumeration of the permutations sorted by S ◦ S.
Unsurprisingly, this statistic and one of its close relatives is also preserved by ΦA:

Theorem 18 If A = A0 ◦ S for some arbitrary composition A0 of operators from {S,R}, then ΦA pre-
serves the Zeilberger statistic, defined as: zeil(θ) = max{k | n(n−1) · · · (n−k+1) is a subword of θ}.
In addition, if there is at least one operator S ◦R in the composition that defines A0, then ΦA also pre-
serves the reverse of the above statistics: Rzeil(θ) = max{k | (n−k+1) · · · (n−1)n is a subword of θ}.

Proof: We only provide a sketch of the proof.
Consider θ a permutation sorted by S ◦ A, and set π = A(θ). Then ΦA(θ) = λπ ◦ θ, and we may

interpret this identity as ΦA(θ) being obtained relabeling the elements of θ according to λπ . As before,
we extend the effect of relabeling by λπ to any object that carries labels from [n].

For the first statement, let c ≤ n be the smallest value of [n] such that all d ≥ c are unaffected by the
relabeling λπ . Because Tin(λπ ◦ θ) = λπ(Tin(θ)), it is not hard to see that it is enough to prove that
c ≤ n − k, where k = zeil(θ). This is proved by contradiction, using the fact that S(θ) is the post-order
reading of Tin(θ), together with Observations 9 and 10.

For the second statement, we may write A = B0 ◦ S ◦R ◦ Sk, with k ≥ 1. Then, we apply the first
statement to B0 ◦ S, and we notice that R maps the zeil statistics to Rzeil. To conclude the proof, the
most important fact is that applying operator S may only increase the value of the Rzeil statistics. 2

5 More properties of the bijection P
5.1 Bijection P and Wilf-equivalences
Two permutation classes are said to be Wilf-equivalent if they contain the same number of permutations
of length n for every n. One common form of Wilf-equivalence arises from symmetries of the avoid-
ance relationship. For example, the reverse symmetry R provides a bijection between Av(231) and
Av(132), proving that these classes are Wilf-equivalent. More generally, for any symmetry Z obtained
composing reverse, complement and inverse, Av(π, π′, · · · , π′′) and Av(Z(π),Z(π′), · · · ,Z(π′′)) are
Wilf-equivalent classes, and we say that they are trivially Wilf-equivalent. However, more interesting
Wilf-equivalences are also somewhat common, and in this section we show how the bijection P from
Section 3 furnishes a supply of such Wilf-equivalences.

We say that a permutation π ∈ Av(231) respects P when P restricted to Av(231, π) is a bijection with
Av(132, P (π)). We define two families of permutations (λn) and (ρn) recursively by λ1 = ρ1 = 1 and
for all n ≥ 1, λn+1 = 1	 ρn and ρn+1 = λn⊕ 1 (see Figure 4). We also take the convention that λ0 and
ρ0 denote the empty permutation. Notice that for any n, λn and ρn are fixed by P , since they avoid both
231 and 132. Notice also that for any n, λn is ⊕-indecomposable and ρn is 	-indecomposable.
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λn = ρn−1 and ρn = λn−1
; λ6 = and ρ6 =

Fig. 4: Diagrams of λn and ρn, for general n and for n = 6.

Lemma 19 For every n ≥ 0, and every 0 ≤ k ≤ n, the permutation λk ⊕ λn−k respects P .

Proof: The proof of this result is based on an induction on n, and simply requires a careful analysis of
the way in which a pattern such as λk ⊕ λn−k can occur in a 231-avoiding permutation, and dually how
P (λk ⊕ λn−k) can occur in a 132-avoiding permutation. 2

Since λn and ρn are fixed by P , and because λk ⊕ λn−k = λk ⊕ (1 	 ρn−k−1), a consequence of
Lemma 19 is:

Theorem 20 For every n ≥ 0, and every 0 ≤ k ≤ n − 1, the permutation classes Av(231, λk ⊕ (1 	
ρn−k−1)) and Av(132, (λk ⊕ 1) 	 ρn−k−1) are Wilf-equivalent. Moreover, P provides a bijection from
one to the other, that preserves the shape of the in-order trees.

Even though there are more classes Av(231, π) and Av(132, P (π)) that are Wilf-equivalent, we are
able to show that except when π of the form of Lemma 19, P will not provide a bijection between
Av(231, π) and Av(132, P (π)). This is obtained proving the converse of Lemma 19, i.e. proving that all
permutations that respect P are of the form λk ⊕ λn−k. The proof is omitted for brevity.

Theorem 21 The permutations that respect P are exactly those of the form λk ⊕ λn−k = λk ⊕ (1 	
ρn−k−1), for n ≥ 0 and 0 ≤ k ≤ n− 1.

Table 1 shows all patterns that respect P of length 3 to 8. To each such pattern corresponds a Wilf-
equivalence between Av(231, π) and Av(132, P (π)). They are non trivial, except for three of them that
correspond to the reverse symmetry – those are indicated in italics. Due to symmetries, some Wilf-
equivalences may however correspond to several rows in Table 1. For instance, π = 42135 and π′ =
53124 yield the same Wilf-equivalence up to a reverse symmetry.

For π of length 3 or 4, the Wilf-equivalences obtained from Table 1 may be compared to those re-
ported in Wikipedia (2013). Among the Wilf-equivalences reported therein that we may hope to recover
(i.e. when one of the excluded pattern is 231 or one of its symmetries), we find three of them, while five
are left aside. These three are:

• because P (312) = 312, Av(231, 312) is Wilf-equivalent to Av(132, 312);
• because P (3124) = 3124, Av(231, 3124) is Wilf-equivalent to Av(132, 3124) which is up to

reverse symmetry the same as Av(132, 4213) being Wilf-equivalent to Av(132, 3124);
• because P (1423) = 3412, Av(231, 1423) is Wilf-equivalent to Av(132, 3412) which is up to

inverse-complement symmetry the same as Av(132, 4213) being Wilf-equivalent to Av(132, 3412).

Computer experiments have shown that there are (conjecturally) other Wilf-equivalences between classes
Av(231, π) and Av(132, P (π)), where π does not respect P . These are shown in Table 2.
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π P (π)

213 213
132 231
312 312

π P (π)

2143 3241
1423 3412
4213 4213
3124 3124

π P (π)

42135 42135
21534 43512
53124 53124
31254 42351
15324 45213

π P (π)

216435 546213
531246 531246
312645 534612
642135 642135
421365 532461
164235 563124

π P (π)

6421357 6421357
3127546 6457213
7531246 7531246
4213756 6435712
1753246 6742135
5312476 6423571
2175346 6573124

π P (π)

31286457 75683124
75312468 75312468
64213587 75324681
53124867 75346812
86421357 86421357
21864357 76842135
42138657 75468213
18642357 78531246

Tab. 1: Pairs of patterns (π, P (π)) such that π respects P , i.e. such that P provides a bijection between Av(231, π)
and Av(132, P (π)). In particular, these classes are Wilf-equivalent.

π P (π)

2137465 5467231
1327645 5647312

π P (π)

63125478 64235178
87153246 87452136
65312478 65312478
87421356 87421356

Tab. 2: The other patterns π up to length 8 such that Av(231, π) and Av(132, P (π)) are (conjecturally) Wilf-
equivalent.

5.2 Enumeration of Av(231, π), for π respecting P
Theorem 20 shows that for any n, there are n permutations π ∈ Avn(231) such that the two classes
Av(231, π) and Av(132, P (π)) are Wilf-equivalent. We can actually prove that these 2n permutation
classes we obtain (as exemplified in Table 1) are all Wilf-equivalent. Notice that for both n = 7 and 8, all
classes Av(231, π) with π of length n in Table 2 are not in the same Wilf-equivalence class.

The above Wilf-equivalence result follows immediately from Theorem 24 below. We first define a
family of generating function Fn(t) recursively as follows: F1(t) = 1, and for n ≥ 1

Fn+1(t) =
1

1− tFn(t)
for n ≥ 1.

This family satisfies a property that we shall use in the proof of Theorem 24:

Lemma 22 Define g(x, y) = 1−txy
1−tx−ty . For any n ≥ 3, and any j, k ≥ 1 such that j + k = n − 1,

Fn = g(Fj , Fk).
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Proof: Fix some n ≥ 3. Let us remark that g
(

1
1−tx ,

y−1
ty

)
= g(x, y).

Consequently, for any j > 1 and k = n− j − 1, we have g(Fj , Fk) = g(Fj−1, Fk+1). So it is enough to
prove that g(F1, Fn−2) = Fn. It is easily derived from the definition of the family (Fn). 2

Based on the decompositions λn = 1	ρn−1 and ρn = λn−1⊕1 it is relatively easy to prove inductively
that:

Lemma 23 The generating functions of Av(231, λn) and Av(231, ρn) respectively are both equal to Fn.

Finally we can also establish using the preceding two results:

Theorem 24 Let π ∈ Avn(231) be a permutation that respects P . The generating function of Av(231, π)
is Fn.

Proof: This follows immediately from Lemma 23 if π is of the form λn or ρn for any n ≥ 1. Otherwise,
by Theorem 21, we have π = λj ⊕ (1 	 ρk) for some j ≥ 1 and k ≥ 1. Let C = Av(231, π) and let
C be the corresponding generating function. When decomposing permutations of C as α ⊕ (1 	 β), the
subsequent constraints on α and β, together with Lemma 23, allow us to write that

C = 1 + tFjC + t(C − Fj)Fk, i.e. C =
1− tFjFk

1− tFj − tFk
.

Lemma 22 then ensures that C = Fn. 2

6 Conclusions
Many other permutation classes have recursive descriptions similar to those of Av(231) and Av(132).
In such cases it may well be possible to define analogous bijections to P which could lead to a unified
framework for understanding Wilf-equivalences between their subclasses. Indeed, even for these two
classes it is possible to combine the bijections P and R into various hybrid forms, and some of these may
be useful in characterising the additional Wilf-equivalences that seem to exist in this context.

Of course our results provide some bijections between collections of permutations sorted by some
combinations of S and R. However, they do not provide enumerations of these collections – this seems
to remain a difficult problem in general (and even more so if symmetries other than R are included) as
suggested by the relative difficulty of enumerating the permutations sorted by S ◦ S compared to those
sorted by S. Another point is to determine whether or not the bijection here between specifically the
permutations sorted by S ◦ S and those sorted by S ◦R ◦ S is the same as the one described implicitly in
Bouvel and Guibert (2012).

There are other relatively natural sorting operators. For instance bubble sort can be defined by B(αnβ) =
B(α)βn. Albert et al. (2011) considered the inverse images of permutation classes under B and some in-
vestigations of composites of B and related operators have been reported by Ferrari (2012). Combining
such operators with S (and other possibilities) offers further scope for the discovery (or explanation) of
Wilf-equivalences among permutation classes.
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