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Counting words with Laguerre polynomials

Jair Taylor
Department of Mathematics, University of Washington, Seattle, WA, USA

Abstract. We develop a method for counting words subject to various restrictions by finding a combinatorial inter-
pretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function
for k-ary words avoiding any vincular pattern that has only ones. We also give generating functions for k-ary words
cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as
well as the analogous results for compositions.

Résumé. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une
interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette
méthode pour trouver la série génératrice pour les mots k-aires évitant les motifs vinculars consistant uniquement
de uns. Nous présentons en suite les séries génératrices pour les mots k-aires évitant de façon cyclique les motifs
vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous
présentons aussi les résultats analogues pour les compositions.
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1 Introduction
Define a factorization of a wordW to be an ordered list of words that, when concatenated, giveW . Given
a set of factoriations A and a weight w, we will define a power series fA,w(t), the associated Laguerre
series for A, in terms of the generalized Laguerre polynomials with parameter α = −1. The key fact we
will use is the rule (Theorem 2.4)

fA1∗A2,w(t) = fA1,w(t) · fA2,w(t).

Here A1 and A2 are factorizations with disjoint alphabets and ∗ is a combinatorial operation that, roughly
speaking, interlaces the factorizations in A1 and A2. For example, if φ1 = (aaa)(a)(a) ∈ A1 and
φ2 = (bb)(b)(b)(b) ∈ A2 then φ = (aaabb)(babab) ∈ A1 ∗A2.

Let Φ denote the linear operator on R[t] mapping tk to k!. It has the integral representation Φ(f(t)) =∫∞
0
e−tf(t) dt. We will show in Proposition 2.3 that Φ(fA(t)) gives the weight of all words in A, which

we define to be factorizations with one or no parts. By applying Φ to a product of Laguerre series we may
count a variety of sets of restricted words, especially when the restrictions are on the length of runs of
particular letters. For example, the number of arrangements of the word “WALLAWALLA” with no LLL,
AAA or WW as consecutive subwords is∫ ∞
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as we will see.
In Section 3, we describe the transformation T that turns certain ordinary generating functions into

Laguerre series. The transformation can be described in terms of the Laplace transform, and so can be
easily implemented in mathematical software packages. We can use T to determine the Laguerre series
for a variety of sets of factorizations A, and use them to derive formulas and generating functions to count
words that obey various restrictions.

In particular, we use this technique to analyze certain pattern avoidance problems. A vincular, or
generalized, pattern is a pattern with dashes such as 13-2. This is a generalization of classical permutation
patterns where the dashes are used to indicate that the numbers on either side are not required to be
adjacent, but all others are. We will only study patterns that have only ones, such as 111− 1− 11, so we
define pattern avoidance only in this context. A word W = s1 · · · sl, with each si in some alphabet S,
contains a vincular pattern τ = 1k1 - · · · -1kn if there is a subsequence ofW consisting ofm = k1+. . .+kn
identical letters of which the first k1 are consecutive, the next k2 are consecutive, and so on. Formally,
we require that there are indices 1 ≤ i1 < i2 < . . . < im ≤ l with si1 = . . . = sim and ij+1 − ij = 1
for j 6= k1, k1 + k2, . . . , k1 + . . . + kn−1. Otherwise, we say that W avoids τ . These patterns were first
studied by Babson and Steingrı́msson (Babson and Steingrı́msson, 2000), who showed that many statistics
of interest can be classified in terms of vincular patterns. The term vincular itself was coined by Claesson
in (Bousquet-Mélou et al., 2010), from the Latin vinculare, to bind. Words avoiding vincular patterns are
studied in (Bernini, Ferrari, and Pinzani, 2009; Burstein, 1998; Burstein and Mansour, 2003a; Heubach
and Mansour, 2009; Burstein and Mansour, 2003b; Mansour, 2006). In this paper we will study vincular
patterns with all ones, such as τ = 111-11. A word avoids this pattern if it does not have five appearances
of the same letter in the word, of which the first three and the last two are consecutive. Although such
patterns are useless in the context of permutations, where only the pattern 1 can be contained, they are
meaningful in the context of general words on the alphabet N where letters may be repeated.

In Section 4, we give a formula to calculate the generating function for the number of words avoiding
any such vincular pattern with only ones. This formula involves the use of the maps T and Φ, but these can
be easily calculated. For example, we can use Sage to compute the the generating function

∑
W xlen(W )

where the sum is taken over all ternary words W avoiding the pattern 11-11, where len(W ) is the length
of W , the number of letters counting multiplicity:

6x7 − 6x6 + 6x5 − 2x4 − 5x3 + 9x2 − 5x+ 1

16x4 − 32x3 + 24x2 − 8x+ 1
= 1 + 3x+ 9x2 + 27x3 + 78x4 + 222x5 + . . . .

Finally, we give a cyclic version of this result for the case of patterns 1m-1m- · · · -1m, where all runs of
ones are the same length. This gives the generating functions for words so that any cyclic permutation of
their letters avoids such a pattern. This generalizes a result of Burstein and Wilf (Burstein and Wilf, 1997)
who give the generating function for the number of words cyclically avoiding 1m.
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2 Laguerre series
Define the polynomials lk(t) by their generating function

∞∑
k=0

lk(t)xk = e
tx

1+x .

These polynomials are a form of Laguerre polynomial. Specifically, lk(t) = (−1)kL
(−1)
k (t) where

L
(α)
k (t) =

k∑
i=0

(−1)i
(
k + α

k − i

)
ti

i!

defines the generalized Laguerre polynomials. They have been found to have a number of interesting
combinatorial properties, beginning with their use by Even and Gillis to count generalized derangements
when α is set to 0 in (Even and Gillis, 1976). This was later extended by Foata and Zeilberger who use
α to keep track of the number of cycles (Foata and Zeilberger:i, 1988). For our purpose, we may assume
α = −1.

Define a word W on an alphabet S to be an ordered list s1 · · · sn of letters si ∈ S. A subword of W
is a word sksk+1 · · · sk+m. Note that we require the indices in a subword to be consecutive, while some
authors do not. A word using letters from the alphabet [k] = {1, 2, . . . , k} is called k-ary, and a word in
which no two adjacent letters are the same is called a Carlitz word, after Leonard Carlitz.

Our work is based on the following remarkable result of Ira Gessel (Gessel, 1989, Section 6), which he
found in the context of a generalization of rook theory. We present an unlabeled version.

Theorem 2.1. Let Φ be the linear functional on polynomials in t given by Φ(tn) = n!. Given nonnegative
integers k1, . . . , km, the number of Carlitz words on an alphabet of m symbols with the ith symbol used
ki times is

Φ

(∏
i

lki(t)

)
.

For example, in (Blom et al., 1998) the authors consider the “Mississippi Problem”. How many ar-
rangements of the letters in the word “MISSISSIPPI” have no adjacent letters the same? We can use the
preceding theorem to calculate this directly. There is one M , four I’s, four S’s, and two P ’s. So the
solution is

Φ(l1(t)l4(t)l4(t)l2(t)) =

∫ ∞
0

e−t
(
t
) ( 1

24
t4 − 1

2
t3 +

3

2
t2 − t

)2(
1

2
t2 − t

)
dt = 2016.

Using Theorem 2.1, it is easy to see combinatorially that

Φ(li(t)lj(t)) =

 2 if i = j
1 if |i− j| = 1
0 if |i− j| > 1

(1)

and so the polynomials lk(t) are “almost” orthogonal with respect to Φ.
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Note that lk(t) is a polynomial of degree k; so the matrix of lk’s expanded into powers of t is triangular
with no zeroes on the diagonal, and so {lk}k forms a basis of R[t]. It is natural to ask, then, what is
the expansion of li(t)lj(t) in this basis? These are known as linearization coefficients. The linearization
coefficients of general Laguerre polynomials, with α indeterminate, is known (Foata and Zeilberger:i,
1988; Zeng, 1992), but we will need a combinatorial interpretation of the case α = −1. To give it, we
need a few more definitions.

Definition. A factorization φ is a finite, ordered list of nonempty words (φ1) · · · (φn), and φ1, . . . , φn are
the parts or factors of φ. If the concatenation of these words is a word W , we say that φ is a factorization
of W . We take the convention that the empty word has exactly one factorization, namely the empty
factorization which has no factors. Abusing notation, we identify a word W with the factorization (W )
in one part, and the empty word with the empty factorization, writing ∅ for both. We write par(φ) = n,
the number of factors, and len(φ) for the length of φ, that is, the length of the word W when φ is a
factorization of W .

For example, φ = (MISS)(IS)(IPPI) is a factorization of “MISSISSIPPI”, with par(φ) = 3 and
len(φ) = 11. Frequently, we will be interested in the factorization itself without thinking of it as a
factorization of a particular word. Rather, the spaces between the factors should be thought of as slots to
be filled with nonempty words.

Denote by ni,j,k the number of factorizations over the alphabet {a, b} with k parts and exactly i a’s
and j b’s so that each part is Carlitz. For example, n2,5,3 = 6: the possibilities are (bab)(bab)(b),
(babab)(b)(b) and the different permutations of these sets of factors.

Lemma 2.2. We have, for all i, j ∈ N,

li(t)lj(t) =
∑
k

ni,j,klk(t).

Proof. Note that if p(t) = a0 + a1t+ . . .+ ant
n is a polynomial and Φ(tmp(t)) = 0 for all m, then

a0m! + a1(m+ 1)! + . . .+ an(n+m)! = 0.

This is a homogenous linear recurrence relation with constant coefficients for the factorial sequence,
which is impossible unless a0 = a1 = . . . = an = 0 since it grows superexponentially. Since {lk(t)}k
forms a basis for R[t], if Φ(p(t)lk(t)) = 0 for all k then we can still conclude p(t) = 0. So it is enough to
show that

Φ (li(t)lj(t)lm(t)) = φ

(∑
k

ni,j,klk(t)lm(t)

)
.

We know that the left hand side counts the number of Carlitz arrangements of i a’s, j b’s, and m c’s,
while the right hand side gives the total number of pairs (φ,W ) where φ is a factorization in k parts with
i a’s and j b’s with each part Carlitz, and W is a Carlitz word with k x’s and m c’s. There is a simple
bijection between these sets. Given such a pair (φ,W ), we can get a Carlitz arrangement of i a’s, j b’s and
m c’s by replacing the ith x of W with the ith part of φ. For example, if φ = (ab)(bab) and W = cxcx,
we get the Carlitz word cabcbab. This process is reversible: given a Carlitz word on a, b, c we replace the
c’s by parentheses to make a factorization φ with only the letters a and b, and to get W we replace each
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maximal subword that does not contain c by a single x, getting a word with only c’s and x’s. For example,
given the word abcbcab, we get the pair W = xcxcx, and φ = (ab)(b)(ab). The maximality condition
guarantees that W will be Carlitz.

Let S be an alphabet, not necessarily finite, and let A be any set of factorizations of words on S. We
say that a word W is an allowed word of A if the factorization of W in one part (or zero for the empty
word) is in A. We think of A as some set of factorizations on S we are interested in investigating. For
example, in the above proof we might have defined A to be those factorizations of words on S = {a, b}
so that each part is Carlitz.

Definition. Let φ be a factorization of a word W on an alphabet S. For T ⊆ S and a word W on S, let
φ|T be the factorization created from φ whose parts are the maximal subwords in each part of φ that have
only letters in T listed in the same order they appeared in φ. The resulting factorization will have only
letters from T , with parts of φ possibly split up into multiple parts of φ|T . We call φ|T the restriction of
the factorization to T . For example, if S = {a, b} and T = {a}, then the restriction of the factorization
(aabba)(aab)(b)(aaab) to T is φ|T = (aa)(a)(aa)(aaa). If φ contains no letters from T , we define φ|T
to be the empty factorization.

Definition. Let A1 and A2 be two sets of factorizations so that the alphabets of symbols S1, S2 used in
A1 and A2, respectively, are disjoint. Let S = S1 ∪ S2, and denote by A1 ∗A2 the set of factorizations φ
of words on S so that φ|S1 ∈ A1 and φ|S2 ∈ A2.

Thus the factorizations in A1 ∗ A2 are obtained by interlacing the parts of factorizations in A1 and
A2. The factors of φ1 and φ2 must appear in the correct order in φ, but a factor of φ may be a word
that is concatenated from factors that alternate between φ1 and φ2. For example, if (a)(aa)(a) ∈ A1 and
(b)(bb) ∈ A2 then φ = (abaa)(abb) ∈ A1∗A2 since its restrictions to {a} and {b} are φ|{a} = (a)(aa)(a)
and φ|{b} = (b)(bb).

It is easy to see that ∗ is associative and commutative. Note also that A1, A2 ⊆ A1 ∗ A2 if A1 and
A2 contain the empty factorization. If φ ∈ A1, for example, then φ|S1

= φ ∈ A1 and φ|S2
= ∅ ∈ A2

when S1, S2 are the disjoint alphabets of A1, A2. The allowed words in A1 ∗A2 are often of interest; for
example, if we have singleton alphabets Si = {i} for i = 1, . . . , n, and Ai consists of those factorizations
with all parts having length one, then the factorizations in A1 ∗ · · · ∗ An are those so that each factor is
Carlitz, and the words of A1 ∗ · · · ∗An are exactly the Carlitz words.

Definition. Given a set of factorizations A on an alphabet S, a weight is a function w from A and all of
the restrictions of factorizations in A into a polynomial ring R[x1, x2, . . .] that commutes with restriction
in the sense that if φ ∈ A and T ⊆ S, then w(φ) = w(φ|T )w(φ|S\T ).

Note that in particular, if A = A1 ∗A2 for some sets of factorizations A1, A2 then w is also a weight on
A1 and A2. Also note that taking T to be empty forces w(∅) = 1. Typically we will take the weight w(φ)

to be a monomial xn1(φ)
1 x

n2(φ)
2 · · ·xnm(φ)

m where each ni(φ) is a statistic so that xni(φ)
i is multiplicative

in the above sense. Examples include the length of φ, len(φ); the number of distinct symbols in φ; the
number of appearances of a particular symbol; the sum of φ, sum(φ), if the symbols in φ are nonnegative
integers; or simply w = 1 if we wish to enumerate a finite set. We will write par(φ) for the number of
parts of φ; but xpar(φ) is not a weight.



1136 J. Taylor

Definition. LetA be a set of factorizations on an alphabet S andw be a weight onA. Define the Laguerre
series of A with respect to w to be the formal power series

fA,w(t) =
∑
φ∈A

w(φ)lpar(φ)(t)

when this sum is well-defined as a formal power series. For convenience we will omit the w in the
subscript when w = 1, writing fA,1(t) as fA(t).

Note that our definition of Laguerre series uses a different normalization of Laguerre polynomials than
the sum ∑

n

λ(α)n L(α)
n (t)

as defined in, e.g., Pollard (1948); Szász and Yeardley (1948); Weniger (2008).

Proposition 2.3. Assume A is a set of factorizations and w is a weight on A. Let Φ be the linear operator
so that Φ(tn) = n! and Φ fixes any other variables. Then

Φ(fA,w(t)) =
∑
W

w(W )

when both sides are defined, where the sum is over allowed words W ∈ A (factorizations with one or no
parts.)

Proof. We have

Φ(fA,w(t)) =
∑
φ∈A

w(φ)Φ(lpar(φ)(t))

and Φ(lpar(φ)(t)) is 1 when φ has 0 or 1 part and is 0 otherwise by (1) since l0(t) = 1 and l1(t) = t.

Now we are ready to state our main theorem on the combinatorial properties of Laguerre series.

Theorem 2.4.

1. Let A1 and A2 be disjoint sets of allowed factorizations on a common alphabet S, and let w be a
weight on A1 ∪A2. Then

fA1∪A2,w(t) = fA1,w(t) + fA2,w(t).

2. Let S1 and S2 be disjoint alphabets with sets of allowed factorizations A1,A2 respectively, and let
w be a weight on A1 ∗A2 (and hence on A1 and A2.) Then

fA1∗A2,w(t) = fA1,w(t) · fA2,w(t).
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Proof. The proof of the first part is evident from the definition. We will prove the second. By Lemma 2.3,

fA1,w(t) · fA2,w(t) =
∑
φ1∈A1

∑
φ2∈A2

w(φ1)w(φ2)lpar(φ1)(t)lpar(φ1)(t)

=
∑

φ1∈A1,φ2∈A2,k≥0

npar(φ1),par(φ2),kw(φ1)w(φ2)lk(t).

Fix φ1 ∈ A1, φ2 ∈ A2. It is enough to show that npar(φ1),par(φ2),k is the number of factorizations with
k parts on S1 ∪ S2 whose restrictions to S1 and S2 are φ1 and φ2, respectively. Then each allowed word
of A1 ∗A2 will then be represented exactly once in the series fA1,w(t) · fA2,w(t), giving

fA1∗A2,w(t) =
∑

φ∈A1∗A2

w(φ)lpar(φ) = fA1,w(t) · fA2,w(t).

For fixed k, we will construct a simple bijection from the set of triples (φ, φ1, φ2) where φ1, φ2 are
factorizations in A1, A2 respectively and φ is a factorization on the alphabet {a, b} with par(φ1) a’s and
par(φ1) b’s so that each part is Carlitz, and the set of factorizations φ3 of A1 ∗ A2 with k parts. Let φ3
be the factorization created by replacing the nth a in φ with the nth part of φ1, and the nth b with the
nth part of φ2. Then by construction φ3 ∈ A1 ∗ A2: its restrictions are φ1 and φ2. Furthermore, given
an allowed factorization φ3 ∈ A1 ∗ A2 with k parts so that φS1 = φ1, φS2 = φ2, we can reconstruct the
factorization φ of a word on {a, b} by replacing each subword of a factor of φ3 that uses only the letters of
S1, and is maximal with respect to this condition, by an a and each maximal subword using only letters of
S2 by a b. For example, if S1 = {1, 2} and S2 = {3, 4}, with φ3 = (123, 2213, 34413), we get the word
φ = (ab, ab, bab). No part of φ can have aa or bb by the maximality condition. These two algorithms are
inverse to each other, establishing the theorem.

Inductively, we see that if A1, . . . , An are sets of factorizations on disjoint alphabets and w is a weight
on A1 ∗ · · · ∗An, then fA1∗···∗An,w(t) = fA1,w(t) · · · fAn,w(t).

3 Computing Laguerre series
The Laguerre series for a set of factorizations would not be especially useful if it was difficult to compute.
Fortunately, there is an efficient method to calculate them in some situations. It may be difficult to find a
convenient formula for the coefficients of lk(t) in a given Laguerre series fA,w(t), but this is not needed
to find an expression for fA,w(t). It is enough to find the ordinary generating function. Specifically, we
define

gA,w(u) =
∑
φ∈A

w(φ)uk.

If a nice form of gA,w(u) is known, we may obtain the Laguerre series fA,w(t) by applying the linear
transformation T that sends uk to lk(t). As it happens, T can be easily computed in many situations using
the inverse Laplace transform. We have

L{lk(t)} =
1

s(1− s)

(
1− s
s

)k
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for k ≥ 1, where L is the Laplace transform; this is easily proved from the formula for lk(t) in terms of
the generalized Laguerre polynomials, the fact that L{ti} = i!

si+1 , and the binomial theorem.
Therefore, if gA,w(0) = 0, we have by linearity

T{gA,w(u)} = fA,w(t) = L−1
{
gA,w( 1−s

s )

s(1− s)

}
when the right-hand side is well-defined. If gA,w(0) 6= 0, we can calculate

fA,w(t) = T{gA,w(u)− gA,w(0)}+ gA,w(0) = L−1
{
gA,w( 1−s

s )− gA,w(0)

s(1− s)

}
+ gA,w(0)

since l0(t) = 1. The use of the inverse Laplace transform here is not central to the theory, but it is
convenient since many software packages provide symbolic calculation of the inverse Laplace transform,
making it easy to implement the transformation T . However, the function T itself should not be thought
of as an integral transform as we do not consider questions of convergence.

For example, consider the problem of counting words that have no subword consisting of m identical
letters. These are words that avoid the subword pattern 1m, and are sometimes called m-Carlitz words;
when m = 2 we have the ordinary Carlitz words. To find the generating function, let A be the set
of factorizations on a one-letter alphabet with each part having length smaller than m, and again let
w(φ) = xlen(φ). We see that

gA,w(u) =

∞∑
n=0

un(x+ . . .+ xm−1)n =
1− x

1− x− u(x− xm)

and so we compute

fA,w(t) = T{gA,w(u)} = exp

(
t · x− x

m

1− xm

)
. (2)

Taking the coefficient of xn in (2) gives the Laguerre series for the set of factorizations with length n so
that each part is smaller than m. This gives a generalization of Theorem 2.1. If m1, . . . ,mk, n1, . . . , nk

are nonnegative integers, and pm,n(t) are polynomials defined by
∑∞
n=0 pm,n(t)xn = exp

(
t(x−xm)
1−xm

)
,

we see that

Φ

(
k∏
i=1

pmi,ni(t)

)
is the total number of k-ary words that use the letter i exactly ni times and do not contain the subwords
imi . Thus the number of arrangements of the word “WALLAWALLA” with no LLL, AAA or WW as
consecutive subwords is∫ ∞

0

e−tp3,4(t) · p3,4(t) · p2,2(t) dt =

∫ ∞
0

e−t
(

1

24
t4 − t2 + t

)2

·
(

1

2
t2 − t

)
dt

= 1584.
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Recalling again the formula

Φ(etf ) =
1

1− f
,

we see that the generating function for the number of k-ary m-Carlitz words of length n is given by

Φ

(
exp

(
kt · x− x

m

1− xm

))
=

1− xm

1− kx− (k − 1)xm
.

Another derivation of this formula is given by Burstein and Mansour (Burstein and Mansour, 2003a,
Example 2.2).

More generally, we might count the number of times the pattern 1m occurs. We define the weight
w(W ) of a word W to be xnyl, where n is the length of W and l is the number of times W contains the
pattern 1m. Letting A be the set of all factorizations on a one-letter alphabet, it is not difficult to compute
the generating function gA,w. A formula for the generating function for k-ary words by the number of
times they avoid a pattern 1m can also be found in Burstein and Mansour (2003a).

4 Vincular patterns
We are now ready to state a general formula for k-ary words avoiding vincular patterns with ones. We
say that a k-ary factorization φ contains a vincular pattern τ with only ones if the word made from φ by
inserting a single 0 between each pair of adjacent factors contains τ , and this copy of τ does not use 0.
Using the transformations T and Φ, we can reduce the problem to finding ordinary generating functions
for factorizations that only use one symbol and avoid the given vincular pattern.

Theorem 4.1. Let k1, . . . , kn be positive integers. Letw be the weight on k-ary words withw(a1 · · · al) =
xa1xa2 · · ·xal , so that the power of xi represents the number of times i appears in W , and let A be the
set of k-ary words avoiding the pattern τ = 1k1 -1k2 - · · · -1kn . Then

∑
W∈A

w(W ) = Φ

(
k∏
i=1

[
etxi − T {Gτ (xi, u)}

])

where T is the operator defined in Section 3, and

Gτ (x, u) =
uxk1(1− x)

(1− x− u(x− xki))(1− x− ux)

n∏
i=2

[
xki +

uxki(1− xki)
1− x− u(x− xki)

]
. (3)

We say that a word W cyclically avoids a vincular pattern τ if W avoids τ no matter how its letters are
cycled. More formally, let r be the function that cycles W , moving the last letter into the first position:
r(a1 · · · an) = ana1 · · · an−1. Then W cyclically avoids τ if rk(W ) avoids τ for each k.

In order to find the generating function for the number of words cyclically avoiding the pattern τ =
1m-1m- · · · -1m, we will need a little more information than provided by the generating functionGτ (x, u)
defined by (3). Let H(x, u, v) = gA,w(u) where A is the set of factorizations on the alphabet {1}
avoiding the pattern τ , where w is the weight w(φ) = xlen(φ)upar(φ)vfst(φ) where fst(φ) is the size of
the first factor of φ. Note that in this case w is trivially a weight by our definition since we are using a
singleton alphabet, but generally is not. We will find a closed-form expression for H(x, u, v), although it
is rather unwieldy.
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Lemma 4.2. The generating function H(x, u, v) is given by

H(x, u, v) = 1 +

[
1− x

(1− vx)(1− x− ux)

] [
u(vx− (vx)mn) +

u2xm
(
(1− vx)(z − (vx)m)zn−1 − (1− (vx)m)(zn − (vx)mn)

)
(z − (vx)m)(1− x− u (x− xm))

]

where

z = xm +
uxm(1− xm)

1− x− u(x− xm)
.

Theorem 4.3. LetA be the set of words cyclically avoiding the pattern 1m-1m- · · · -1m, with n−1 dashes,
and let w be the weight on k-ary words with w(s1 . . . sl) = xs1xs2 · · ·xsl . Then the generating function∑
W∈A w(W ) is given by

1 +

k∑
i=1

Φ

(
t−1 · T

{
u

d2

dv du

∣∣∣∣
v=1

H(xi, u, v)

}(
−1 +

k∏
j=1
j 6=i

T{H(xj , u, 1)}
))

+

k∑
i=1

xi − xmni
1− x

.

In particular, letting xi = x for each i gives:∑
W∈A

xlen(W ) = 1 + k ·Φ
(
t−1 ·T{u d2

dv du

∣∣∣∣
v=1

H(x, u, v)}
(

(T{H(x, u, 1)})k−1− 1
))

+
k(x− xmn)

1− x
.

If we set n = 1, considering k-ary words that cyclically avoid 1m, the formula simplifies considerably.
After some computation, which we omit here, we arrive at the following.

Corollary 4.4. Let A be the set of nonempty k-ary words avoiding 1m. As above, let w be the weight
w(a1 · · · al) = xa1xa2 · · ·xal . Then

∑
W∈A

w(W ) =

k∑
i=1

x2mi −mx
m+1
i + (m− 1)xmi

(xmi − 1)(xi − 1)
+

∑k
i=1

(m−1)xm+1
i −mxm

i +xi

(xm
i −1)2

1−
∑k
i=1

xm
i −xi

xm
i −1

.

In the book by Heubach and Mansour (Heubach and Mansour, 2009), the authors define a cyclic Carlitz
composition as a Carlitz composition so that the first and last parts are not equal; they ask (Research
Direction 3.3) for the generating function for the number of cyclic Carlitz compositions. If we let k
approach infinity, m = 2, and xi = xi, we get the following.

Corollary 4.5. Let A be the set of cyclic Carlitz compositions. Then

∑
W∈A

xsum(W ) =

∑∞
i=1

xi

(1+xi)2

1−
∑∞
i=1

xi

1+xi

+

∞∑
i=1

x2i

1 + xi
.

Setting xi = x in Corollary 4.4 and simplifying gives the following formula.
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Corollary 4.6. Let A be the set of nonempty k-ary words that cyclically avoid 1m. Then

∑
W∈A

xlen(W ) =
1− xm−1

1− x

(
kx+ (k − 1)x

(
m− (m− 1)kx

1− kx+ (k − 1)xm
− m

1− xm

))
.

This was found by Burstein and Wilf (Burstein and Wilf, 1997). They go on to show that the number
of k-ary words of length n cyclically avoiding 1m is asymptotically βn, where β is the positive root of
xm+1 = (k − 1)(1 + x+ x2 + . . .+ xm); in fact, they extract an explicit formula when n is sufficiently
large.

We can also give a cyclic version of Theorem 2.1, which can be derived by extracting the coefficient of
a monomial xn1

1 · · ·x
nk

k in the generating function from Theorem 4.2 for words cyclically avoiding 1m.

Corollary 4.7. Let n1, . . . , nk be positive integers, and let pm,n(t) be defined as before by
∑∞
n=0 pm,n(t)xn =

exp
(
t(x−xm)
1−xm

)
. Then

N · Φ

(
t−1 ·

k∏
i=1

pm,ni(t)

)
is the total number of k-ary words that use the letter i exactly ni times and cyclically avoid 1m, where
N =

∑k
i=1 ni is the total number of letters counted with multiplicity.

There are other variations. For example, if we would like to keep track of the length (number of parts)
of a composition instead of just the sum, we can replace each xi in Corollary 5.4 by yxi, so that the power
of y represents the number of parts. Furthermore, if we are interested in only words or compositions
whose symbols lie in a given set other than {1, . . . , k} or N, then we may sum over that set instead in the
above formulas.

5 Questions and future directions
There are a number of combinatorial applications of Laguerre series that might be pursued in the future.
One direction is to extend the work of Section 4, finding generating functions for words avoiding other
cyclic patterns. Another possibility would be to count the number of occurrences of a given pattern of
ones, which would amount to finding the appropriate generating function for factorizations on a single-
letter alphabet by the number of occurrences of this pattern. One might also look for a combinatorial
interpretation of some form of composition of Laguerre series; empirically, it seems that li(lj(t)) has
nonnegative integer coefficients in the lk-basis for j > 0. Finally, it would be useful to develop bijections
from sets of words with restrictions to other combinatorial objects that are not obviously described in terms
of words, using the methods outlined here to count sets that may be otherwise difficult to enumerate.
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