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A lattice of combinatorial Hopf algebras:
Binary trees with multiplicities

Jean-Baptiste Priez†

LRI, Bât. 650, Université Paris-Sud 11, 91405 Orsay, France

Abstract. In a first part, we formalize the construction of combinatorial Hopf algebras from plactic-like monoids
using polynomial realizations. Thank to this construction we reveal a lattice structure on those combinatorial Hopf
algebras. As an application, we construct a new combinatorial Hopf algebra on binary trees with multiplicities and
use it to prove a hook length formula for those trees.

Résumé. Dans une première partie, nous formalisons la construction d’algèbres de Hopf combinatoires à partir d’une
réalisation polynomiale et de monoı̈des de type monoı̈de plaxique. Grâce à cette construction, nous mettons à jour
une structure de treillis sur ces algèbres de Hopf combinatoires. Comme application, nous construisons une nouvelle
algèbre de Hopf sur des arbres binaires à multiplicités et on l’utilise pour démontrer une formule des équerres sur ces
arbres.

Keywords: Combinatorial Hopf algebras, monoids, polynomial realization, hook length formula, generating series,
binary trees

1 Introduction
In the past decade a large amount of work in algebraic combinatorics has been done around combi-
natorial Hopf algebras. Many have been constructed on various combinatorial objects such as parti-
tions (symmetric functions [Mac95]), compositions (NCSF [GKL+94, MR95]), permutations (FQSym
[MR95, DHT02]), set-partitions (WQSym [Hiv99]), binary trees (PBT or the LODAY-RONCO Hopf al-
gebra [LR98, HNT05]), or parking functions (PQSym [NT04, NT07]). A powerful method to construct
those algebras, called polynomial realization, is to construct the Hopf algebra as a sub algebra of a free
algebra of polynomials (commutative or not) admitting certain symmetries. Beside the contruction of
Combinatorial Hopf algebra, several recent papers investigate toward the formalization of combinatorial
applications such as hook formulas, or seek some structure in this large zoo.

This extended abstract, reports on a work in progress which proposes to formalize the construction of
Hopf algebras by polynomial realizations: starting with one of the three Hopf algebras FQSym, WQSym
or PQSym realized in a free algebra, we impose some relations on the variables. Under some simple
hypotheses, the result is again a Hopf algebra (Theorem 1). Two important examples are already known,
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namely the POIRIER-REUTENAUER algebra of tableaux (FSym [PR95, DHT02]) obtained from the plac-
tic monoid [LS81] and the planar binary tree algebra of LODAY-RONCO obtained from the sylvester
monoid [LR98, HNT05].

We further observe that the construction transports the lattice structure on monoids to a lattice structure
on those Hopf algebras (Theorem 2). This structure was used implicitely by GIRAUDO for constructing
the Baxter Hopf algebra from the Baxter monoid as the infimum of the sylvester monoid and its image
under SCHÜTZENBERGER involution. The supremum of those two monoids is known as the hypoplactic
monoid which gives the algebra of quasi symmetric functions [Nov00].

As an application (Section 5) we take the supremum of the sylvester monoid and the stalactic monoid
of [HNT08a]. The result is a monoid on binary search trees with multiplicities leading to a Hopf algebra
on binary trees with multiplicities. Interestingly, there is a hook length formula for those trees (Theorem
3) and we prove it using the Hopf algebra as generating series.
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2 Background
In this section, we introduce some notations and three specific maps from words to words: standardiza-
tion, packing, and parkization. These will be the main tool for polynomial realizations of Hopf algebras.

2.1 Lattice structure on Congruences
The free monoid A∗ on an alphabet A is the set of words with concatenation as multiplication. We denote
by 1 the empty word. Recall that a monoid congruence is an equivalence relation≡ which is left and right
compatible with the product; in other words, for any monoid elements a, b, c, d, if a ≡ b and c ≡ d then
ac ≡ bd. Starting with two congruences on can build two new congruences:
• the union ∼ ∨ ≈ of ∼ and ≈ is the transitive closure of the union ∼ and ≈; that is u ≡ v if

there exists u = u0, . . . , uk = v such that for any i, ui ∼ ui+1 or ui ≈ ui+1. It is the smallest
congruence containing both ∼ and ≈;
• the intersection ∼ ∧ ≈ of ∼ and ≈ is defined as the relation ≡ with u ≡ v if u ∼ v and u ≈ v.

2.2 Some ϕ-maps
Throughout this paper we construct Hopf algebras from the equivalence classes of words given by the
fibers of some map ϕ from the free monoid to itself. Our main examples are standardization and packing
functions which can be defined for any totally ordered alphabet A. We could easily extend these following
properties to parkization [NT04, NT07] if the alphabet A is well-ordered (any element has a successor).

In the following, we suppose that A is an totally ordered infinite alphabet. Most of the time we use
A = N>0 for simplicity. For w in A∗, we denote by part(w) the ordered set partition of positions of w

http://code.google.com/p/sage-hopf-algebra/
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letters obtained as follows: for each letter l ∈ A appearing in w, there is a part containing the positions
of each occurrence of l in w; the parts are ordered using the order on the alphabet A. For example:
part(13231) = [{1, 5}, {3}, {2, 4}] and part(1112) = [{1, 2, 3}, {4}].

Standardization std computes the lexicographically smallest word w which has same length and same
set of inversions. This map is used in the realization of the Hopf algebra FQSym of permutations [DHT02,
MR95]. The image std(A∗) is identified with the set S of all permutations.

Algorithm 1: Standardization std
Data: w = (a1, . . . , ak) a word of Ak

Result: σ = (σ1, . . . , σk) ∈ Sk ⊆ Ak

1 osp← part(w); i← 1
2 forall the set ∈ osp do
3 forall the p ∈ set do
4 σp ← i
5 increment(i)

6 return σ

Some examples:
w std(w)

(7, 2, 14, 3, 7) (3, 1, 5, 2, 4)
(23, 14, 5, 92) (3, 2, 1, 4)
(4, 2, 1, 3, 5) (4, 2, 1, 3, 5)

(1, 5, 1, 1, 5, 5) (1, 4, 2, 3, 5, 6)

Packing pack computes the lexicographically smallest word w which has same ordered set partitions.
This map is used in the realization of the Hopf algebra WQSym of ordered set partition or packed words
[Hiv99]. We identify tass(A∗) with the collection of ordered set partitions.

Algorithm 2: Packing pack
Data: w = (a1, . . . , ak) a word of A∗

Result: c = (c1, . . . , ck)
1 osp← part(w); i← 1
2 forall the set ∈ osp do
3 forall the p ∈ set do cp ← i
4
5 increment(i)

6 return c

Some examples:
w tass(w)

(3, 13, 3, 2, 13) (2, 3, 2, 1, 3)
(2, 2, 2, 5, 8, 2) (1, 1, 1, 2, 3, 1)
(4, 2, 1, 3, 5) (4, 2, 1, 3, 5)
(2, 3, 1, 1, 2) (2, 3, 1, 1, 2)

Those maps are used to realize some Hopf algebras like FQSym, WQSym, or PQSym. For each such
map ϕwe say that a wordw is canonical if ϕ(w) = w. For example, 1423 is canonical for std and 1121 is
canonical for pack. The set of canonical words for the standardization function is the set of permutations
set; for the packing function it is the set of packed words. The set ϕ(A∗) of canonical words is denoted
by canϕ. We call these maps the ϕ-maps.

3 Polynomial realizations and Hopf algebras
In this section we describe how, from a ϕ-map, one can construct a Hopf algebra such as FQSym,
WQSym, or PQSym, using two tricks: polynomial realization and alphabet doubling. Polynomial re-
alizations are a powerful trick to construct algebras as sub-algebras of a free algebra by manipulating
some polynoms having certain symmetries. Futhermore the alphabet doubling trick defines a graded al-
gebra morphism on a free algebra which endows it with a compatible coproduct, that is a Hopf algebra
structure.

3.1 ϕ-polynomial realization
The notion of polynomial realizations has been introduced and implicitly used in many articles of the
“phalanstère de Marne-la-Vallée” (France). See e.g. [DHT02, NT06a, HNT08a]. In the following, we
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call alphabet A an infinite and totally ordered (when appropriate, we assume furthermore that the total
order admits a successor function) set of symbols all of which are of weight 1. By an abuse of language,
we call the free algebra the graded algebra infinite but finite degree sum of words.

Definition 1 (Polynomial realization): Let A := ⊕n>0An be a graded algebra. A polynomial real-
ization r of A is a map which associates to each alphabet A an injective graded algebra morphism rA
from A to the free non-commutative algebra K〈A〉 such that, if A ⊂ B, then for all x ∈ A one has
rA(x) = rB(x)/A, where rB(x)/A is the sub linear combination obtained from rB(x) by keeping only
those words in A∗.

When the realization is clear from the context we write A(A) := rA(A) for short.

For a given ϕ, we consider the subspace Aϕ admitting the basis (mu)u∈canϕ defined on Aϕ(A):

rA,ϕ(mu) =
∑
w∈A∗;ϕ(w)=u w . (1)

The result does not depend on the alphabet. For ϕ = std, pack or park the linear span of (mu)u∈canϕ is
a sub-algebra of K〈A〉.
Example 1 (Realization of FQSym): If ϕ = std then canϕ is in fact the set of permutations and Aϕ is
the permutations Hopf algebra FQSym [DHT02, MR95]. It is realized by the std-polynomial realization
in K〈A〉: let Gσ(A) := rA,std(Gσ) such that, for example

G132(N∗) = 121 + 131 + 132 + 141 + 142 + 143 + · · ·+ 242 + 243 + · · · .

The realization is an algebra morphism: Gσ(A) · Gµ(A) = rA,std(Gσ × Gµ) where ”·” is the classical
concatenation product on words in the free algebra. For example,

G213 ×G1 = G2134 + G2143 + G3142 + G3241

which is equivalent to

rstd,N∗(G213 ×G1) = G213(N∗) ·G1(N∗) = (212 + 213 + 214 + · · · ) · (1 + 2 + 3 + 4 + · · · )
= 2121 + 2122 + 2123 + · · · 2131 + 2132 + 2133 + · · ·+ 3241 + · · ·

Proposition 1: If span((mu)u∈canϕ
) is stable under the product × then it is given by:

mu ×mv =
∑

w:=u′v′∈canϕ

ϕ(u′)=u;ϕ(v′)=v

mw . (2)

Remark 1: Let A,B be two totally ordered alphabets such that any element in A is strictly smaller than
any element of B. By definition we have the following isomorphisms, where t denotes the disjoint union:

A ' A(A) ' A(B) ' A(A tB) . (3)

3.2 Alphabet doubling trick
The alphabet doubling trick [DHT02, Hiv07] is a way to define coproducts. We consider the algebra
K〈A tB〉 generated by two (infinite and totally ordered) alphabets A and B such that the letters of A are
strictly smaller than the letters of B. The relation�make the letters of A commute with those of B. One
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identifies K〈A tB〉/� with the algebra K〈A〉 ⊗ K〈B〉. We follow here the abuse of language allowing
infinite but finite degree sum. We denote by rAtB(x)/� the image of rAtB(x) given by the canonical
map from K〈A tB〉 to K〈A tB〉/�. The map x 7→ rAtB(x)/� is always an algebra morphism from
A to K〈A〉 ⊗K〈B〉. Whenever its image is included in A(A)⊗A(B) this defines a coproduct on A.

Definition 2 (Hopf polynomial realization): A Hopf polynomial realization r of H is a polynomial re-
alization such that for all x:

rAtB(x)/� = (rA ⊗ rB)(∆(x)) . (4)

Example 2 (Coproduct in FQSym): We denote by Gσ(A t B) the std-polynomial realization of the
FQSym element indexed by σ in the algebra K〈A tB〉/�. Also we denote by 1, 2, 3, · · · the symbols
of A and in bold red 1,2,3, · · · the symbols of B ordered with 1 < 2 < 3 < · · · < 1 < 2 < 3 < · · · .
Then,

G132(A tB) = 121 + 131 + 132 + · · ·+ 111 + 112 + · · ·+ 121 + 131 + · · ·+ 121 + · · ·
= 121 + 131 + · · ·+ 11·1 + 11·2 + · · ·+ 1·21 + 1·31 + · · ·+ 123 + 132 + · · ·
= ∆(G132) = 1⊗G132 + G1 ⊗G21 + G12 ⊗G1 + G132 ⊗ 1 .

3.3 Good Hopf algebras
We call a Hopf algebra Hϕ good if it is defined by a Hopf polynomial realization rϕ. We call a function
ϕ good if it produces a good Hopf algebra Hϕ. Currently, we know three main good Hopf algebras:
FQSym, WQSym and PQSym are respectivly associated to the standardization, packing and parkization
functions.

4 Good monoids
In the previous section (Section 3), we realized some Hopf algebras in free algebras. In this section, we
give sufficient conditions on a congruence≡ to build a combinatorial quotient of a good Hopf algebra. We
call a monoid good if it statisfies these conditions. We give a sufficient compatibility between ϕ and ≡ to
ensure the product is carried to the quotient. The second condition ensures that the alphabet doubling trick
map. It is used to project the coproduct in the quotient. Under these conditions, a monoids is guaranted
to produce a Hopf algebra quotient (Theorem 1). Furthermore, these conditions on monoid are preserved
under taking infimum and supremum (Theorem 2).

4.1 Definition
The notion of Good monoids has been introduced by HIVERT-NZEUTCHAP [HN07] to build quotients
(sub-algebras) of FQSym. We could also mention PhD thesis.

A good monoid is a monoid which is similar to the plactic monoid [LS81, Knu73]. We consider a free
monoid A∗ with concatenation product ”·”, a congruence≡ on A∗ and a map ϕ : A∗ → A∗. We define the
evaluation ev(w) of a word w as its number of occurrences of each letter of w. For example, the words
ejajv and jjaev have the same evaluation: both have one a, one e, one v and two j. The free monoid
A∗/ ≡ is a ϕ-good monoid if it has the following properties:

Definition 3 (ϕ-congruence): The congruence ≡ is a ϕ-congruence if for all u, v ∈ A∗, u ≡ v if and
only if ϕ(u) ≡ ϕ(v) and ev(u) = ev(v).
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This first compatibility is sufficient to build a quotient algebra of Aϕ.

Definition 4 (Compatibility with restriction to alphabet intervals): The congruence ≡ is compatible
with the restriction to alphabet intervals if, for all u, v ∈ A∗ such that u ≡ v one has u|I ≡ v|I for any I
interval of A, where w|A is word restricted to the alphabet A.

This second compatibility in association with the first ensures that alphabet doubling trick defines a quo-
tient coproduct. Both compatibilities give us an extended definition of a HIVERT-NZEUTCHAP’s good
monoid which one is defined only with ϕ the standardization map:

Definition 5 (ϕ-good monoid): A quotient A∗/ ≡ of the free monoid is a ϕ-good monoid if ≡ is a ϕ-
congruence and is compatible with restriction to alphabet intervals. We call such a congruence a ϕ-good
congruence.

In the following examples, we denote words of A∗ by u, v, w and the letters by a, b, c.

Example 3 (sylvester and stalactic monoids): The sylvester congruence: ≡sylv, defined by

u · ac · w · b · v ≡sylv u · ca · w · b · v whenever a 6 b < c , (5)

is std-compatible and compatible with the restriction to alphabet intervals. Thanks to the binary search
tree insertion algorithm the equivalence classes are in natural bijection with binary search trees. The
quotient monoid is a monoid on binary search trees called the sylvester monoid in [HNT05].

The stalactic congruence [HNT08a]: ≡stal, defined by

u · ba · v · b · w ≡stal u · ab · v · b · w , (6)

is compatible with packing but not with standardization. The quotient monoid is the stalactic monoid. It
is clear that any stalactic class contains a word of the form am1

1 am2
2 . . . amk

k , where the ai are distinct. We
call these words canonical.

51543151145312455 ≡stal 3215214356

4.2 Hopf algebra quotient
These differents good monoids tools was used to (re-)define several Hopf algebra quotients: FSym the
Free Symmetric functions Hopf algebra [DHT02], PBT [LR98, HNT05] or Baxter Hopf algebra [Gir11a,
Gir12]; the Hopf algebra associated with the stalactic monoid [HNT08a]; or CQSym [NT04, NT07] (a
PQSym quotient).

Lemma 1 (Algebra quotient): LetHϕ be a good Hopf algebra and≡ be a ϕ-good congruence such that
its free monoid quotient is a ϕ-good monoid. Then, the quotientHϕ/≡ is an algebra quotient whose bases
are indexed by canϕ/≡, identifying basis elements mu and mv whenever u ≡ v.

Example 4 (PBT and Hopf algebra stalactic): We go back to Example 3. The sylvester quotient of
FQSym is the Hopf algebra PBT [LR98, HNT05].

The stalactic monoid gives a quotient of WQSym. Let π be the projection of WQSym in WQSym/≡stal

and u := 112 and v := 11 two (packed) words. We denote by π the projection of Mu by Qs, with s the
planar diagram associated to the stalactic class of u.

π(M112 ×M11) = π(M11211 + M11222 + M11233 + M11322 + M22311)

= Q122 ×Q12 = Q214 + Q1223 + Q12232 + Q12322 + Q22312
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Lemma 2 (Coalgebra quotient): The quotientH/≡ is a coalgebra quotient.

SKETCH OF THE PROOF: The relation ≡ is compatible with the restriction to alphabet intervals, hence
the alphabet doubling trick ensures that coproduct projects to the quotient.

Example 5:

π(∆(M332122)) = π(1⊗M332122 + M1 ⊗M22111 + M2122 ⊗M11 + M332122 ⊗ 1)

= ∆(Q32123) = 1⊗Q32123 + Q1 ⊗Q2213 + Q123 ⊗Q12 + Q32123 ⊗ 1

Theorem 1 (Good monoid and good Hopf algebra): Let Hϕ be a good Hopf algebra and ≡ be a ϕ-
good congruence. The quotientH/≡ is a Hopf algebra quotient.

Corollary 1: The dual Hopf algebra (H/≡)# is a sub-algebra of the dual Hopf algebra H#, with basis
given by:

M
#

U∈canϕ/≡ =
∑
u∈U m

#
u . (7)

4.3 Operations

Previously we introduced some good functions ϕ: std, pack (and park). It is interesting to investigate the
connections between them:

Definition 6 (refinement): Let ϕ and π be two functions. We say that π refines ϕ, written ϕ ≺ π if
ϕ(π(u)) = ϕ(u) for all u ∈ A∗.

It is clear that refinement is an order.

Proposition 2 (std, tass, park and refinement): For these three functions: standardization std, pack-
ing pack and parking park we have the relation: std ≺ pack ≺ park.

Proposition 3 (Good functions and refinement): Let ϕ and π be two good functions such that ϕ ≺ π.
Then any ϕ-good monoid is a π-good monoid.

Propositions 2 and 3 give us, for example, that any std-good monoid is pack-good. Furthermore opera-
tions on two good congruences give good congruences.

Theorem 2 (∨, ∧ and good congruences): The union and intersection of two ϕ-good congruences ∼
and ≈ are ϕ-good congruences.

As an intriguing consequence the lattice structure on monoids is transported to Hopf algebras. Several
examples of this are know.

Example 6: The intersection (≡sylv ∧ ≡#sylv) of the sylvester relation (5) and its image under the
SCHÜTZENBERGER involution gives std-good monoid: the Baxter monoid [Gir11a, Gir11b].

The union (≡sylv ∨ ≡#sylv) of those relations gives the hypoplactic monoid [Nov00].

In the sequel, we study in detail another example.
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w := 45142234212



P(w) =

2, 4 4

1, 2 4, 3 ↔ 2 3

3, 1 5, 1 1 1

= Bm(w)

Q(w) =
[5, 6, 9, 11]

[3, 10] [1, 4, 8]

[7] [2]

Figure 1: We start by considering the packed word 45142234212, and insert it in a BSTM by the algorithm P; that
give us P(45142234212) above in the middle. On the right, there is the BTm (Bm(w)) associated with the BSTM
(P(w)) of WQSym/≡t . At the top of the figure there is the P -symbol given by P or Bm and below the Q-symbol is
given by Q.

5 The union of the sylvester and the stalactic congruences
As an application of the preceding construction, we consider the union (≡sylv ∨ ≡stal) of the sylvester
congruence (5) and the stalactic congruence (6); we call it the taı̈ga relation ≡t,

u · ac · v · b · w ≡t u · ca · v · b · w for a 6 b < c ,

u · ba · v · b · w ≡t u · ab · v · b · w
(8)

From Proposition 3 we know that the sylvester congruence (5) is a pack-good congruence and from
Theorem 2 we deduce that the taı̈ga monoid is a pack-good monoid.

5.1 Algorithm and taı̈ga monoid
The taı̈ga congruence can be calculated using an insertion algorithm similar to the binary search tree
insertion (see Algorithm 3 for a definition). This insertion algorithm uses a search tree structure:

Definition 7 (Binary search tree with multiplicity): A (planar) binary search tree with multiplicity (BS-
TM) is a binary tree T where each node is labelled by a letter l and a non-negative integer k, called the
multiplicity, so that T is a binary search tree if we drop the multiplicities and such that each letter appears
at most once in T . We denote by (l, k) a node label and for any node n, by l(n) its letter and by m(n) its
multiplicity.

We denote by P(w) the result of the insertion using Algorithm 3 of w from the right to the left in the
empty tree (cf. the left part of the figure 1).

Proposition 4: The taı̈ga classes are the fibers of P . That is for u and v two words: u ≡t v if and only if
P(u) = P(v).

The Q-symbol of w is the tree Q(w) of same shape as P(w) which records the positions of each inserted
letter. This gives us a ROBINSON-SCHENSTED like correspondance [LS81] (cf. Figure 1). As a corollary
of Theorem 2 we get the taı̈ga monoid is a tass-good monoid.

5.2 Quotient of WQSym: PBTm
As in [HNT05], we consider a binary trees with multiplicities without letters.
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Algorithm 3: insertion in a BSTM
Data: t a BSTM with Lt andRt its left and right subtrees, and l a

letter of A
Result: t with l inserted

1 if t is empty tree then
2 t← node labelled by (l, 1)
3 else
4 if l(t) = l then
5 incrementm(t)
6 else
7 if l(t) < l then insert recursively l in Lt

8
9 else insert recursively l inRt

10 return t

Insertion of word 541214 from the
right to the left in the empty tree :

4−−→ 4, 1
1−−→

4, 1

1, 1

2−−→
4, 1

1, 1

2, 1

1−−→
4, 1

1, 2

2, 1

4−−→
4, 2

1, 2

2, 1

5−−→
4, 2

1, 2 5, 1

2, 1

Definition 8 (BTM): A binary tree with multiplicities (BTM) is a (planar) binary tree labelled by non-
negative integers on its nodes. The size of a BTM T denoted by |T | is the sum of the multiplicities.

Let Tw be a BSTM associated to a packed word w, and T be the BTM obtained by removing its letters.
One can recover uniquely Tw from T : indeed each letter of Tw is deduced by a left infix reading of T . We
identify the set of words in pack(A∗)/≡t

of size k (for k > 0) with the set of BTM of size k. We denote
Bm the algorithm which computes the BTM associated to the BSTM computed by P (cf. Figure 1).

Let us denote by S(t) the generating series of these trees counted by size. The generating serie statisfies
the following functional equation S(t) = 1 + S(t)2(1− t)−1 (see A002212 of OEIS):

S(t) = 1−t−
√
5t2−6t+1
2t = 1 + t+ 3t2 + 10t3 + 36t4 + 137t5 + 543t6 + 2219t7 + . . . (9)

This structure is in bijection with binary unary tree structure. Here is the list of trees of size 0,1,2 and 3:

·, 1 ,
1

1
,

1

1
, 2 ,

1

1

1

,
1

1

1

,
1

2
,

1

1 1
,

1

1

1

,
1

1

1

,
1

2
,

2

1
,

2

1
, 3

With Lemma 1 and Theorem 1 we know that the quotient of WQSym(A) by the taı̈ga relations has
a natural basis indexed by tass(A∗)/≡t

identified by BTM. We call PBTm (planar binary tree with
multiplicities) that quotient. More precisely, we consider the basis (Mu)u of WQSym obtained by the
Hopf polynomial realization rtass. We denote by (Qmt )t the canonical projection by the map π of (Mu)u
in PBTm such that π(Mu) := Qmt if t = Bm(u). The product and coproduct are given by some explicit
algorithms. For brevity, we only give here some examples:

π(M1312 ×M1) = π(M13121 + M13122 + M13123 + M13124 + M14123 + M14132 + M24231)

= Qm
1

2 1

×Qm
1

= Qm
3

1

1

+ Qm
1

1

2 1

+ Qm
2

2 1

+ Qm
1

2 1

1

+ Qm
2

1

2

+ Qm
1

1 1

2

+ Qm
1

1

2 1

;

π(∆(M3112)) = π(1⊗M3112 + M11 ⊗M21 + M112 ⊗M1 + M3112 ⊗ 1)

= ∆(Qm
1

2 1

) = 1⊗Qm
1

2 1

+ Qm
2
⊗Qm

1

1

+ Qm
1

2

⊗Qm
1

+ Qm
1

2 1

⊗ 1 .

http://oeis.org/A002212
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We consider PBTm# the dual of PBTm. This is a sub-algebra of WQSym#. We denote by (Pmt )t :=
(Qmt )# its dual basis: 〈Qmt ,Pmt′ 〉 = δt,t′ . The product is given by:

Pmt′ × Pmt′′ =
∑
t〈∆(Qmt ),Pmt′ × Pmt′′〉Pmt . (10)

Here is an example,

Pm
3

1

× Pm
4

2

= Pm
3

1

4

2

+ Pm
3

4

1

2

+ Pm
3

4

2

1

+ Pm
4

3

1

2

+ Pm
4

3

2

1

+ Pm
4

2

3

1

.

If we consider only shape tree, the product is exactly the product of (Pt)t basis in PBT [HNT05].
Hence this product is a shifted shuffle on trees. The coproduct is given by: ∆#(Pmt ) =

∑
t′,t′′ 〈Qmt′ ×

Qmt′′ ,Pmt 〉 Pmt′ ⊗ Pmt′′ . Here is an example:

∆#(Pm
2

1

) = 1⊗ Pm
2

1

+ Pm
1
⊗
(
Pm

2
+ Pm

1

1

)
+

(
Pm

1

1

+ Pm
1

1

)
⊗ Pm

1
+ Pm

2

1

⊗ 1 .

6 The hook length formula
Its well known from [Knu73] (§5.14 ex. 20) that the number of decreasing labelling of a binary tree is
given by a simple product formula. [HNT05] remarks that this is also the number of permutations given
upon a tree by the binary search tree insertion. In this section we generalize this formula for trees with
multiplicities.

Proposition 5: The cardinal f(T ) of the taı̈ga class associated to T (i.e. the set of packed words giving
the tree T by the insertion algorithm Bm) is given by

f(T ) = |T |!
(∏

t∈T |t| (m(t)− 1)!
)−1

. (11)

where t ranges throwgh all the subtrees of T and |T | denotes the size of T (the sum of the multiplicities).

Example 7: The taı̈ga class of T :=
2

1 2
contains 12 packed words w:

23132, 33122, 31232, 32312, 13232, 33212, 23312, 32132, 21332, 31322, 12332, 13322 .

The class of
2

2 1

7 4 2

contains 23, 337, 600 = 18!
(18·9·7·7·4·2)(1!1!6!0!3!1!) packed words.

This formula is easily proven by induction. However, we prefer to give a generating series proof as
in [HNT08b]. Let A be an associative algebra, and consider the functional equation for power series
x ∈ A[[z]]:

x = a+
∑
k>1Bk(x, x) , (12)

where a ∈ A and for any k > 0, Bk(x, y) is a bilinear map with values in A[[z]]. We suppose such
that the valuation of Bk(x, y) is strictly greater than the sum of the valuations of x and y (plus k). Then
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Equation 12 has a unique solution:

x = a+
∑
k>1

(
Bk(a, a) +Bk(a,

∑
k′>1Bk′(a, a)) +Bk(

∑
k′>1Bk′(a, a)), a) + . . .

)
(13)

=
∑
T∈BTM BT (a) ,

where for a tree T , BT (a) is the result of evaluating the expression formed by labelling by a the leaves of
the complete tree associated to T and by Bk its internal node labelled by k.
For example: B

3

6 2

2

(a) = B3(B6(a,B2(a, a)), B2(a, a)).

So if we try to solve the fixed point problem:

x = 1 +

∫ z

0

esx(s)2ds = 1 +
∑
k>1

∫ z
0

sk−1

(k−1)!x(s)2ds = 1 +
∑
k>1Bk(x, x) , (14)

where Bk(x, y) =
∫ z
0

sk−1

(k−1)!x(s)y(s)ds. Then for a binary tree of non-negative integer T , BT (1) is the
monomial obtained by putting 1 on each leaf and integrating at each node n the product of the evaluations
of its subtrees and sk/k! with m(n) = k + 1.

For example:

3 z7

16×7

2 1 BT−−→ z4

8
z2

2

1 2 1 z z2

2
1 z

1 1 1 1 1 1

.

One can observe that BT (1) = f(T ) z
n

n! , where n = |T |.
To prove the hook length formula, following the same technique as in [HNT08b], we want to lift in

WQSym# the fixed point computation of Equation 14. From the multiplication rule [Hiv99] of the dual
basis Su (M#

u := Su), one easily sees that the linear map φ : Su 7→ zn

n! with n the length of u is a
morphism of algebras from WQSym# to K[[z]]. For u, v two packed words of respective size n− 1 and
m, set Bk(Su,Sv) :=

∑
w∈(u�1k−1�v)·n Sw. The crucial observation which allows to express the hook

length formula in a generating series way is the following theorem:

Theorem 3: For any binary tree with multiplicities BT (1) =
∑
Bm(u)=T Su.

In particular, BT (1) coincide with PmT , the natural basis of PBTm#.

Corollary 2: The number of packed words u such that Bm(u) = T is computed by f(T ).

7 Conclusion, work in progress and perspectives
In this paper, we unraveled some new combinatorics on binary trees with multiplicities from the union of
the sylvester and stalactic monoids. Using the machinery of realizations, we built a Hopf algebra on those
trees, allowing us to give a generating series proof of a new hook length formula. Following [HNT08b], it
is very likely that we will also be able to prove a q-hook length formula. On the other hand, the usual case
of the LODAY-RONCO algebra has a lot of nice properties. For example, the product and coproduct can
be expressed by the means of an order on the trees called the Tamari Lattice [LR98]. It would be good to
know if such a lattice exists for trees with multiplicities. This should also relate to N. READING work on
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lattice congruences [Rea05]. Also it could be interesting to study some other combinations in the lattice
of good monoids. For example, the union of the plactic monoid and the stalactic monoid should give a
Hopf algebra of tableaux with multiplicties. Finally, in our construction, it seems that std, tass and park
play some canonical role from which everything else is built. Are there some more examples? Is there a
definition for such a ϕ-map? Could we except to always have a hook formula as soon as we have a good
monoid?
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