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Symmetric functions

Definition: Symmetric Function
A function f = f (x1, x2, . . . , xn) ∈ Q[x1, . . . , xn] is symmetric if for every
collection of positive integers [α1, . . . , αk ] the coefficient of xα1

1 · · · x
αk
k

is equal to the coefficient of xα1
i1
· · · xαk

ik
for all i1, i2, . . . , ik .

Graded Hopf algebra
Sym is a graded Hopf algebra, graded by the degree of the polynomial.
The dimension of the graded component of Symn is the number of
partitions of n.
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Monomial symmetric functions

Definition: Monomial Symmetric Function
The monomial symmetric function indexed by λ is:

mλ =
∑
α

xα1
1 · · · x

αn
n ,

where α runs over all distinct rearrangements of λ.

Definition: Homogeneous symmetric functions
Let hi =

∑
λ`i mλ. The complete homogenous functions are:

hλ := hλ1hλ2 · · · hλm .

Definition: Scalar product
The scalar product on Symn is defined by 〈mλ,hµ〉 = δλ,µ.
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Schur functions
The most important basis of Sym is the basis of Schur functions. The
Schur basis sλ is defined by any of the following:

The Jacobi-Trudi rule:

sλ := det


hλ1 hλ1+1 · · · hλ1+`−1

hλ2−1 hλ2 · · · hλ2+`−2
...

...
. . .

...
hλ`−`+1 hλ`−`+2 · · · hλ`

 = det
∣∣hλi+j−i

∣∣
1≤i,j≤`

where we use the convention that h0 = 1 and h−m = 0 for m > 0.

Example: λ = (2,1)

s2,1 =

∣∣∣∣ h2 h3
h0 h1

∣∣∣∣ = h2h1 − h3
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Schur functions

The most important basis of Sym is the basis of Schur functions. The
Schur basis sλ is defined by any of the following:

The Pieri rule:

sλhi =
∑
µ

sµ,

the sum over all µ for which µ/λ is a horizontal strip of size i

Example: λ = (2,1) and i = 3

s2,1h3 = s3,2,1 + s4,1,1 + s4,2 + s5,1

×
×

×

× ×

×
× ×

×
× × ×
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Schur functions

The most important basis of Sym is the basis of Schur functions. The
Schur basis sλ is defined by any of the following:

Semi-standard tableaux:

sλ =
∑

T∈SST (λ)

xT

Example: λ = (2,1) in three variables

s2,1 = x2
1 x2 + x1x2

2 + x2
1 x3 + 2x1x2x3 + x2

2 x3 + x1x2
3 + x2x2

3

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3
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Schur functions
The most important basis of Sym is the basis of Schur functions. The
Schur basis sλ is defined by any of the following:

Structure coefficients (the Littlewood Richardson rule):

sλsµ =
∑
ν

cνλ,µsν ,

cνλ,µ is the Yamanouchi tableaux of shape ν/λ and content µ.

Example: µ = λ = (2,1)

1 1
2 =

1
1
2

1
1 2

1
1
2

s21 s21 = s2211 + s222 + s3111

1
1

2
1

2
1

1
1 2

1 1
2

1 1
2

+ 2s321 + s33 + s411 + s42
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Schur functions

The most important basis of Sym is the basis of Schur functions. The
Schur basis sλ is defined by any of the following:

Representation Theory of Sn

Via the Frobenius transformation, the Schur functions correspond to
the irreducible representations of the symmetric group.

Representation Theory of GLn

The Schur functions are the characters of the irreducible
representations of the general linear group.
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Quasi-symmetric functions
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Quasi-symmetric functions

Definition: Quasi-symmetric function
A function f = f (x1, x2, . . . , xn) ∈ Q[x1, . . . , xn] is quasi-symmetric if for
every collection of positive integers (α1, . . . , αk ), the coefficient of
xα1

1 · · · x
αk
k is equal to the coefficient of xα1

i1
· · · xαk

ik
for all

i1 < i2 < · · · < ik .

Hopf Algebra
QSym is a graded Hopf algebra, graded by the degree of the
polynomial. The dimension of the graded component QSymn is the
number of compositions of n.
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Monomial quasi-symmetric functions

Definition: Monomial quasi-symmetric function
The monomial quasi-symmetric function indexed by a composition α is
defined as

Mα =
∑

i1<i2<···<im

xα1
i1

xα2
i2
· · · xαm

im .

Positive expansion of monomials
It is clear that

mλ =
∑
α

Mα,

the sum over all compositions which re-arrange to form the partition λ.
This implies that Sym is a subalgebra of QSym.
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Fundamental quasi-symmetric functions

Definition: Fundamental basis
The fundamental basis of QSym is defined by:

Fα =
∑
β≤α

Mβ.

Positive expansion of Schur functions
The Schur functions expand positively in the Fundamental basis nicely:

sλ =
∑

T∈SYT (λ)

FD(T )
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Non-commutative symmetric
functions
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Non-commutative symmetric functions

Definition: Non-commutative symmetric functions
NSym is the algebra generated by the non-commuting elements Hi of
degree i , i.e. NSym = Q〈H1,H2, . . . 〉.

Complete homogenous functions
A basis for NSymn are the non-commutative complete homogenous
functions

Hα := Hα1 · · ·Hαm .

Sym is a quotient of NSym
χ : NSym→ Sym is defined by χ(Hα) = hλ(α).
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Representation theory behind NSym

Dual Hopf algebras
NSym and QSym are in fact dual Hopf algebras. There is a scalar
product between the two algebras by viewing Mα and Hβ as dual
bases:

〈Mα,Hβ〉 = δα,β

Representation theory
NSym and QSym are isomorphic to K0(Hn(0)) and G0(Hn(0))
respectively, where Hn(0) denotes the 0-Hecke algebra.
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The immaculate basis
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Immaculate tableaux

Definition: Immaculate tableaux
An immaculate tableau of shape α and content β is a labeling of the
boxes of the diagram of α by positive integers in such a way that:

1 the number of boxes labelled by i is βi ;
2 the sequence of entries in each row, from left to right, is weakly

increasing;
3 the sequence of entries in the first column, from top to bottom, is

increasing.

Example: α = [4,2,3] and β = [3,1,2,3]

1 1 1 3
2 3
4 4 4

1 1 1 3
2 4
3 4 4

1 1 1 4
2 3
3 4 4

1 1 1 4
2 4
3 3 4

1 1 1 2
3 3
4 4 4
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The immaculate basis
The immaculate basis of NSym can be defined by any of the following:

Jacobi-Trudi type rule:

Sα := det


Hα1 Hα1+1 · · · Hα1+`−1

Hα2−1 Hα2 · · · Hα2+`−2
...

...
. . .

...
Hα`−`+1 Hα`−`+2 · · · Hα`


=
∑
σ∈S`

(−1)σHα1+σ1−1,α2+σ2−2,...,α`+σ`−`

where H0 = 1 and H−m = 0 for m > 0.

Example: α = (1,2)

S1,2 =

∣∣∣∣ H1 H2
H1 H2

∣∣∣∣ = H1H2 − H2H1

B2S2Z The immaculate basis June 11th, 2013 20 / 30



The immaculate basis
The immaculate basis of NSym can be defined by any of the following:

Jacobi-Trudi type rule:

Sα := det


Hα1 Hα1+1 · · · Hα1+`−1

Hα2−1 Hα2 · · · Hα2+`−2
...

...
. . .

...
Hα`−`+1 Hα`−`+2 · · · Hα`


=
∑
σ∈S`

(−1)σHα1+σ1−1,α2+σ2−2,...,α`+σ`−`

where H0 = 1 and H−m = 0 for m > 0.

Example: α = (1,2)

S1,2 =

∣∣∣∣ H1 H2
H1 H2

∣∣∣∣ = H1H2 − H2H1

B2S2Z The immaculate basis June 11th, 2013 20 / 30



The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Pieri type rule:

SαHi =
∑
β

Sβ,

the sum over all β for which αi ≤ βi and len(β) ≤ len(α) + 1.

Example: α = (1,2) and i = 2

S1,2H2 = S1,2,2 +S1,3,1 +S1,4 +S2,2,1 +S2,3 +S3,2

× ×
×

× × ×
×

×
×
×

× ×
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The immaculate basis
The immaculate basis of NSym can be defined by any of the following:

Littlewood Richardson type rule:

SαSλ =
∑
β

Cβ
α,λSβ,

Cβ
α,λ is the number of Yamanouchi tableau of shape β/α and content λ.

Example: α = (1,2), λ = (2,1)

1 1
2 = 1 1

2
1

1
2

1
1 2

1
1
2

1
1 2

S12 S21 = S1221 + S1311 + S132 + S2211 + S222

1
2

1
1

1
2

1 1
2

1
1 2

1 1
2

1 1
2

+ 2S231 + S141 + S24 + S33 + S321
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The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A tableaux expansion:

S∗α =
∑

T∈IT (α)

xT ,

the sum over immaculate tableaux, where S∗α is the basis of QSym
which is dual to the immaculate basis.

Example: α = (2,2) in three variables

S∗22 = x2
1 x2

2+x1x3
2+x2

1 x2x3+2x1x2
2 x3+x2

1 x2
3+2x1x2x2

3+x2
2 x2

3+x1x3
3+x2x3

3

1 1
2 2

1 2
2 2

1 1
2 3

1 2
2 3

1 3
2 2

1 1
3 3

1 2
3 3

1 3
2 3

2 2
3 3

1 3
3 3

2 3
3 3
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The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A fundamental expansion:

S∗α =
∑

T∈SIT (α)

FD(T ),

the sum over standard immaculate tableaux.

Example: α = [2,1,3]

S∗213 = F1122 + F1131 + F114 + F123 + F213

1 4
2
3 5 6

1 5
2
3 4 6

1 6
2
3 4 5

1 3
2
4 5 6

1 2
3
4 5 6
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Applications
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A new computation of Littlewood-Richardson
coefficients
Relationship amongst coefficients
For compositions α, β, ν and a partition λ such that `(ν) ≤ `(α),

Cβ
α,λ = Cβ+ν

α+ν,λ

Example: λ = (2,1) and α = (1,1)

S1,1S2,1 = S1,1,2,1 +S1,2,1,1 +S1,2,2 +S1,3,1 +S2,1,1,1 +S2,1,2

+2S2,2,1 +S2,3 +S3,1,1 +S3,2.

Therefore:

s3,2s2,1 = s3,2,2,1 + s3,3,1,1 + s3,3,2 + s3,4,1 + s4,2,1,1 + s4,2,2

+2s4,3,1 + s4,4 + s5,2,1 + s5,3
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Modules for the immaculate basis

Representation Theory of 0-Hecke algebra
The irreducible representations of Hn(0) are all one dimensional.
Under the identification of QSym with G0(Hn(0)), an irreducible
indexed by α corresponds to the fundamental quasi-symmetric
function Fα.

Construction of modules
There exists a combinatorially defined, indecomposable, finite
dimensional, representation Vα of Hn(0) whose characteristic is S∗α.
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The hook length formula by example
Proposition: Hook length formula
If α |= n, the number of standard immaculate tableaux of shape α is
equal to

n!∏
c∈α hα(c)

where c ∈ α indicates c = (i , j) with 1 ≤ i ≤ `(α) and 1 ≤ j ≤ αi .

Example: α = [4,2,3]

9 3 2 1
5 1
3 2 1

The number of standard immaculate tableaux of shape [4,2,3] is equal
to

9!
9 · 3 · 2 · 1 · 5 · 1 · 3 · 2 · 1

= 224 .
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THANKS!
Slides to be available on the web.

Immaculate basis and their duals available in Sage!
Papers: 1208:5191, 1304:1224 , 1305:4700

FPSAC Abstract: 1303:4801
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