The immaculate basis of the non-commutative symmetric functions

Chris Berg ${ }^{2,3,4}$ Nantel Bergeron ${ }^{1,5} \quad$ Franco Saliola ${ }^{3,4}$
Luis Serrano ${ }^{3,4}$ Mike Zabrocki ${ }^{1,5}$

Fields Institute ${ }^{1}$
Google Inc. ${ }^{2}$
Laboratoire de combinatoire et d'informatique mathématique ${ }^{3}$
Université du Québec à Montréal ${ }^{4}$
York University ${ }^{5}$

> Papers: 1208:5191, 1304:1224, 1305:4700
> Fpsac Abstract: 1303:4801

Outline

(1) Symmetric functions
(2) Quasi-symmetric functions
(3) Non-commutative symmetric functions
(4) The immaculate basis
(5) Applications

Symmetric Functions

Symmetric functions

Definition: Symmetric Function

A function $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is symmetric if for every collection of positive integers $\left[\alpha_{1}, \ldots, \alpha_{k}\right]$ the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ for all $i_{1}, i_{2}, \ldots, i_{k}$.

Symmetric functions

Definition: Symmetric Function

A function $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is symmetric if for every collection of positive integers $\left[\alpha_{1}, \ldots, \alpha_{k}\right]$ the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ for all $i_{1}, i_{2}, \ldots, i_{k}$.

Graded Hopf algebra

Sym is a graded Hopf algebra, graded by the degree of the polynomial. The dimension of the graded component of Sym_{n} is the number of partitions of n.

Monomial symmetric functions

Definition: Monomial Symmetric Function

The monomial symmetric function indexed by λ is:

$$
m_{\lambda}=\sum_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where α runs over all distinct rearrangements of λ.

Monomial symmetric functions

Definition: Monomial Symmetric Function

The monomial symmetric function indexed by λ is:

$$
m_{\lambda}=\sum_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where α runs over all distinct rearrangements of λ.

Definition: Homogeneous symmetric functions

Let $h_{i}=\sum_{\lambda \vdash i} m_{\lambda}$. The complete homogenous functions are:

$$
h_{\lambda}:=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{m}} .
$$

Monomial symmetric functions

Definition: Monomial Symmetric Function

The monomial symmetric function indexed by λ is:

$$
m_{\lambda}=\sum_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where α runs over all distinct rearrangements of λ.

Definition: Homogeneous symmetric functions

Let $h_{i}=\sum_{\lambda \vdash i} m_{\lambda}$. The complete homogenous functions are:

$$
h_{\lambda}:=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{m}} .
$$

Definition: Scalar product

The scalar product on Sym_{n} is defined by $\left\langle m_{\lambda}, h_{\mu}\right\rangle=\delta_{\lambda, \mu}$.

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

The Jacobi-Trudi rule:

$$
s_{\lambda}:=\operatorname{det}\left[\begin{array}{cccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & \cdots & h_{\lambda_{1}+\ell-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & \cdots & h_{\lambda_{2}+\ell-2} \\
\vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{\ell}-\ell+1} & h_{\lambda_{\ell}-\ell+2} & \cdots & h_{\lambda_{\ell}}
\end{array}\right]=\operatorname{det}\left|h_{\lambda_{i}+j-i}\right|_{1 \leq i, j \leq \ell}
$$

where we use the convention that $h_{0}=1$ and $h_{-m}=0$ for $m>0$.

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

The Jacobi-Trudi rule:

$$
s_{\lambda}:=\operatorname{det}\left[\begin{array}{cccc}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & \cdots & h_{\lambda_{1}+\ell-1} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & \cdots & h_{\lambda_{2}+\ell-2} \\
\vdots & \vdots & \ddots & \vdots \\
h_{\lambda_{\ell}-\ell+1} & h_{\lambda_{\ell}-\ell+2} & \cdots & h_{\lambda_{\ell}}
\end{array}\right]=\operatorname{det}\left|h_{\lambda_{i}+j-i}\right|_{1 \leq i, j \leq \ell}
$$

where we use the convention that $h_{0}=1$ and $h_{-m}=0$ for $m>0$.

Example: $\lambda=(2,1)$

$$
s_{2,1}=\left|\begin{array}{ll}
h_{2} & h_{3} \\
h_{0} & h_{1}
\end{array}\right|=h_{2} h_{1}-h_{3}
$$

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

The Pieri rule:

$$
s_{\lambda} h_{i}=\sum_{\mu} s_{\mu}
$$

the sum over all μ for which μ / λ is a horizontal strip of size \mathbf{i}

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

The Pieri rule:

$$
s_{\lambda} h_{i}=\sum_{\mu} s_{\mu}
$$

the sum over all μ for which μ / λ is a horizontal strip of size \mathbf{i}
Example: $\lambda=(2,1)$ and $i=3$

$$
s_{2,1} h_{3}=s_{3,2,1}+s_{4,1,1}+s_{4,2}+s_{5,1}
$$

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Semi-standard tableaux:

$$
s_{\lambda}=\sum_{T \in S S T(\lambda)} x^{T}
$$

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Semi-standard tableaux:

$$
s_{\lambda}=\sum_{T \in S S T(\lambda)} x^{T}
$$

Example: $\lambda=(2,1)$ in three variables

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Structure coefficients (the Littlewood Richardson rule):

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

$c_{\lambda, \mu}^{\nu}$ is the Yamanouchi tableaux of shape ν / λ and content μ.

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Structure coefficients (the Littlewood Richardson rule):

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}
$$

$C_{\lambda, \mu}^{\nu}$ is the Yamanouchi tableaux of shape ν / λ and content μ.
Example: $\mu=\lambda=(2,1)$

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Representation Theory of S_{n}

Via the Frobenius transformation, the Schur functions correspond to the irreducible representations of the symmetric group.

Schur functions

The most important basis of Sym is the basis of Schur functions. The Schur basis s_{λ} is defined by any of the following:

Representation Theory of S_{n}

Via the Frobenius transformation, the Schur functions correspond to the irreducible representations of the symmetric group.

Representation Theory of $G L_{n}$

The Schur functions are the characters of the irreducible representations of the general linear group.

Quasi-symmetric functions

Quasi-symmetric functions

Definition: Quasi-symmetric function

A function $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is quasi-symmetric if for every collection of positive integers $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ for all $i_{1}<i_{2}<\cdots<i_{k}$.

Quasi-symmetric functions

Definition: Quasi-symmetric function

A function $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is quasi-symmetric if for every collection of positive integers $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, the coefficient of $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}$ is equal to the coefficient of $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ for all $i_{1}<i_{2}<\cdots<i_{k}$.

Hopf Algebra

QSym is a graded Hopf algebra, graded by the degree of the polynomial. The dimension of the graded component QSym $n n$ is the number of compositions of n.

Monomial quasi-symmetric functions

Definition: Monomial quasi-symmetric function

The monomial quasi-symmetric function indexed by a composition α is defined as

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{m}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{m}}^{\alpha_{m}}
$$

Monomial quasi-symmetric functions

Definition: Monomial quasi-symmetric function

The monomial quasi-symmetric function indexed by a composition α is defined as

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{m}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{m}}^{\alpha_{m}}
$$

Positive expansion of monomials

It is clear that

$$
m_{\lambda}=\sum_{\alpha} M_{\alpha}
$$

the sum over all compositions which re-arrange to form the partition λ. This implies that Sym is a subalgebra of QSym.

Fundamental quasi-symmetric functions

Definition: Fundamental basis

The fundamental basis of QSym is defined by:

$$
F_{\alpha}=\sum_{\beta \leq \alpha} M_{\beta} .
$$

Fundamental quasi-symmetric functions

Definition: Fundamental basis

The fundamental basis of QSym is defined by:

$$
F_{\alpha}=\sum_{\beta \leq \alpha} M_{\beta}
$$

Positive expansion of Schur functions
The Schur functions expand positively in the Fundamental basis nicely:

$$
s_{\lambda}=\sum_{T \in S Y T(\lambda)} F_{D(T)}
$$

Non-commutative symmetric functions

Non-commutative symmetric functions

Definition: Non-commutative symmetric functions

NSym is the algebra generated by the non-commuting elements H_{i} of degree i, i.e. $N S y m=\mathbb{Q}\left\langle H_{1}, H_{2}, \ldots\right\rangle$.

Non-commutative symmetric functions

Definition: Non-commutative symmetric functions

NSym is the algebra generated by the non-commuting elements H_{i} of degree i, i.e. $N S y m=\mathbb{Q}\left\langle H_{1}, H_{2}, \ldots\right\rangle$.

Complete homogenous functions

A basis for NSym_{n} are the non-commutative complete homogenous functions

$$
H_{\alpha}:=H_{\alpha_{1}} \cdots H_{\alpha_{m}} .
$$

Non-commutative symmetric functions

Definition: Non-commutative symmetric functions

NSym is the algebra generated by the non-commuting elements H_{i} of degree i, i.e. $N S y m=\mathbb{Q}\left\langle H_{1}, H_{2}, \ldots\right\rangle$.

Complete homogenous functions

A basis for NSym_{n} are the non-commutative complete homogenous functions

$$
H_{\alpha}:=H_{\alpha_{1}} \cdots H_{\alpha_{m}} .
$$

Sym is a quotient of NSym

$\chi:$ NSym \rightarrow Sym is defined by $\chi\left(H_{\alpha}\right)=h_{\lambda(\alpha)}$.

Representation theory behind NSym

Dual Hopf algebras

NSym and QSym are in fact dual Hopf algebras. There is a scalar product between the two algebras by viewing M_{α} and H_{β} as dual bases:

$$
\left\langle M_{\alpha}, H_{\beta}\right\rangle=\delta_{\alpha, \beta}
$$

Representation theory behind NSym

Dual Hopf algebras

NSym and QSym are in fact dual Hopf algebras. There is a scalar product between the two algebras by viewing M_{α} and H_{β} as dual bases:

$$
\left\langle M_{\alpha}, H_{\beta}\right\rangle=\delta_{\alpha, \beta}
$$

Representation theory

NSym and QSym are isomorphic to $K_{0}\left(H_{n}(0)\right)$ and $G_{0}\left(H_{n}(0)\right)$ respectively, where $H_{n}(0)$ denotes the 0 -Hecke algebra.

The immaculate basis

Immaculate tableaux

Definition: Immaculate tableaux

An immaculate tableau of shape α and content β is a labeling of the boxes of the diagram of α by positive integers in such a way that:

Immaculate tableaux

Definition: Immaculate tableaux

An immaculate tableau of shape α and content β is a labeling of the boxes of the diagram of α by positive integers in such a way that:
(1) the number of boxes labelled by i is β_{i};

Immaculate tableaux

Definition: Immaculate tableaux

An immaculate tableau of shape α and content β is a labeling of the boxes of the diagram of α by positive integers in such a way that:
(1) the number of boxes labelled by i is β_{i};
(2) the sequence of entries in each row, from left to right, is weakly increasing;

Immaculate tableaux

Definition: Immaculate tableaux

An immaculate tableau of shape α and content β is a labeling of the boxes of the diagram of α by positive integers in such a way that:
(1) the number of boxes labelled by i is β_{i};
(2) the sequence of entries in each row, from left to right, is weakly increasing;
(3) the sequence of entries in the first column, from top to bottom, is increasing.

Immaculate tableaux

Definition: Immaculate tableaux

An immaculate tableau of shape α and content β is a labeling of the boxes of the diagram of α by positive integers in such a way that:
(1) the number of boxes labelled by i is β_{i};
(2) the sequence of entries in each row, from left to right, is weakly increasing;
(3) the sequence of entries in the first column, from top to bottom, is increasing.

Example: $\alpha=[4,2,3]$ and $\beta=[3,1,2,3]$

1	1	$1 \mid 3$	1	1		$1 \mid 3$	1	1		14	1	1		14	1	1		2
2	3		2	4			2	3			2	4			3	3		
4	4	4	3	4		4	3	4	4		3	3	4	4	4	4	4	

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Jacobi-Trudi type rule:

$$
\begin{gathered}
\mathfrak{S}_{\alpha}:=\operatorname{det}\left[\begin{array}{cccc}
H_{\alpha_{1}} & H_{\alpha_{1}+1} & \cdots & H_{\alpha_{1}+\ell-1} \\
H_{\alpha_{2}-1} & H_{\alpha_{2}} & \cdots & H_{\alpha_{2}+\ell-2} \\
\vdots & \vdots & \ddots & \vdots \\
H_{\alpha_{\ell}-\ell+1} & H_{\alpha_{\ell}-\ell+2} & \cdots & H_{\alpha_{\ell}}
\end{array}\right] \\
=\sum_{\sigma \in S_{\ell}}(-1)^{\sigma} H_{\alpha_{1}+\sigma_{1}-1, \alpha_{2}+\sigma_{2}-2, \ldots, \alpha_{\ell}+\sigma_{\ell}-\ell} \\
\text { where } H_{0}=1 \text { and } H_{-m}=0 \text { for } m>0 .
\end{gathered}
$$

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Jacobi-Trudi type rule:

$$
\begin{aligned}
\mathfrak{S}_{\alpha} & :=\operatorname{det}\left[\begin{array}{cccc}
H_{\alpha_{1}} & H_{\alpha_{1}+1} & \cdots & H_{\alpha_{1}+\ell-1} \\
H_{\alpha_{2}-1} & H_{\alpha_{2}} & \cdots & H_{\alpha_{2}+\ell-2} \\
\vdots & \vdots & \ddots & \vdots \\
H_{\alpha_{\ell}-\ell+1} & H_{\alpha_{\ell}-\ell+2} & \cdots & H_{\alpha_{\ell}}
\end{array}\right] \\
& =\sum_{\sigma \in S_{\ell}}(-1)^{\sigma} H_{\alpha_{1}+\sigma_{1}-1, \alpha_{2}+\sigma_{2}-2, \ldots, \alpha_{\ell}+\sigma_{\ell}-\ell}
\end{aligned}
$$

where $H_{0}=1$ and $H_{-m}=0$ for $m>0$.

Example: $\alpha=(1,2)$

$$
\mathfrak{S}_{1,2}=\left|\begin{array}{ll}
H_{1} & H_{2} \\
H_{1} & H_{2}
\end{array}\right|=H_{1} H_{2}-H_{2} H_{1}
$$

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Pieri type rule:

$$
\mathfrak{S}_{\alpha} H_{i}=\sum_{\beta} \mathfrak{S}_{\beta},
$$

the sum over all β for which $\alpha_{i} \leq \beta_{i}$ and $\operatorname{len}(\beta) \leq \operatorname{len}(\alpha)+1$.

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Pieri type rule:

$$
\mathfrak{S}_{\alpha} H_{i}=\sum_{\beta} \mathfrak{S}_{\beta},
$$

the sum over all β for which $\alpha_{i} \leq \beta_{i}$ and $\operatorname{len}(\beta) \leq \operatorname{len}(\alpha)+1$.
Example: $\alpha=(1,2)$ and $i=2$

$$
\mathfrak{S}_{1,2} \boldsymbol{H}_{2}=\mathfrak{S}_{1,2,2}+\mathfrak{S}_{1,3,1}+\mathfrak{S}_{1,4}+\mathfrak{S}_{2,2,1}+\mathfrak{S}_{2,3}+\mathfrak{S}_{3,2}
$$

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Littlewood Richardson type rule:

$$
\mathfrak{S}_{\alpha} \mathfrak{S}_{\lambda}=\sum_{\beta} \mathcal{C}_{\alpha, \lambda}^{\beta} \mathfrak{S}_{\beta},
$$

$C_{\alpha, \lambda}^{\beta}$ is the number of Yamanouchi tableau of shape β / α and content λ.

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

Littlewood Richardson type rule:

$$
\mathfrak{S}_{\alpha} \mathfrak{S}_{\lambda}=\sum_{\beta} \mathcal{C}_{\alpha, \lambda}^{\beta} \mathfrak{S}_{\beta},
$$

$C_{\alpha, \lambda}^{\beta}$ is the number of Yamanouchi tableau of shape β / α and content λ.
Example: $\alpha=(1,2), \lambda=(2,1)$

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A tableaux expansion:

$$
\mathfrak{S}_{\alpha}^{*}=\sum_{T \in I T(\alpha)} x^{T},
$$

the sum over immaculate tableaux, where $\mathfrak{S}_{\alpha}^{*}$ is the basis of QSym which is dual to the immaculate basis.

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A tableaux expansion:

$$
\mathfrak{S}_{\alpha}^{*}=\sum_{T \in I T(\alpha)} x^{T},
$$

the sum over immaculate tableaux, where $\mathfrak{S}_{\alpha}^{*}$ is the basis of QSym which is dual to the immaculate basis.

Example: $\alpha=(2,2)$ in three variables

$\mathfrak{S}_{22}^{*}=x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}+x_{1}^{2} x_{2} x_{3}+2 x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}+x_{1} x_{3}^{3}+x_{2} x_{3}^{3}$
11
212
2

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A fundamental expansion:

$$
\mathfrak{S}_{\alpha}^{*}=\sum_{T \in S I T(\alpha)} F_{D(T)}
$$

the sum over standard immaculate tableaux.

The immaculate basis

The immaculate basis of NSym can be defined by any of the following:

A fundamental expansion:

$$
\mathfrak{S}_{\alpha}^{*}=\sum_{T \in S I T(\alpha)} F_{D(T)}
$$

the sum over standard immaculate tableaux.
Example: $\alpha=[2,1,3]$

Applications

A new computation of Littlewood-Richardson coefficients

Relationship amongst coefficients

For compositions α, β, ν and a partition λ such that $\ell(\nu) \leq \ell(\alpha)$,

$$
C_{\alpha, \lambda}^{\beta}=C_{\alpha+\nu, \lambda}^{\beta+\nu}
$$

A new computation of Littlewood-Richardson coefficients

Relationship amongst coefficients

For compositions α, β, ν and a partition λ such that $\ell(\nu) \leq \ell(\alpha)$,

$$
C_{\alpha, \lambda}^{\beta}=C_{\alpha+\nu, \lambda}^{\beta+\nu}
$$

Example: $\lambda=(2,1)$ and $\alpha=(1,1)$

$$
\begin{gathered}
\mathfrak{S}_{1,1} \mathfrak{S}_{2,1}=\mathfrak{S}_{1,1,2,1}+\mathfrak{S}_{1,2,1,1}+\mathfrak{S}_{1,2,2}+\mathfrak{S}_{1,3,1}+\mathfrak{S}_{2,1,1,1}+\mathfrak{S}_{2,1,2} \\
+2 \mathfrak{S}_{2,2,1}+\mathfrak{S}_{2,3}+\mathfrak{S}_{3,1,1}+\mathfrak{S}_{3,2}
\end{gathered}
$$

A new computation of Littlewood-Richardson coefficients

Relationship amongst coefficients

For compositions α, β, ν and a partition λ such that $\ell(\nu) \leq \ell(\alpha)$,

$$
C_{\alpha, \lambda}^{\beta}=C_{\alpha+\nu, \lambda}^{\beta+\nu}
$$

Example: $\lambda=(2,1)$ and $\alpha=(1,1)$

$$
\begin{gathered}
\mathfrak{S}_{1,1} \mathfrak{S}_{2,1}=\mathfrak{S}_{1,1,2,1}+\mathfrak{S}_{1,2,1,1}+\mathfrak{S}_{1,2,2}+\mathfrak{S}_{1,3,1}+\mathfrak{S}_{2,1,1,1}+\mathfrak{S}_{2,1,2} \\
+2 \mathfrak{S}_{2,2,1}+\mathfrak{S}_{2,3}+\mathfrak{S}_{3,1,1}+\mathfrak{S}_{3,2}
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
s_{3,2} s_{2,1}=s_{3,2,2,1}+s_{3,3,1,1}+s_{3,3,2}+s_{3,4,1}+s_{4,2,1,1}+s_{4,2,2} \\
+2 s_{4,3,1}+s_{4,4}+s_{5,2,1}+s_{5,3}
\end{gathered}
$$

Modules for the immaculate basis

Representation Theory of 0-Hecke algebra

The irreducible representations of $H_{n}(0)$ are all one dimensional. Under the identification of QSym with $G_{0}\left(H_{n}(0)\right)$, an irreducible indexed by α corresponds to the fundamental quasi-symmetric function F_{α}.

Modules for the immaculate basis

Representation Theory of 0-Hecke algebra

The irreducible representations of $H_{n}(0)$ are all one dimensional. Under the identification of QSym with $G_{0}\left(H_{n}(0)\right)$, an irreducible indexed by α corresponds to the fundamental quasi-symmetric function F_{α}.

Construction of modules

There exists a combinatorially defined, indecomposable, finite dimensional, representation \mathcal{V}_{α} of $H_{n}(0)$ whose characteristic is $\mathfrak{S}_{\alpha}^{*}$.

The hook length formula by example

Proposition: Hook length formula

If $\alpha \models n$, the number of standard immaculate tableaux of shape α is equal to

$$
\frac{n!}{\prod_{c \in \alpha} h_{\alpha}(c)}
$$

where $\boldsymbol{c} \in \alpha$ indicates $\boldsymbol{c}=(i, j)$ with $1 \leq i \leq \ell(\alpha)$ and $1 \leq j \leq \alpha_{i}$.

The hook length formula by example

Proposition: Hook length formula

If $\alpha \models n$, the number of standard immaculate tableaux of shape α is equal to

$$
\frac{n!}{\prod_{c \in \alpha} h_{\alpha}(c)}
$$

where $\boldsymbol{c} \in \alpha$ indicates $\boldsymbol{c}=(i, j)$ with $1 \leq i \leq \ell(\alpha)$ and $1 \leq j \leq \alpha_{i}$.
Example: $\alpha=[4,2,3]$

9	3	2	1
5	1		
3	2		

The number of standard immaculate tableaux of shape $[4,2,3]$ is equal to

$$
\frac{9!}{9 \cdot 3 \cdot 2 \cdot 1 \cdot 5 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=224
$$

THANKS!

Slides to be available on the web. Immaculate basis and their duals available in Sage! Papers: 1208:5191, 1304:1224, 1305:4700 FPSAC Abstract: 1303:4801

