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Unified bijective framework for planar maps



Maps

Definition: A map is a gluing of polygons (pairing of the edges)
forming a connected surface without boundary.



Maps
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Equivalent definition: A map is a cellular embedding of a connected
graph in a surface, considered up to homeomorphism.

Definition: A map is a gluing of polygons (pairing of the edges)
forming a connected surface without boundary.



Planar maps.

A planar map is a map on the sphere.
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Planar maps.

A planar map is a map on the sphere.

A planar triangulation.
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Random surfaces

“There are methods and formulae in science, which serve as master-keys to
many apparently different problems. The resources of such things have to
be refilled from time to time. In my opinion at the present time we have to
develop an art of handling sums over random surfaces. These sums replace
the old-fashioned (and extremely useful) sums over random paths. ”
A.M. Polyakov, Moscow, 1981

Random surfaces are important in physics (2D Quantum gravity)



Random surfaces

Consider the random quadrangulation obtained by choosing uni-
formly among all ways of gluing n = 1000 squares to form the sphere.



Random surfaces

Consider the random quadrangulation obtained by choosing uni-
formly among all ways of gluing n = 1000 squares to form the sphere.

It is a random metric space: (Vn, dn).
Hope to define a random surface by taking limit when

• number of squares →∞,
• size of squares → 0.



Random surfaces

Consider the random quadrangulation obtained by choosing uni-
formly among all ways of gluing n = 1000 squares to form the sphere.

It is a random metric space: (Vn, dn).
Hope to define a random surface by taking limit when

• number of squares →∞,
• size of squares → 0.

Theorem [Chassaing, Schaeffer 03] The distance between two
random points of the random quadrangulations is Cn n

1/4, where the
random variable Cn converges in distribution toward a know law (ISE).



Random surfaces

Let Mn = (Vn,
dn
n1/4 ) be the random metric space corresponding to a

rescaled uniformly random quadrangulations with n squares.



Random surfaces

Let Mn = (Vn,
dn
n1/4 ) be the random metric space corresponding to a

rescaled uniformly random quadrangulations with n squares.

Theorem.[Le Gall 2007 + Miermont/Le Gall 2012]
The sequence (Mn) converges in distribution (in the Gromov Hausdorff
topology) toward a random metric space, which
- is homeomorphic to the sphere
- has Hausdorff dimension 4.
(+ ”explicit” description of the space).

distribution

Related work. Bouttier, Di Francesco, Chassaing, Guitter, Le Gall,
Marckert, Miermont, Mokkadem, Paulin, Schaeffer, Weill . . .



Key tool

Bijection between quadrangulations and trees:
[Cori, Vauquelin 81, Schaeffer 98]

Quadrangulation with n faces
+ marked vertex + marked edge

Rooted plane tree with n edges
+vertex labels changing by −1, 0, 1
along edges and such that min=1.
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from pointed vertex
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Vertex labelled `
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Bijection between quadrangulations and trees:
[Cori, Vauquelin 81, Schaeffer 98]

Quadrangulation with n faces
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A master bijection for planar maps



Counting formulas

Example of counting formulas for rooted plane trees :

Binary trees (n nodes) k-ary trees (n nodes)
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Counting formulas

Example of counting formulas for rooted plane trees :

Binary trees (n nodes) k-ary trees (n nodes)

1

n+ 1

(
2n

n

)
1

kn− n+ 1

(
kn

n

)

Example of counting formulas for rooted planar maps [Tutte 60’s]:

Loopless triangulations Simple triangulations
(2n triangles) (2n triangles)

2n

(n+ 1)(2n+ 1)

(
3n

n

)
1

n(2n− 1)

(
4n− 2

n− 1

)
General quadrangulations Simple quadrangulations

(2n squares) (2n squares)

2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
2

n(n+ 1)

(
3n

n− 1

)



A few bijections

• Triangulations (2n faces)

• Quadrangulations (n faces)

• Bipartite maps (ni faces of degree 2i)

Loopless:
2n

(n+ 1)(2n+ 1)

(3n
n

)
Simple:

1

n(2n− 1)

(4n− 2

n− 1

)

General:
2 · 3n

(n+ 1)(n+ 2)

(2n
n

)
Simple:

2

n(n+ 1)

( 3n

n− 1

)

2 · (
∑

i ni)!

(2 +
∑

(i− 1)ni)!

∏
i

1

ni!

(2i− 1

i

)ni

[Poulalhon, Schaeffer 06
Fusy, Poulalhon, Schaeffer 08]

[Schaeffer 97, Schaeffer 98] [Schaeffer 98, Fusy 07]

[Schaeffer 97, Bouttier, Di Francesco, Guitter 04]

[Poulalhon, Schaeffer 02,
Bernardi 07]
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A few bijections



Goal:

Find a master bijection for planar maps
which unifies all known bijections (of red type).



Goal:

1. Define a master bijection between a class of oriented maps
and a class of decorated trees.

2. Define canonical orientations for maps in any class defined by
degree and girth constraints.

Find a master bijection for planar maps
which unifies all known bijections (of red type).

Strategy:



Goal:

Find a master bijection for planar maps
which unifies all known bijections (of red type).

Alternative strategies:
• Bijection of the blue type [Albenque, Poulalhon 13+]
• Recursive decomposition by slices [Bouttier, Guitter 13+]



Oriented maps

external face

external vertices

A plane map is a planar map with a distinguished “external face”.



Oriented maps

Let O be the set of oriented plane maps such that:
• there is no counterclockwise directed cycle (minimal),
• internal vertices can be reached from external vertices (accessible),
• external vertices have indegree 1.

external face

external vertices

A plane map is a planar map with a distinguished “external face”.



A mobile is a plane tree with vertices properly colored in black and
white, together with buds (arrows) incident only to black vertices.

Mobiles



Master bijection

Mapping Φ for an oriented map in O:

• Return the external edges.

• Place a black vertex in each internal face.
Draw an edge/bud for each clockwise/counterclockwise edge.

• Erase the map.



Master bijection

Theorem [B.,Fusy]: The mapping Φ is a bijection between the set O
of oriented maps and the set of mobiles with more buds than edges.

Moreover, indegree of internal vertices ←→ degree of white vertices
degree of internal faces ←→ degree of black vertices
degree of external face ←→ #buds - #edges



Master bijection: elements of proof

Fact 1. Local operation in the faces produces a tree
←→ Orientation is minimal and accessible.



Master bijection: elements of proof

Fact 1. Local operation in the faces produces a tree
←→ Orientation is minimal and accessible.

Fact 2. The mobile captures all the info about the oriented map.



Canonical orientations



Goal:

Degree of faces

Girth

1
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4

1 2 3 4 5 6 7

C= class of maps defined by girth constraints and degree constraints.
We want to define a canonical orientation in O for each map in C

C



How to define a canonical orientation?

We consider a plane map M and want to define an orientation in O
(orientations which are minimal + accessible + external indegree 1).



How to define a canonical orientation?

We consider a plane map M and want to define an orientation in O
(orientations which are minimal + accessible + external indegree 1).

Fact 1: Let α be a function from the vertices of M to N.
If there is an orientation of M with indegree α(v) for each vertex v,
then there is unique minimal one.

⇒ Orientations in O can be defined by specifying the indegree α(v).



How to define a canonical orientation?

We consider a plane map M and want to define an orientation in O
(orientations which are minimal + accessible + external indegree 1).

Fact 2: An orientation with indegree α(v) exists (and is accessible)
if and only if

•
∑
v∈V

α(v) = |E|

• ∀U ⊂ V ,
∑
v∈U

α(v) ≥ |EU | (strict if there is an external vertex /∈ U).

Fact 1: Let α be a function from the vertices of M to N.
If there is an orientation of M with indegree α(v) for each vertex v,
then there is unique minimal one.

⇒ Orientations in O can be defined by specifying the indegree α(v).



How to define a canonical orientation?

We consider a plane map M and want to define an orientation in O
(orientations which are minimal + accessible + external indegree 1).

Conclusion: For a map G, one can define an orientation in O by
specifying an indegree function α such that:

•
∑
v∈V

α(v) = |E|,

• ∀U ⊂ V ,
∑
v∈U

α(v) ≥ |EU | (strict if an external vertex /∈ U),

• α(v) = 1 for every external vertex v.



How to define a canonical orientation?

We consider a plane map M and want to define an orientation in O
(orientations which are minimal + accessible + external indegree 1).

Conclusion: For a map G, one can define an orientation in O by
specifying an indegree function α such that:

•
∑
v∈V

α(v) = |E|,

• ∀U ⊂ V ,
∑
v∈U

α(v) ≥ |EU | (strict if an external vertex /∈ U),

• α(v) = 1 for every external vertex v.

Remark: Specifying indegrees is also convenient for master bijection:

indegrees of internal vertices ←→ degrees of white vertices.



Example: Simple triangulations

Degree of faces

Girth
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Proof: The numbers v, e, f of vertices edges and faces satisfy:
• Incidence relation: 3f = 2e.
• Euler relation: v − e+ f = 2. �

Example: Simple triangulations

Fact: A triangulation with n internal vertices has 3n internal edges.



Example: Simple triangulations

Natural candidate for indegree function:

α : v 7→
∣∣∣∣ 3 if v internal

1 if v external
.

Fact: A triangulation with n internal vertices has 3n internal edges.
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Example: Simple triangulations

New proof: Euler relation + the incidence relation ⇒ α satisfies:

•
∑

v∈V α(v) = |E|,
• ∀U ⊂ V ,

∑
u∈U α(u) ≥ |EU | (strict if an external vertex /∈ U),

• α(v) = 1 for every external vertex v. �

Thm.[Schnyder 89] A triangulation admits an orientation with indegree
function α if and only if it is simple.



Example: Simple triangulations

Thm.[Schnyder 89] A triangulation admits an orientation with indegree
function α if and only if it is simple.

• faces have degree 3
• internal vertices have indegree 3

⇒ The class of simple triangulations is identified with the class of
oriented maps in O such that



Example: Simple triangulations

• black vertices have degree 3
• white vertices have degree 3

Thm [recovering FuPoSc08]: The master bijection Φ induces a
bijection between simple triangulations and mobiles such that

Thm.[Schnyder 89] A triangulation admits an orientation with indegree
function α if and only if it is simple.

• faces have degree 3
• internal vertices have indegree 3

⇒ The class of simple triangulations is identified with the class of
oriented maps in O such that



Example: Simple triangulations

• black vertices have degree 3
• white vertices have degree 3

Thm [recovering FuPoSc08]: The master bijection Φ induces a
bijection between simple triangulations and mobiles such that

Thm.[Schnyder 89] A triangulation admits an orientation with indegree
function α if and only if it is simple.

• faces have degree 3
• internal vertices have indegree 3

⇒ The class of simple triangulations is identified with the class of
oriented maps in O such that

Corollary: The number of rooted simple triangulations with 2n faces

is
1

n(2n− 1)

(
4n− 2

n− 1

)
.



More classes of maps



Orientations for d-angulations of girth d

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.
Natural candidate for indegree function:

α : v 7→
∣∣∣∣ d/(d− 2) if v internal

1 if v external
. . .

d = 5



Orientations for d-angulations of girth d

Idea: We can look for an orientation of (d−2)G with indegree function

α : v 7→
∣∣∣∣ d if v internal

1 if v external
.

Fact: A d-angulation with (d−2)n internal vertices has dn internal
edges.

5

5

5
5

5
5

Natural candidate for indegree function:

α : v 7→
∣∣∣∣ d/(d− 2) if v internal

1 if v external
. . .

d = 5



Orientations for d-angulations of girth d

2
1

2 1

2

1

2 1

Thm [B., Fusy]: Let G be a d-angulation.
G has girth d ←→ G admits a weighted orientation with
• weight d− 2 per edges.
• ingoing weight d per internal vertex,
• ingoing weight 1 per external vertex.

i≤0 j>0

i>0 j>0

i+j = d−2



Orientations for d-angulations of girth d

Proof: Use the Euler relation + incidence relation as before. �

2
1

2 1

2

1

2 1

Thm [B., Fusy]: Let G be a d-angulation.
G has girth d ←→ G admits a weighted orientation with
• weight d− 2 per edges.
• ingoing weight d per internal vertex,
• ingoing weight 1 per external vertex.

Moreover, G admits a unique such orientation in O in this case.

i≤0 j>0

i>0 j>0

i+j = d−2

3
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0

0

0

0

3
3

333

33 0



Orientations for maps of girth d

Degree of faces

Girth

1
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4

1 2 3 4 5 6 7



Orientations for maps of girth d
Thm [B., Fusy]: Let G be a map.
G has girth d ←→ G admits a weighted bi-orientation with
• weight d− 2 per edges.
• ingoing weight d per internal vertex,
• ingoing weight 1 per external vertex,
• outgoing weight d− deg per faces.

1
2

2
1

1
2

1
22

1

-14

5
-2

-1

4

-1
4 0

3 3

3
0

0

0

3

30
3

0

i≤0 j>0

i>0 j>0

i≤0 j≤0

i+j = d−2

Moreover, G admits a unique such orientation in O in this case.



Master bijection for weighted bi-orientation

Theorem [B., Fusy] There is a bijection between weighted bi-oriented
plane maps in O and weighted mobiles. Moreover,

weight of internal edges ←→ weight of edges
ingoing weight of internal vertices ←→ weight of white vertices
degree of internal faces ←→ degree of black vertices
outgoing weight of internal faces ←→ weight of black vertices.

1 2

2 2

2

12
1

1

1

-14

5 -2

-14

-1
4

30

0

3 3

00 3

330

03

1
2

2
1

1
2

1
221

-14

5
-2

-1
4

-1
4 0

3 3

3
0

0

0
3

30
3

0



Canonical orientations + Master bijection

• edges have weight d− 2,
• white vertices have weight d,
• black vertices have weight d− deg.

Thm [B., Fusy]: There is a bijection between maps of girth d and
weighted mobiles such that

1 2
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2
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1

1
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30

0
3 3

00 3

330
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12

2
1

12

1
221

-14
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-1
4

-14 0
3 3

3
0

0

0
3

30 3
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Moreover, faces of degree d ←→ black vertices of degree d.



Counting
Thm[B., Fusy]: d-angulations of girth d.

The generating function Fd(x) =
∑

d-angulation
of girth d

x#faces is given by

Fd(x) = Wd−2 −
d−3∑
i=0

WiWd−2−i, and F ′d(x) = (1 +W0)d,

where W0,W1, . . . ,Wd−2 are defined by:

• ∀j < d− 2, Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir ,

• Wd−2 = x(1 +W0)d−1.



Counting
Thm[B., Fusy]: d-angulations of girth d.

The generating function Fd(x) =
∑

d-angulation
of girth d

x#faces is given by

Fd(x) = Wd−2 −
d−3∑
i=0

WiWd−2−i, and F ′d(x) = (1 +W0)d,

where W0,W1, . . . ,Wd−2 are defined by:

• ∀j < d− 2, Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir ,

• Wd−2 = x(1 +W0)d−1.

Example d=5:
W0 = W 2

1 +W2

W1 = W 3
1 + 2W1W2 +W3

W2 = W 4
1 + 3W 2

1W2 + 2W1W3 +W 2
2

W3 = x(1 +W0)4



Counting
Thm[B., Fusy]: Maps of girth d (having outer degree d).

The generating function Fd(xd, xd+1, ..)=
∑

maps of
girth d

∏
i

x
#faces of deg i
i

is given by Fd = Wd−2 −
d−3∑
j=−2

WjWd−2−j

where ∀j ∈ [−2..d−3], Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir ,

and ∀j ∈ [d−2..d], Wj = [uj+1]
∑
i

xi (u+ uW0 +W−1 + u−1)i−1.

Extends case d = 1 [Bouttier, Di Francesco, Guitter 02]



Counting
Thm[B., Fusy]: Maps of girth d (having outer degree d).

The generating function Fd(xd, xd+1, ..)=
∑

maps of
girth d

∏
i

x
#faces of deg i
i

is given by Fd = Wd−2 −
d−3∑
j=−2

WjWd−2−j

where ∀j ∈ [−2..d−3], Wj =
∑
r

∑
i1,...,ir>0

i1+···+ir=j+2

Wi1 · · ·Wir ,

and ∀j ∈ [d−2..d], Wj = [uj+1]
∑
i

xi (u+ uW0 +W−1 + u−1)i−1.

Corollaries: If the set of admissible face degrees is finite, then
• Algebraic generating function.
• Asymptotic number of maps: ∼ c n−5/2 ρn.

Extends case d = 1 [Bouttier, Di Francesco, Guitter 02]

Extends case d=1 [Bender, Canfield 94]



Additional results and questions



Bijections for planar maps

Master bijection approach covers
• Classes of maps defined by girth constraint + degree constraints.

Degree of the faces

Girth

1

2

3

4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc97,BoDiGu02]

[PoSc02]

7 8



Bijections for planar maps

Master bijection approach covers
• Classes of maps defined by girth constraint + degree constraints.
• Case d = 0 [Schaeffer 98, Bouttier, Di Francesco, Guitter 04].

Degree of the faces

Girth
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4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc97,BoDiGu02]

[PoSc02]

7 8

[Sc98,BoDiGu04]0



Bijections for planar maps

Master bijection approach covers
• Classes of maps defined by girth constraint + degree constraints.
• Case d = 0 [Schaeffer 98, Bouttier, Di Francesco, Guitter 04].
• d-angulations with non-facial girth at least d, generalizing [Fusy,
Poulalhon, Schaeffer 08,Fusy 09].

Degree of the faces

Girth
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4

1 2 3 4 5 6

[FuPoSc08]
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[Sc97,BoDiGu02]

[PoSc02]

7 8

[Sc98,BoDiGu04]0



Bijections for planar maps

Master bijection approach covers
• Classes of maps defined by girth constraint + degree constraints.
• Case d = 0 [Schaeffer 98, Bouttier, Di Francesco, Guitter 04].
• d-angulations with non-facial girth at least d, generalizing [Fusy,
Poulalhon, Schaeffer 08,Fusy 09].
• Bipolar orientated maps[Fusy, Poulalhon, Schaeffer 09].

Degree of the faces

Girth

1

2

3

4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc97,BoDiGu02]

[PoSc02]

7 8

[Sc98,BoDiGu04]0



Bijections for planar hypermaps

Master bijection approach extends to hypermaps.



Bijections for planar hypermaps

Master bijection approach extends to hypermaps.

The master bijection generalizes bijections by
[Bousquet-Mélou, Schaeffer 00] (Constellations),
[Bousquet-Mélou, Schaeffer 02] (Ising model),
[Bouttier, Di Francesco, Guitter 04] (Distances).

The master bijection generalizes bijections by
[Bousquet-Mélou, Schaeffer 00] (Constellations),
[Bousquet-Mélou, Schaeffer 02] (Ising model),
[Bouttier, Di Francesco, Guitter 04] (Distances).



More fun with girth constraints?

+2
+1

|C| ≥ d+
∑

f inside C

σ(f)

We know how to control more general girth constraints.
Question: Can we prove new probabilistic results on the cycle lengths
in random maps?



Higher genus?

A version of the master bijection exists for maps on orientable surfaces
[B., Chapuy 10].
Question: Can we find canonical orientations (hence bijections)?



Thanks.



1. Algorithmic applications

1. Meshed surfaces.

2. Graph drawing.



2. Relation with permutations.

1

2
6

3 4
5

π = (1, 3, 6, 2)(4, 5)

σ = (1, 5, 6, 3, 4)(2)

Map with n labelled edges ←→ pairs of permutation of {1, 2, . . . , n}



2. Relation with permutations.

1

2
6

3 4
5

π = (1, 3, 6, 2)(4, 5)

σ = (1, 5, 6, 3, 4)(2)

Map with n labelled edges ←→ pairs of permutation of {1, 2, . . . , n}

Cycles of π ←→ blue vertices
Cycles of σ ←→ red vertices
Cycles of πσ ←→ faces


