Denominator Vectors and Compatibility Degrees in Cluster Algebras of Finite Type

Cesar Ceballos ${ }^{1,2}$ Vincent Pilaud ${ }^{3,4}$

FIELDS ${ }^{2}$

FPSAC 2013, Paris
June 25, 2013

Theorem
Denominator vectors $=$ vectors of compatibility degrees

Theorem
Denominator vectors $=$ root function decompositions

Theorem
Denominator vectors $=$ vectors of compatibility degrees (Cluster algebras)

Theorem
Denominator vectors $=$ root function decompositions (Subword complexes)

Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky in 2002. They are commutative algebras whose generators and relations are constructed in a recursive manner.

- Lie Theory: canonical bases / total positivity
- Representation theory
- Poisson geometry
- Combinatorics and discrete geometry
- Algebraic geometry

Cluster algebras

Cluster algebras

$$
x_{4}=\frac{1+x_{2}}{x_{1}}
$$

Cluster algebras

$$
x_{4}=\frac{1+x_{2}}{x_{1}} \quad x_{6}=\frac{1+x_{2}}{x_{3}}
$$

Cluster algebras

$$
x_{4}=\frac{1+x_{2}}{x_{1}} \quad x_{6}=\frac{1+x_{2}}{x_{3}}
$$

$$
x_{5}=\frac{x_{1}+x_{3}}{x_{2}}
$$

Cluster algebras

Cluster algebras

cluster: n-tuples obtained after mutations
cluster variables: elements of the clusters
cluster algebra \mathcal{A}_{Q} :
subalgebra of $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ generated by the cluster variables

Cluster algebras

cluster: n-tuples obtained after mutations
cluster variables: elements of the clusters
cluster algebra \mathcal{A}_{Q} :
subalgebra of $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ generated by the cluster variables

Cluster algebras

Theorem (Fomin \& Zelevinsky '03)

- Each cluster variable of \mathcal{A}_{Q} is a Laurent polynomial with integer coefficients

Cluster algebras

Theorem (Fomin \& Zelevinsky '03)

- Each cluster variable of \mathcal{A}_{Q} is a Laurent polynomial with integer coefficients
- Finite number of cluster variables $\Leftrightarrow Q$ is mutation equivalent to a Dynkin quiver

Cluster algebras

Theorem (Fomin \& Zelevinsky '03)

- Each cluster variable of \mathcal{A}_{Q} is a Laurent polynomial with integer coefficients
- Finite number of cluster variables $\Leftrightarrow Q$ is mutation equivalent to a Dynkin quiver
- If Q is a Dynkin quiver of type Δ, then the non-initial cluster variables are in bijection with the positive roots of the root system associated to Δ :

$$
\alpha=d_{1} \alpha_{1}+\cdots+d_{n} \alpha_{n} \Leftrightarrow \text { cluster variable } X_{\alpha}=\frac{F\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{d_{1} \ldots x_{n}^{d_{n}}}}
$$

Denominator vectors

Theorem (Laurent phenomenon, Fomin \& Zelevinsky '02) Any cluster variable y viewed as a rational function in the variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of any given cluster is a Laurent polynomial

$$
y=\frac{F\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}}
$$

Denominator vectors

Theorem (Laurent phenomenon, Fomin \& Zelevinsky '02) Any cluster variable y viewed as a rational function in the variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of any given cluster is a Laurent polynomial

$$
y=\frac{F\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}}
$$

Denominator vector:

$$
\mathbf{d}(X, y)=\left(d_{1}, \ldots, d_{n}\right)
$$

In this talk

Three methods to compute denominator vectors in cluster algebras of finite type using:

- cluster variables
- almost positive roots
- positions in a word

In this talk

Three methods to compute denominator vectors in cluster algebras of finite type using:

- cluster variables
- almost positive roots
- positions in a word

Our initial motivation: construct polytopal realizations of a subfamily of Knutson-Miller's subword complexes, which are simplicial complexes containing all cluster complexes of finite type.

Notation

$\mathcal{A}(W)$ cluster algebra of finite type W
W Weyl group
Φ root system
$\alpha_{1}, \ldots, \alpha_{n}$ simple roots
$\Phi_{\geq-1} \quad$ almost positive roots

Notation

$\mathcal{A}(W)$ cluster algebra of finite type W
W Weyl group
Φ root system
$\alpha_{1}, \ldots, \alpha_{n}$ simple roots
$\Phi_{\geq-1} \quad$ almost positive roots
$c=\left(c_{1}, \ldots, c_{n}\right)$ Coxeter element of W

Notation

$\mathcal{A}(W)$ cluster algebra of finite type W
W Weyl group
Φ root system
$\alpha_{1}, \ldots, \alpha_{n}$ simple roots
$\Phi_{\geq-1} \quad$ almost positive roots
$c=\left(c_{1}, \ldots, c_{n}\right)$ Coxeter element of W
word $Q_{c}=c w_{\circ}(c)$

Notation

$\mathcal{A}(W)$ cluster algebra of finite type W
W Weyl group
Φ root system
$\alpha_{1}, \ldots, \alpha_{n}$ simple roots
$\Phi_{\geq-1}$ almost positive roots
$c=\left(c_{1}, \ldots, c_{n}\right)$ Coxeter element of W
word $Q_{c}=c w_{\circ}(c)$
where $w_{\circ}(c)=\left(w_{1}, \ldots, w_{N}\right)$ first lexicographically subword of c^{∞} which is a reduced expression of w_{0}

Three bijections

Three bijections

ϕ_{c} : Parametrizes cluster variables with respect to their denominator vectors with respect to a cluster seed associated to c.

Three bijections

ϕ_{c} : Parametrizes cluster variables with respect to their denominator vectors with respect to a cluster seed associated to c.
$\chi_{c}:$ defined by $\psi_{c}\left(c_{i}\right)=-\alpha_{i}$ and $\psi\left(w_{i}\right)=w_{1} \ldots w_{i-1}\left(\alpha_{w_{i}}\right)$

Three bijections: clusters

Theorem (C.-Labbé-Stump 2013)
A subset I of positions in Q_{c} forms a c-cluster in Q_{c} if and only if the subword of Q_{c} formed by the complement of I is a reduced expression for w_{0}.

Three bijections: clusters

Theorem (C.-Labbé-Stump 2013)
A subset I of positions in Q_{c} forms a c-cluster in Q_{c} if and only if the subword of Q_{c} formed by the complement of I is a reduced expression for w_{0}.

A similar result for

- bipartite Coxeter elements is due to Brady \& Watt (2008)
- crystallographic types is due to Igusa \& Schiffler (2010)

Three bijections: clusters

Clusters can be read in these three different contexts:

```
Cluster variables clusters:
\(n\)-tuples obtained by mutations
```

Almost positive roots c-clusters:
n-tuples of pairwise compatible roots
Positions in Q_{c} c-clusters:
complements of reduced expressions of w_{\circ}

Three bijections: clusters

Three notions of compatibility degrees

Compatibility degree on cluster variables:

$$
\begin{array}{clc}
\{\operatorname{var}\} \times\{\operatorname{var}\} & \longrightarrow & \mathbb{Z} \\
(x, y) & \longrightarrow d(x, y)
\end{array}
$$

Three notions of compatibility degrees

Compatibility degree on cluster variables:

$$
\begin{array}{clc}
\{\operatorname{var}\} \times\{\operatorname{var}\} & \longrightarrow & \mathbb{Z} \\
(x, y) & \longrightarrow d(x, y)
\end{array}
$$

$d(x, y)$ is the x-component of the denominator vector $d(X, y)$ for any cluster X containing the variable x.

Three notions of compatibility degrees

Compatibility degree on cluster variables:

$$
\begin{array}{clc}
\{\operatorname{var}\} \times\{\operatorname{var}\} & \longrightarrow & \mathbb{Z} \\
(x, y) & \longrightarrow & d(x, y)
\end{array}
$$

$d(x, y)$ is the x-component of the denominator vector $d(X, y)$ for any cluster X containing the variable x.

Lemma
$d(x, y)$ is independent of the choice of cluster X.

Three notions of compatibility degrees

c-Compatibility degree on almost positive roots:

$$
\begin{array}{clc}
\Phi_{\geq-1} \times \Phi_{\geq-1} & \longrightarrow & \mathbb{Z} \\
(\alpha, \beta) & \longrightarrow & \left(\alpha \|_{c} \beta\right)
\end{array}
$$

Three notions of compatibility degrees

c-Compatibility degree on almost positive roots:

$$
\begin{array}{clc}
\Phi_{\geq-1} \times \Phi_{\geq-1} & \longrightarrow & \mathbb{Z} \\
(\alpha, \beta) & \longrightarrow & \left(\alpha \|_{c} \beta\right)
\end{array}
$$

uniquely characterized by the following two properties:

$$
\left(-\alpha_{i} \|_{c} \beta\right)=b_{i}, \quad \text { for } \beta=\sum b_{i} \alpha_{i} \in \Phi_{\geq-1}
$$

Three notions of compatibility degrees

c-Compatibility degree on almost positive roots:

$$
\begin{array}{clc}
\Phi_{\geq-1} \times \Phi_{\geq-1} & \longrightarrow & \mathbb{Z} \\
(\alpha, \beta) & \longrightarrow & \left(\alpha \|_{c} \beta\right)
\end{array}
$$

uniquely characterized by the following two properties:

$$
\begin{array}{cl}
\left(-\alpha_{i} \|_{c} \beta\right)=b_{i}, & \text { for } \beta=\sum b_{i} \alpha_{i} \in \Phi_{\geq-1}, \\
\left(\alpha \|_{c} \beta\right)=\left(\tau_{c} \alpha \|_{c} \tau_{c} \beta\right), & \text { for } \alpha, \beta \in \Phi_{\geq-1} .
\end{array}
$$

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\begin{array}{ccc}
{[m] \times[m]} & \longrightarrow & \mathbb{Z} \\
(i, j) & \longrightarrow & \left\{i \|_{c} j\right\}
\end{array}
$$

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\begin{array}{ccc}
{[m] \times[m]} & \longrightarrow & \mathbb{Z} \\
(i, j) & \longrightarrow & \left\{i \|_{c} j\right\}
\end{array}
$$

given by

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

for any c-cluster I in Q_{c} containing the position i.

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\begin{array}{ccc}
{[m] \times[m]} & \longrightarrow & \mathbb{Z} \\
(i, j) & \longrightarrow & \left\{i \|_{c} j\right\}
\end{array}
$$

given by

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

for any c-cluster I in Q_{c} containing the position i.

Lemma
$\left\{i \|_{c} j\right\}$ is independent of the choice of c-cluster I.

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

Definition
The root function associated to a c-cluster I in Q_{c} is a map

$$
r(I, \cdot):[m] \longrightarrow \Phi
$$

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

Definition
The root function associated to a c-cluster I in Q_{c} is a map

$$
\mathrm{r}(I, \cdot):[m] \longrightarrow \Phi
$$

defined by $\mathrm{r}(I, j)=\sigma_{j}\left(\alpha_{q_{j}}\right)$, where $\sigma_{j}=\prod_{j>\ell \notin I} q_{\ell}$.

Three notions of compatibility degrees

c-Compatibility degree on positions in $Q_{c}=\left(q_{1}, \ldots, q_{m}\right)$:

$$
\left\{i \|_{c} j\right\}= \begin{cases}\rho_{l}(i, j) & \text { if } j>i \\ -\rho_{l}(i, j) & \text { if } j \leq i\end{cases}
$$

Definition
The root function associated to a c-cluster I in Q_{c} is a map

$$
\mathrm{r}(I, \cdot):[m] \longrightarrow \Phi
$$

defined by $\mathrm{r}(\ell, j)=\sigma_{j}\left(\alpha_{q_{j}}\right)$, where $\sigma_{j}=\prod_{j>\ell \notin I} q_{\ell}$.

$$
\mathrm{r}(I, j)=\sum_{i \in I} \rho_{I}(i, j) \mathrm{r}(I, i)
$$

Main results

Theorem (C.-Pilaud 2013)
The three notions of compatibility degrees coincide
cluster variables x, y cluster $X=\left\{x_{1}, \ldots, x_{n}\right\}$ compatibility degree $d(x, y)$
almost positive roots α, β
c-cluster $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ c-compatibility degree $\left(\alpha \|_{c} \beta\right)$
χ_{c}
positions i, j in Q_{c}
c-cluster $I=\left\{i_{1}, \ldots, i_{n}\right\}$
c-compatibility degree $\left\{i \|_{c} j\right\}$

Main results

Corollary (C.-Pilaud 2013)

The denominator vector of an almost positive root β with respect to a c-cluster $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is the compatibility degree vector

$$
\mathbf{d}_{c}(B, \beta)=\left(\left(\beta_{1} \|_{c} \beta\right), \ldots,\left(\beta_{n} \|_{c} \beta\right)\right)
$$

Main results

Corollary (C.-Pilaud 2013)

The denominator vector of an almost positive root β with respect to a c-cluster $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is the compatibility degree vector

$$
\mathbf{d}_{c}(B, \beta)=\left(\left(\beta_{1} \|_{c} \beta\right), \ldots,\left(\beta_{n} \|_{c} \beta\right)\right)
$$

Corollary (C.-Pilaud 2013)
The denominator vector of a position j in Q_{c} with respect to a c-cluster $I=\left\{i_{1}, \ldots, i_{n}\right\}$ is the coefficient vector

$$
\mathbf{d}_{c}(I, j)=\left(\left\{i_{1} \|_{c} j\right\}, \ldots,\left\{i_{n} \|_{c} j\right\}\right)
$$

Main results

almost positive roots α, β
c-cluster $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$
c-compatibility degree $\left(\alpha \|_{c} \beta\right)$ compatibility vector $\mathbf{d}_{c}(B, \beta)$
cluster variables x, y cluster $X=\left\{x_{1}, \ldots, x_{n}\right\}$ compatibility degree $d(x, y)$ denominator vector $\mathbf{d}(X, y)$

χ_{c}
 c-compatibility degree $\left\{i \|_{c} j\right\}$ coefficient vector $\mathbf{d}_{\mathrm{c}}(I, j)$

Examples: classical types

Examples: classical types

Thank you!

