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Cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky in 2002.
They are commutative algebras whose generators and relations are
constructed in a recursive manner.

I Lie Theory: canonical bases / total positivity

I Representation theory

I Poisson geometry

I Combinatorics and discrete geometry

I Algebraic geometry
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Cluster algebras

Theorem (Fomin & Zelevinsky ’03)

I Each cluster variable of AQ is a Laurent polynomial with
integer coefficients

I Finite number of cluster variables ⇔ Q is mutation equivalent
to a Dynkin quiver

I If Q is a Dynkin quiver of type ∆, then the non-initial cluster
variables are in bijection with the positive roots of the root
system associated to ∆:

α = d1α1 + · · ·+ dnαn ⇔ cluster variable Xα = F (x1,...,xn)
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Theorem (Laurent phenomenon, Fomin & Zelevinsky ’02)

Any cluster variable y viewed as a rational function in the
variables X = {x1, . . . , xn} of any given cluster is a Laurent
polynomial

y =
F (x1, . . . , xn)
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Denominator vector:
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In this talk

Three methods to compute denominator vectors in cluster algebras
of finite type using:

I cluster variables

I almost positive roots

I positions in a word

Our initial motivation: construct polytopal realizations of a
subfamily of Knutson-Miller’s subword complexes, which are
simplicial complexes containing all cluster complexes of finite type.
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A(W ) cluster algebra of finite type W
W Weyl group
Φ root system

α1, . . . , αn simple roots
Φ≥−1 almost positive roots

c = (c1, . . . , cn) Coxeter element of W
word Qc = cw◦(c)

where w◦(c) = (w1, . . . ,wN) first lexicographically subword of c∞

which is a reduced expression of w◦
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Three bijections

cluster variables x , y

almost positive roots α, β positions i , j in Qc

φc ψc

χc

φc : Parametrizes cluster variables with respect to their
denominator vectors with respect to a cluster seed associated to c .

χc : defined by ψc(ci ) = −αi and ψ(wi ) = w1 . . .wi−1(αwi )
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Three bijections: clusters

Theorem (C.–Labbé–Stump 2013)

A subset I of positions in Qc forms a c-cluster in Qc if and only if
the subword of Qc formed by the complement of I is a reduced
expression for w◦.

A similar result for

I bipartite Coxeter elements is due to Brady & Watt (2008)

I crystallographic types is due to Igusa & Schiffler (2010)
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Three bijections: clusters

Clusters can be read in these three different contexts:

Cluster variables clusters:
n-tuples obtained by mutations

Almost positive roots c-clusters:
n-tuples of pairwise compatible roots

Positions in Qc c-clusters:
complements of reduced expressions of w◦



Three bijections: clusters

cluster variables x , y
cluster X = {x1, . . . , xn}

almost positive roots α, β
c-cluster B = {β1, . . . , βn}

positions i , j in Qc

c-cluster I = {i1, . . . , in}

φc ψc

χc



Three notions of compatibility degrees

Compatibility degree on cluster variables:

{var} × {var} −→ Z
(x , y) −→ d(x , y)

d(x , y) is the x-component of the denominator vector d(X , y) for
any cluster X containing the variable x .

Lemma
d(x , y) is independent of the choice of cluster X .
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(−αi ‖c β) = bi , for β =
∑

biαi ∈ Φ≥−1,

(α ‖c β) = (τcα ‖c τcβ), for α, β ∈ Φ≥−1.
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c-Compatibility degree on positions in Qc = (q1, . . . , qm):

[m]× [m] −→ Z
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given by
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{
ρI (i , j) if j > i ,

−ρI (i , j) if j ≤ i .

for any c-cluster I in Qc containing the position i .
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Main results

Corollary (C.–Pilaud 2013)

The denominator vector of an almost positive root β with respect
to a c-cluster B = {β1, . . . , βn} is the compatibility degree vector

dc(B, β) =
(
(β1 ‖c β), . . . , (βn ‖c β)

)
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Thank you!


