Type A molecules are Kazhdan-Lusztig

Michael Chmutov

University of Michigan

June 26, 2013 FPSAC '13

Michael Chmutov Type A molecules are Kazhdan-Lusztig

$$W = S_n, \text{ ground ring: } \mathbb{Z}[q^{\pm 1/2}]$$

• $\mathcal{H}_n = \left\langle \begin{array}{c} T_1, \dots, T_{n-1} \end{array} \middle| \begin{array}{c} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \\ T_i T_j = T_j T_i, \\ (T_i + 1)(T_i - q) = 0. \end{array} \right\rangle$

< 注入 < 注入 -

$$\mathcal{W} = S_n, \text{ ground ring: } \mathbb{Z}[q^{\pm 1/2}]$$

• $\mathcal{H}_n = \left\langle \begin{array}{c} T_1, \dots, T_{n-1} \end{array} \middle| \begin{array}{c} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \\ T_i T_j = T_j T_i, \\ (T_i + 1)(T_i - q) = 0. \end{array} \right\rangle$

• Standard basis $\{T_w\}_{w \in S_n}$; Kazhdan-Lusztig basis $\{C_w\}_{w \in S_n}$

$$\mathcal{W} = S_n, \text{ ground ring: } \mathbb{Z}[q^{\pm 1/2}]$$

• $\mathcal{H}_n = \left\langle \begin{array}{c} T_1, \dots, T_{n-1} \end{array} \middle| \begin{array}{c} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \\ T_i T_j = T_j T_i, \\ (T_i + 1)(T_i - q) = 0. \end{array} \right\rangle$

• Standard basis $\{T_w\}_{w \in S_n}$; Kazhdan-Lusztig basis $\{C_w\}_{w \in S_n}$

 Transition matrix entries, up to a power of q, are Kazhdan-Lusztig polynomials P_{v,w}(q)

(B) < B)</p>

$$\mathcal{W} = S_n, \text{ ground ring: } \mathbb{Z}[q^{\pm 1/2}]$$

• $\mathcal{H}_n = \left\langle \begin{array}{c} T_1, \dots, T_{n-1} \end{array} \middle| \begin{array}{c} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \\ T_i T_j = T_j T_i, \\ (T_i + 1)(T_i - q) = 0. \end{array} \right\rangle$

• Standard basis $\{T_w\}_{w \in S_n}$; Kazhdan-Lusztig basis $\{C_w\}_{w \in S_n}$

 Transition matrix entries, up to a power of q, are Kazhdan-Lusztig polynomials P_{v,w}(q)

•
$$deg(P_{v,w}) \leqslant \frac{l(w)-l(v)-1}{2}; \ \mu(v,w) = \left[q^{\frac{l(w)-l(v)-1}{2}}\right]P_{v,w}$$

(B)

• Vertices: elements of S_n

▲문⊁ ▲문⊁

- Vertices: elements of S_n
- $\bullet\,$ Edges: weighted by μ values

글 🖌 🔺 글 🕨

- Vertices: elements of S_n
- \bullet Edges: weighted by μ values
- τ -labels: left descent sets

(B)

- Vertices: elements of S_n
- \bullet Edges: weighted by μ values
- τ -labels: left descent sets
- Directions: based on *τ*-label containments

(B)

- Vertices: elements of S_n
- \bullet Edges: weighted by μ values
- τ -labels: left descent sets
- Directions: based on *τ*-label containments

() <) <)
 () <)
 () <)
</p>

Fact

Easy to reconstruct KL polynomials once one has W-graph.

- Vertices: elements of S_n
- \bullet Edges: weighted by μ values
- τ -labels: left descent sets
- Directions: based on *τ*-label containments

Fact

Easy to reconstruct KL polynomials once one has W-graph.

General Goal

Get your hands on (subgraphs of) KL graph without computing KL polynomials.

< 注→ < 注→ -

■ わへで

< 注) < 注)

Want:

< 注入 < 注入

Kazhdan-Lusztig: $C_w \longrightarrow KL W$ -graph Regular repesentation

Want:

< 注→ < 注→

A ►

æ

Basis: vertices.

$$T_{i}u = \begin{cases} qu & i \notin \tau(u) \\ -u + q^{1/2} \sum_{\substack{u \to v \\ i \notin \tau(v)}} m(u \to v)v & i \in \tau(u) \end{cases}$$

< 注 → < 注 →

æ

Basis: vertices.

$$T_{i}u = \begin{cases} qu & i \notin \tau(u) \\ -u + q^{1/2} \sum_{\substack{u \to v \\ i \notin \tau(v)}} m(u \to v)v & i \in \tau(u) \end{cases}$$

< 注 → < 注 →

æ

Basis: vertices.

$$T_{i}u = \begin{cases} qu & i \notin \tau(u) \\ -u + q^{1/2} \sum_{\substack{u \to v \\ i \notin \tau(v)}} m(u \to v)v & i \in \tau(u) \end{cases}$$

< 注入 < 注入 →

Basis: vertices.

$$T_{i}u = \begin{cases} qu & i \notin \tau(u) \\ -u + q^{1/2} \sum_{\substack{u \to v \\ i \notin \tau(v)}} m(u \to v)v & i \in \tau(u) \end{cases}$$

< 注 → < 注 → …

Basis: vertices.

$$T_{i}u = \begin{cases} qu & i \notin \tau(u) \\ -u + q^{1/2} \sum_{\substack{u \to v \\ i \notin \tau(v)}} m(u \to v)v & i \in \tau(u) \end{cases}$$

< 注→ < 注→ -

W-graph: graph which encodes a representation via above formula

< 注入 < 注入 →

э.

W-graph: graph which encodes a representation via above formula *Admissible*: edge-weights in $\mathbb{Z}^{\geq 0}$, bipartite, "edge-symmetric"

글 > - - 글 > - -

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z}^{\geq 0}$, bipartite, "edge-symmetric" (from now on all graphs are admissible)

프 () () () (

• A cell is a W-graph. (Why?)

- A cell is a *W*-graph. (Why?)
- How many cells are there? (Finitely many; Stembridge '12)

프 () () () (

- A cell is a *W*-graph. (Why?)
- How many cells are there? (Finitely many; Stembridge '12)
- Do all S_n cells come from the KL graph? (Up to n = 13...)

∃ > < ∃ >

 $w \to (P, Q)$

∢ 문 ► ★ 문 ►

• Cell consists of $w \in S_n$ with fixed Q

프 () () () (

- Cell consists of $w \in S_n$ with fixed Q
- Cells with Qs of same shape are isomorphic

-

- Cell consists of $w \in S_n$ with fixed Q
- Cells with Qs of same shape are isomorphic
- *Simple edges*, i.e. edges going in both directions, are dual Knuth moves

Simple edges in Kazhdan-Lusztig Cells

Michael Chmutov Type A molecules are Kazhdan-Lusztig

In 2008 Stembridge gave combinatorial rules for detecting when graph is a $W\mbox{-}{\rm graph}.$

< 注 → < 注 → …

In 2008 Stembridge gave combinatorial rules for detecting when graph is a W-graph. E.g.

simple edges must have weight 1,

In 2008 Stembridge gave combinatorial rules for detecting when graph is a $W\mbox{-}{\rm graph}.$ E.g.

- simple edges must have weight 1,
- 2 if (u, v) is simple then $|\tau(u)\Delta\tau(v)| \leq 3$.

In 2008 Stembridge gave combinatorial rules for detecting when graph is a $W\mbox{-}{\rm graph}.$ E.g.

- simple edges must have weight 1,
- 2 if (u, v) is simple then $|\tau(u)\Delta\tau(v)| \leq 3$.

Molecular component of a W-graph:

э

< E > < E >

Molecular component of a W-graph:

Fact

Each Kazhdan-Lusztig S_n cell has only one molecular component.

프 () () () (

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

- モラ・ - モラ・

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

• Are there cells with multiple molecular components?

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

- Are there cells with multiple molecular components?
- If not, are there multiple cells with a given underlying molecular component?

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

- Are there cells with multiple molecular components?
- If not, are there multiple cells with a given underlying molecular component?
- Other types?

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Restricting *W*-graphs from S_n to S_{n-1} (or other parabolic):

• Erase n-1 from all τ -labels,

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Restricting *W*-graphs from S_n to S_{n-1} (or other parabolic):

- Erase n-1 from all τ -labels,
- Adjust arrow directions based on *τ*-label containment

(B) < B)</p>

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Restricting *W*-graphs from S_n to S_{n-1} (or other parabolic):

- Erase n-1 from all τ -labels,
- Adjust arrow directions based on *τ*-label containment

Strategy:

• Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.

æ

·문▶ ★ 문▶

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:

< ∃⇒

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

< ∃⇒

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ⊒ →

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ⊒ →

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ⊒ →

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ⊒ →

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ⊒ →

Strategy:

- Classify all S_5 cells and ways they can bind. Similarly for $S_3 \times S_2$.
- This yields rules, e.g.:
- Prove that if axiom 6 does not hold then restrictions are inconsistent.

- ∢ ≣ →

Thank you!

御 と く ヨ と く ヨ と …

= 990