Type A molecules are Kazhdan-Lusztig

Michael Chmutov
University of Michigan
June 26, 2013
FPSAC '13

The Iwahori-Hecke Algebra and Kazhdan-Lusztig polynomials

$W=S_{n}$, ground ring: $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$

$$
\text { - } \mathcal{H}_{n}=\left\langle\begin{array}{l|l}
T_{1}, \ldots, T_{n-1} & \begin{array}{c}
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \\
T_{i} T_{j}=T_{j} T_{i}, \\
\left(T_{i}+1\right)\left(T_{i}-q\right)=0 .
\end{array}
\end{array}\right\rangle
$$

The Iwahori-Hecke Algebra and Kazhdan-Lusztig polynomials

$W=S_{n}$, ground ring: $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$

- $\mathcal{H}_{n}=\left\langle\begin{array}{l|l}T_{1}, \ldots, T_{n-1} & \begin{array}{c}T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \\ T_{i} T_{j}=T_{j} T_{i}, \\ \left(T_{i}+1\right)\left(T_{i}-q\right)=0 .\end{array}\end{array}\right\rangle$
- Standard basis $\left\{T_{w}\right\}_{w \in S_{n}} ;$ Kazhdan-Lusztig basis $\left\{C_{w}\right\}_{w \in S_{n}}$

The Iwahori-Hecke Algebra and Kazhdan-Lusztig polynomials

$W=S_{n}$, ground ring: $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$

- $\mathcal{H}_{n}=\left\langle\begin{array}{l|l}T_{1}, \ldots, T_{n-1} & \begin{array}{c}T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \\ T_{i} T_{j}=T_{j} T_{i}, \\ \left(T_{i}+1\right)\left(T_{i}-q\right)=0 .\end{array}\end{array}\right\rangle$
- Standard basis $\left\{T_{w}\right\}_{w \in S_{n}}$; Kazhdan-Lusztig basis $\left\{C_{w}\right\}_{w \in S_{n}}$
- Transition matrix entries, up to a power of q, are Kazhdan-Lusztig polynomials $P_{v, w}(q)$

The Iwahori-Hecke Algebra and Kazhdan-Lusztig polynomials

$W=S_{n}$, ground ring: $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$

- $\mathcal{H}_{n}=\left\langle\begin{array}{l|l}T_{1}, \ldots, T_{n-1} & \begin{array}{c}T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \\ T_{i} T_{j}=T_{j} T_{i}, \\ \left(T_{i}+1\right)\left(T_{i}-q\right)=0 .\end{array}\end{array}\right\rangle$
- Standard basis $\left\{T_{w}\right\}_{w \in S_{n}} ;$ Kazhdan-Lusztig basis $\left\{C_{w}\right\}_{w \in S_{n}}$
- Transition matrix entries, up to a power of q, are Kazhdan-Lusztig polynomials $P_{v, w}(q)$
- $\operatorname{deg}\left(P_{v, w}\right) \leqslant \frac{I(w)-I(v)-1}{2} ; \mu(v, w)=\left[q^{\frac{I(v)-l(v)-1}{2}}\right] P_{v, w}$

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}
- Edges: weighted by μ values

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}
- Edges: weighted by μ values
- τ-labels: left descent sets

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}
- Edges: weighted by μ values
- τ-labels: left descent sets
- Directions: based on τ-label containments

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}
- Edges: weighted by μ values
- τ-labels: left descent sets
- Directions: based on τ-label containments

Fact

Easy to reconstruct KL polynomials once one has W-graph.

(Example) Kazhdan-Lusztig W-graph

- Vertices: elements of S_{n}
- Edges: weighted by μ values
- τ-labels: left descent sets
- Directions: based on τ-label containments

Fact

Easy to reconstruct KL polynomials once one has W-graph.

General Goal

Get your hands on (subgraphs of) KL graph without computing KL polynomials.

Outline

Kazhdan-Lusztig:

Outline

Kazhdan-Lusztig:

Outline

Kazhdan-Lusztig:

Want:

Outline

Kazhdan-Lusztig:

Want:

Generalized KL polynomials :

Parabolic KL polynomials
Regular KL polynomials

From graph to representation

Basis: vertices.

$$
T_{i} u= \begin{cases}q u & i \notin \tau(u) \\ -u+q^{1 / 2} \sum_{\substack{u \rightarrow v \\ i \notin \tau(v)}} m(u \rightarrow v) v & i \in \tau(u)\end{cases}
$$

From graph to representation

Basis: vertices.

$$
T_{i} u= \begin{cases}q u & i \notin \tau(u) \\ -u+q^{1 / 2} \sum_{\substack{u \rightarrow v \\ i \notin \tau(v)}} m(u \rightarrow v) v & i \in \tau(u)\end{cases}
$$

From graph to representation

Basis: vertices.

$$
T_{i} u= \begin{cases}q u & i \notin \tau(u) \\ -u+q^{1 / 2} \sum_{\substack{u \rightarrow v \\ i \notin \tau(v)}} m(u \rightarrow v) v & i \in \tau(u)\end{cases}
$$

Example

- $T_{1} u=q u$

From graph to representation

Basis: vertices.

$$
T_{i} u= \begin{cases}q u & i \notin \tau(u) \\ -u+q^{1 / 2} \sum_{\substack{u \rightarrow v \\ i \notin \tau(v)}} m(u \rightarrow v) v & i \in \tau(u)\end{cases}
$$

Example

- $T_{1} u=q u$
- $T_{2} u=-u+q^{1 / 2} v+q^{1 / 2} w$

From graph to representation

Basis: vertices.

$$
T_{i} u= \begin{cases}q u & i \notin \tau(u) \\ -u+q^{1 / 2} \sum_{\substack{u \rightarrow v \\ i \notin \tau(v)}} m(u \rightarrow v) v & i \in \tau(u)\end{cases}
$$

Example

- $T_{1} u=q u$
- $T_{2} u=-u+q^{1 / 2} v+q^{1 / 2} w$

Remark

This is how T_{i} 's act on the C_{w} basis with respect to KL graph.

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric"

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric" (from now on all graphs are admissible)

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric"
(from now on all graphs are admissible)
Cell: strongly connected component of W-graph

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric"
(from now on all graphs are admissible)
Cell: strongly connected component of W-graph

- A cell is a W-graph. (Why?)

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric"
(from now on all graphs are admissible)
Cell: strongly connected component of W-graph

- A cell is a W-graph. (Why?)
- How many cells are there? (Finitely many; Stembridge '12)

General W-graphs and Cells

W-graph: graph which encodes a representation via above formula Admissible: edge-weights in $\mathbb{Z} \geqslant 0$, bipartite, "edge-symmetric"
(from now on all graphs are admissible)
Cell: strongly connected component of W-graph

- A cell is a W-graph. (Why?)
- How many cells are there? (Finitely many; Stembridge '12)
- Do all S_{n} cells come from the KL graph? (Up to $n=13 \ldots$)

Kazhdan-Lusztig Cells

- RSK correspondence:

$$
w \rightarrow(P, Q)
$$

Kazhdan-Lusztig Cells

- RSK correspondence:

$$
w \rightarrow(P, Q)
$$

- Cell consists of $w \in S_{n}$ with fixed Q

Kazhdan-Lusztig Cells

- RSK correspondence:

$$
w \rightarrow(P, Q)
$$

- Cell consists of $w \in S_{n}$ with fixed Q
- Cells with Qs of same shape are isomorphic

Kazhdan-Lusztig Cells

- RSK correspondence:

$$
w \rightarrow(P, Q)
$$

- Cell consists of $w \in S_{n}$ with fixed Q
- Cells with Qs of same shape are isomorphic
- Simple edges, i.e. edges going in both directions, are dual Knuth moves

Simple edges in Kazhdan-Lusztig Cells

Examples

Combinatorial rules

In 2008 Stembridge gave combinatorial rules for detecting when graph is a W-graph.

Combinatorial rules

In 2008 Stembridge gave combinatorial rules for detecting when graph is a W-graph. E.g.
(1) simple edges must have weight 1 ,

Combinatorial rules

In 2008 Stembridge gave combinatorial rules for detecting when graph is a W-graph. E.g.
(1) simple edges must have weight 1 ,
(2) if (u, v) is simple then $|\tau(u) \Delta \tau(v)| \leqslant 3$.

Combinatorial rules

In 2008 Stembridge gave combinatorial rules for detecting when graph is a W-graph. E.g.
(1) simple edges must have weight 1 ,
(2) if (u, v) is simple then $|\tau(u) \Delta \tau(v)| \leqslant 3$.

Classification of S_{5} cells

Molecular components

Molecular component of a W-graph:

Molecular components

Molecular component of a W-graph:

Fact

Each Kazhdan-Lusztig S_{n} cell has only one molecular component.

Main Theorem

Theorem (C., 2012)

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

Main Theorem

Theorem (C., 2012)

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

Main Theorem

Theorem (C., 2012)

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

- Are there cells with multiple molecular components?

Main Theorem

Theorem (C., 2012)

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

- Are there cells with multiple molecular components?
- If not, are there multiple cells with a given underlying molecular component?

Main Theorem

Theorem (C., 2012)

Any molecular component of a W-graph has the same simple edges as a Kazhdan-Lusztig one.

To do

- Are there cells with multiple molecular components?
- If not, are there multiple cells with a given underlying molecular component?
- Other types?

Main ingredient: Assaf's classification of dual equivalence graphs

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Main ingredient: Assaf's classification of dual equivalence graphs

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Restricting W-graphs from S_{n} to S_{n-1} (or other parabolic):

- Erase $n-1$ from all τ-labels,

Main ingredient: Assaf's classification of dual equivalence graphs

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Restricting W-graphs from S_{n} to S_{n-1} (or other parabolic):

- Erase $n-1$ from all τ-labels,
- Adjust arrow directions based on τ-label containment

Main ingredient: Assaf's classification of dual equivalence graphs

DEG: molecular component of KL cell; viewed as undirected graph.

Theorem (Assaf, 2008)

An undirected graph with labelled vertices is a DEG if and only if it satisfies axioms (1)-(6).

Axiom 6; in molecular language
Restricting W-graphs from S_{n} to S_{n-1} (or other parabolic):

- Erase $n-1$ from all τ-labels,
- Adjust arrow directions based on τ-label containment

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Proof idea

Strategy:

- Classify all S_{5} cells and ways they can bind. Similarly for $S_{3} \times S_{2}$.
- This yields rules, e.g.:

- Prove that if axiom 6 does not hold then restrictions are
 inconsistent.

Thank you!

