
The Kronecker product
and the partition algebra

Christopher Bowman
Maud De Visscher

Rosa Orellana

FPSAC’13

Bowman,De Visscher,Orellana Kronecker product and Partition algebra June 2013 1 / 14



The Kronecker problem

Complex representations of GLn: simple (Weyl) modules V (λ).

V (λ)⊗ V (µ) =
∑
ν

cνλ,µV (ν),

where cνλ,µ are the Littlewood-Richardson coefficients.

Complex representations of Sn: simple (Specht) modules S(λ).

S(λ)⊗ S(µ) =
∑
ν

gνλ,µS(ν),

where gνλ,µ are the Kronecker coefficients.

Combinatorial description of gνλ,µ?
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Schur-Weyl dualities

Let Vn be an n-dimensional C-vector space and r ≥ 1.
Then we have the following Schur-Weyl dualities

GLn → V⊗r ← CSr
∪ ∩
Sn Pr (n) Partition algebra

Idea: Use the partition algebra to study the Kronecker problem.
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Structure of the talk

1 The partition algebra Pr (n): Definition and first properties.

2 Combinatorial representation theory of Pr (n).
3 Application to the Kronecker problem.
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1. The partition algebra Pr (n)
Definition and first properties

Let r ∈ Z>0 and n ∈ C.

Pr (n) : C-algebra with basis given by all set partitions of
{1,2, . . . , r ,1′,2′, . . . , r ′}.

{{1,2,4,3′}, {3}, {5,1′,2′}, {4′}, {5′}} ↔

1′ 2′ 3′ 4′ 5′

1 2 3 4 5
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and multiplication given by concatenation and scalar multiplication by
nt where t is the number of connected components consisting of
middle vertices only.

X =

Y = XY = n

Remark: The group algebra CSr appears naturally as a subalgebra of
Pr (n) (as the span of all diagrams having precisely r ‘propagating
blocks’).
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Assume throughout this talk that n 6= 0. Write Pr = Pr (n).

e = 1
n

. . . e2 = e.

ePr e ∼= Pr−1, Pr/Pr ePr ∼= CSr .

Let L be a simple Pr -module. Then either eL = 0 and so L is a simple
CSr -module, or eL 6= 0 and so eL is a simple Pr−1-module.

Thus we have that the simple Pr -modules are indexed by partitions of
degree ≤ r .
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Pr is not a semisimple algebra in general but it is a cellular algebra (as
defined by Graham-Lehrer).

Λ≤r = {λ = (λ1, λ2, λ3, . . .), λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0,
∑

i λi ≤ r}.

For each λ ∈ Λ≤r we have a cell module ∆r (λ), obtained by ‘inflating’
the corresponding Specht module.

λ ` r , ∆r (λ) = S(λ) Specht module.
λ ` r − 1, ∆r (λ) = Pr e ⊗Pr−1 S(λ).
. . .

A complete set of non-isomorphic simple Pr -modules is given by

{Lr (λ) := hd ∆r (λ), λ ∈ Λ≤r}.
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2. Combinatorial representation theory of Pr (n) (P. Martin)

Theorem: Pr (n) is semisimple⇔ n /∈ {0,1,2, . . . ,2r − 2}.

We now take n ∈ Z>0.

Definition: Let λ, µ be partitions. We say that (µ, λ) form an n-pair and
we write µ ↪→n λ if µ ⊂ λ and λ/µ consists of a single row of boxes of
which the last (rightmost) one has content n − |µ|.

Example: ((2,1), (4,1)) form a 6-pair (with 6− |µ| = 3).

−1
0 1 ⊂

−1
0 1 2 3
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Proposition: The set Λ≤r splits into maximal chains of n-pairs:

λ(0) ↪→n λ
(1) ↪→n λ

(2) ↪→n . . . ↪→n λ
(t)

(where t depends on the chain).

Each cell module ∆r (λ(i)) (0 ≤ i ≤ t − 1) has Loewy structure

Lr (λ(i))

Lr (λ(i+1))
.

In the Grothendieck group we have

[Lr (λ(i))] =
t∑

j=i

(−1)j−i [∆r (λ(j)].
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3. Application to the Kronecker problem

Back to Schur-Weyl duality: As a (Sn,Pr (n))-bimodule we have

V⊗r
n =

∑
S(λ)⊗ Lr (λ>1)

where the sum is over all λ = (λ1, λ2, λ3, . . .) partitions of n with
λ>1 = (λ2, λ3, . . .) ∈ Λ≤r .

Theorem: Let λ, µ, ν ` n with λ>1 ` r and µ>1 ` s then we have

gνλ,µ =

{
[Lr+s(ν>1)↓Pr⊗Ps : Lr (λ>1)⊗ Ls(µ>1)] if ν>1 ∈ Λ≤r+s
0 otherwise

=

{ ∑t
i=0(−1)i [∆r+s(η(i))↓Pr⊗Ps : Lr (λ>1)⊗ Ls(µ>1)] if ν>1 ∈ Λ≤r+s

0 otherwise

where ν>1 = η(0) ↪→n η
(1) ↪→n η

(2) ↪→n . . . ↪→n η
(t) is the chain

containing ν>1.
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Consequences:

Murnaghan’s stability property:
As we increase the length of the first row of the partitions we have

gνλ,µ → gν>1
λ>1,µ>1

reduced Kronecker coefficients

Example

S(12)⊗ S(12) = S(2)

S(2,1)⊗ S(2,1) = S(3)⊕ S(2,1)⊕ S(13)

S(3,1)⊗ S(3,1) = S(4)⊕ S(3,1)⊕ S(2,12)⊕ S(22)

Then for all n ≥ 4 we have

S(n−1,1)⊗S(n−1,1) = S(n)⊕S(n−1,1)⊕S(n−2,12)⊕S(n−2,2).
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Murnaghan’s stability property follows directly from the fact that
Pr (n) is semisimple for large n.

Representation theoretic interpretation of reduced Kronecker
coefficients as composition factors of restriction of cell modules for
partitions algebra to Young subalgebras.
Recover bounds for this stability (Brion).
Closed positive formula for gνλ,µ (for large enough n) when one of
the labelling partition is either a 2-part or a hook partition (as a
sum of products of LR coefficients). This improves on work by
Ballantine-Orellana (2-part case) and Blasiak (hook case).

Note: All proofs are very elementary.

THANK YOU
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Let λ[n], µ[n], ν[n] be partitions of n with |λ| = r , |µ| = s and
|ν| = r + s − l .
(i) Suppose ν[n] = (n − k , k) is a two-part partition. Then we have

g(n−k ,k)
λ[n],µ[n]

= g(k)
λ,µ =

∑
l1,l2

l=l1+2l2

∑
σ`l1
γ`l2

cλ(r−l1−l2),σ,γcµγ,σ,(s−l1−l2)

for all n ≥ min{|λ|+ µ1 + k , |µ|+ λ1 + k}.
(ii) Suppose ν[n] = (n − k ,1k ) is a hook partition. Then we have

g(n−k ,1k )
λ[n],µ[n]

= g(1k )
λ,µ =

∑
l1,l2

l=l1+2l2

∑
σ`l1
γ`l2

cλ
(1r−l1−l2 ),σ,γ

cµ
γ,σ′,(1s−l1−l2 )

for all n ≥ min{|λ|+ |µ|+ 1, |µ|+ λ1 + k , |λ|+ µ1 + k} and where σ′

denotes the transpose of σ.
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