The Kronecker product and the partition algebra

Christopher Bowman Maud De Visscher Rosa Orellana

FPSAC'13

Bowman, De Visscher, Orellana

Kronecker product and Partition algebra

June 2013 1 / 14

Complex representations of GL_n : simple (Weyl) modules $V(\lambda)$.

Complex representations of GL_n : simple (Weyl) modules $V(\lambda)$.

$$V(\lambda)\otimes V(\mu)=\sum_{
u}c_{\lambda,\mu}^{
u}V(
u),$$

where $c_{\lambda,\mu}^{\nu}$ are the Littlewood-Richardson coefficients.

Complex representations of GL_n : simple (Weyl) modules $V(\lambda)$.

$$V(\lambda)\otimes V(\mu)=\sum_{
u} {oldsymbol{\mathcal{C}}}_{\lambda,\mu}^{
u}V(
u),$$

where $c_{\lambda,\mu}^{\nu}$ are the Littlewood-Richardson coefficients.

Complex representations of \mathfrak{S}_n : simple (Specht) modules $S(\lambda)$.

Complex representations of GL_n : simple (Weyl) modules $V(\lambda)$.

$$V(\lambda)\otimes V(\mu)=\sum_{
u} {m{c}}_{\lambda,\mu}^{
u} V(
u),$$

where $c_{\lambda,\mu}^{\nu}$ are the Littlewood-Richardson coefficients.

Complex representations of \mathfrak{S}_n : simple (Specht) modules $S(\lambda)$.

$$\mathcal{S}(\lambda)\otimes\mathcal{S}(\mu)=\sum_{
u}g_{\lambda,\mu}^{
u}\mathcal{S}(
u),$$

where $g^{\nu}_{\lambda,\mu}$ are the Kronecker coefficients. Combinatorial description of $g^{\nu}_{\lambda,\mu}$?

A (10) × A (10) × A (10)

Let V_n be an *n*-dimensional \mathbb{C} -vector space and $r \ge 1$. Then we have the following Schur-Weyl dualities

A (10) A (10) A (10)

Let V_n be an *n*-dimensional \mathbb{C} -vector space and $r \ge 1$. Then we have the following Schur-Weyl dualities

 $\operatorname{GL}_n \rightarrow V^{\otimes r} \leftarrow \mathbb{C}\mathfrak{S}_r$

Let V_n be an *n*-dimensional \mathbb{C} -vector space and $r \ge 1$. Then we have the following Schur-Weyl dualities

< 回 ト < 三 ト < 三

Let V_n be an *n*-dimensional \mathbb{C} -vector space and $r \ge 1$. Then we have the following Schur-Weyl dualities

GL _n	\rightarrow	V ^{⊗r}	\leftarrow	$\mathbb{C}\mathfrak{S}_r$	
\cup				\cap	
\mathfrak{S}_n				$P_r(n)$	Partition algebra

Idea: Use the partition algebra to study the Kronecker problem.

Structure of the talk

• The partition algebra $P_r(n)$: Definition and first properties.

Structure of the talk

- The partition algebra $P_r(n)$: Definition and first properties.
- 2 Combinatorial representation theory of $P_r(n)$.

Structure of the talk

- The partition algebra $P_r(n)$: Definition and first properties.
- 2 Combinatorial representation theory of $P_r(n)$.
- Application to the Kronecker problem.

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.

 $P_r(n)$: C-algebra with **basis** given by all set partitions of $\{1, 2, ..., r, 1', 2', ..., r'\}$.

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.

 $P_r(n)$: C-algebra with **basis** given by all set partitions of $\{1, 2, ..., r, 1', 2', ..., r'\}.$

$\{\{1,2,4,3'\},\{3\},\{5,1',2'\},\{4'\},\{5'\}\}$

不同 いんきいんき

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.

 $P_r(n)$: C-algebra with **basis** given by all set partitions of $\{1, 2, ..., r, 1', 2', ..., r'\}.$

$$\{\{1,2,4,3'\},\{3\},\{5,1',2'\},\{4'\},\{5'\}\}$$

A (10) A (10) A (10)

 \leftrightarrow

< ロ > < 同 > < 回 > < 回 >

Bowman.De Visscher.Orellana

Remark: The group algebra \mathbb{CG}_r appears naturally as a subalgebra of $P_r(n)$ (as the span of all diagrams having precisely *r* 'propagating blocks').

$$e = \frac{1}{n}$$
 ...

$$e^{2} = e$$
.

Bowman, De Visscher, Orellana

Kronecker product and Partition algebra

< ■> ■ つへの June 2013 7/14

 $eP_re \cong P_{r-1}, \qquad P_r/P_reP_r \cong \mathbb{C}\mathfrak{S}_r.$

 $eP_re \cong P_{r-1}, \qquad P_r/P_reP_r \cong \mathbb{C}\mathfrak{S}_r.$

Let *L* be a simple P_r -module. Then either eL = 0 and so *L* is a simple $\mathbb{C}\mathfrak{S}_r$ -module, or $eL \neq 0$ and so eL is a simple P_{r-1} -module.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $eP_re \cong P_{r-1}, \qquad P_r/P_reP_r \cong \mathbb{C}\mathfrak{S}_r.$

Let *L* be a simple P_r -module. Then either eL = 0 and so *L* is a simple $\mathbb{C}\mathfrak{S}_r$ -module, or $eL \neq 0$ and so eL is a simple P_{r-1} -module.

Thus we have that the simple P_r -modules are indexed by partitions of degree $\leq r$.

 $\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

 $\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

•
$$\lambda \vdash r$$
, $\Delta_r(\lambda) = S(\lambda)$ Specht module.

$$\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

•
$$\lambda \vdash r$$
, $\Delta_r(\lambda) = S(\lambda)$ Specht module.

•
$$\lambda \vdash r-1$$
, $\Delta_r(\lambda) = P_r e \otimes_{P_{r-1}} S(\lambda)$.

< ロ > < 同 > < 回 > < 回 >

$$\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

< ロ > < 同 > < 回 > < 回 >

$$\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

$$\Lambda_{\leq r} = \{\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots), \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq 0, \sum_i \lambda_i \leq r\}.$$

For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_r(\lambda)$, obtained by 'inflating' the corresponding Specht module.

A complete set of non-isomorphic simple *P_r*-modules is given by

$$\{L_r(\lambda) := \operatorname{hd} \Delta_r(\lambda), \quad \lambda \in \Lambda_{\leq r}\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• • • • • • • • • • • • •

Theorem: $P_r(n)$ is semisimple $\Leftrightarrow n \notin \{0, 1, 2, \dots, 2r-2\}.$

イロト イポト イヨト イヨト

Theorem: $P_r(n)$ is semisimple $\Leftrightarrow n \notin \{0, 1, 2, \dots, 2r - 2\}$. We now take $n \in \mathbb{Z}_{>0}$.

Theorem: $P_r(n)$ is semisimple $\Leftrightarrow n \notin \{0, 1, 2, ..., 2r - 2\}.$ We now take $n \in \mathbb{Z}_{>0}$.

Definition: Let λ, μ be partitions. We say that (μ, λ) form an *n*-pair and we write $\mu \hookrightarrow_n \lambda$ if $\mu \subset \lambda$ and λ/μ consists of a single row of boxes of which the last (rightmost) one has content $n - |\mu|$.

Theorem: $P_r(n)$ is semisimple $\Leftrightarrow n \notin \{0, 1, 2, ..., 2r - 2\}.$ We now take $n \in \mathbb{Z}_{>0}$.

Definition: Let λ, μ be partitions. We say that (μ, λ) form an *n*-pair and we write $\mu \hookrightarrow_n \lambda$ if $\mu \subset \lambda$ and λ/μ consists of a single row of boxes of which the last (rightmost) one has content $n - |\mu|$.

Example: ((2, 1), (4, 1)) form a 6-pair (with $6 - |\mu| = 3$).

Proposition: The set $\Lambda_{< r}$ splits into maximal chains of *n*-pairs:

$$\lambda^{(0)} \hookrightarrow_n \lambda^{(1)} \hookrightarrow_n \lambda^{(2)} \hookrightarrow_n \ldots \hookrightarrow_n \lambda^{(t)}$$

(where t depends on the chain).

(a)

Proposition: The set $\Lambda_{< r}$ splits into maximal chains of *n*-pairs:

$$\lambda^{(0)} \hookrightarrow_n \lambda^{(1)} \hookrightarrow_n \lambda^{(2)} \hookrightarrow_n \ldots \hookrightarrow_n \lambda^{(t)}$$

(where *t* depends on the chain).

Each cell module $\Delta_r(\lambda^{(i)})$ ($0 \le i \le t - 1$) has Loewy structure

 $L_r(\lambda^{(i)})$ $L_r(\lambda^{(i+1)})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition: The set $\Lambda_{\leq r}$ splits into maximal chains of *n*-pairs:

$$\lambda^{(0)} \hookrightarrow_n \lambda^{(1)} \hookrightarrow_n \lambda^{(2)} \hookrightarrow_n \ldots \hookrightarrow_n \lambda^{(t)}$$

(where *t* depends on the chain).

Each cell module $\Delta_r(\lambda^{(i)})$ ($0 \le i \le t - 1$) has Loewy structure

$$rac{L_r(\lambda^{(i)})}{L_r(\lambda^{(i+1)})}$$
 .

In the Grothendieck group we have

$$[L_r(\lambda^{(i)})] = \sum_{j=i}^t (-1)^{j-i} [\Delta_r(\lambda^{(j)})].$$

• • • • • • • • • • •

3. Application to the Kronecker problem

Bowman, De Visscher, Orellana

Kronecker product and Partition algebra

▶ < ≣ ▶ ≣ ∽ ९ 여 June 2013 11/14

(a)

3. Application to the Kronecker problem

Back to Schur-Weyl duality: As a $(\mathfrak{S}_n, P_r(n))$ -bimodule we have

$$V_n^{\otimes r} = \sum S(\lambda) \otimes L_r(\lambda_{>1})$$

where the sum is over all $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ partitions of *n* with $\lambda_{>1} = (\lambda_2, \lambda_3, ...) \in \Lambda_{\leq r}$.

3. Application to the Kronecker problem

Back to Schur-Weyl duality: As a $(\mathfrak{S}_n, P_r(n))$ -bimodule we have

$$V_n^{\otimes r} = \sum S(\lambda) \otimes L_r(\lambda_{>1})$$

where the sum is over all $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$ partitions of *n* with $\lambda_{>1} = (\lambda_2, \lambda_3, ...) \in \Lambda_{\leq r}$.

Theorem: Let $\lambda, \mu, \nu \vdash n$ with $\lambda_{>1} \vdash r$ and $\mu_{>1} \vdash s$ then we have

$$\begin{split} g_{\lambda,\mu}^{\nu} &= \begin{cases} \begin{bmatrix} L_{r+s}(\nu_{>1}) \downarrow_{P_r \otimes P_s} : L_r(\lambda_{>1}) \otimes L_s(\mu_{>1}) \end{bmatrix} & \text{if } \nu_{>1} \in \Lambda_{\le r+s} \\ 0 & \text{otherwise} \end{cases} \\ &= \begin{cases} \sum_{i=0}^t (-1)^i [\Delta_{r+s}(\eta^{(i)}) \downarrow_{P_r \otimes P_s} : L_r(\lambda_{>1}) \otimes L_s(\mu_{>1})] & \text{if } \nu_{>1} \in \Lambda_{\le r+s} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

where $\nu_{>1} = \eta^{(0)} \hookrightarrow_n \eta^{(1)} \hookrightarrow_n \eta^{(2)} \hookrightarrow_n \ldots \hookrightarrow_n \eta^{(t)}$ is the chain containing $\nu_{>1}$.

Bowman, De Visscher, Orellana

Kronecker product and Partition algebra

▲ ■ ▶ ■ • つへの June 2013 12 / 14

イロト イヨト イヨト イヨト

Murnaghan's stability property:

As we increase the length of the first row of the partitions we have

 $g^{
u}_{\lambda,\mu} o \overline{g}^{
u_{>1}}_{\lambda_{>1},\mu_{>1}}$ reduced Kronecker coefficients

Murnaghan's stability property:

As we increase the length of the first row of the partitions we have

 $g^
u_{\lambda,\mu} o \overline{g}^{
u_{>1}}_{\lambda_{>1},\mu_{>1}} \qquad ext{reduced Kronecker coefficients}$

Example

$$S(1^2)\otimes S(1^2)=S(2)$$

Murnaghan's stability property:

As we increase the length of the first row of the partitions we have

 $g^
u_{\lambda,\mu} o \overline{g}^{
u_{>1}}_{\lambda_{>1},\mu_{>1}} \qquad ext{reduced Kronecker coefficients}$

Example

$$S(1^2)\otimes S(1^2)=S(2) \ S(2,1)\otimes S(2,1)=S(3)\oplus S(2,1)\oplus S(1^3)$$

Murnaghan's stability property:

As we increase the length of the first row of the partitions we have

 $g^
u_{\lambda,\mu} o \overline{g}^{
u_{>1}}_{\lambda_{>1},\mu_{>1}} \qquad ext{reduced Kronecker coefficients}$

Example

$$egin{aligned} S(1^2) \otimes S(1^2) &= S(2) \ S(2,1) \otimes S(2,1) &= S(3) \oplus S(2,1) \oplus S(1^3) \ S(3,1) \otimes S(3,1) &= S(4) \oplus S(3,1) \oplus S(2,1^2) \oplus S(2^2) \end{aligned}$$

Murnaghan's stability property:

As we increase the length of the first row of the partitions we have

 $g^{
u}_{\lambda,\mu} o \overline{g}^{
u_{>1}}_{\lambda_{>1},\mu_{>1}} \qquad ext{reduced Kronecker coefficients}$

Example

$$egin{aligned} S(1^2) \otimes S(1^2) &= S(2) \ S(2,1) \otimes S(2,1) &= S(3) \oplus S(2,1) \oplus S(1^3) \ S(3,1) \otimes S(3,1) &= S(4) \oplus S(3,1) \oplus S(2,1^2) \oplus S(2^2) \end{aligned}$$

Then for all $n \ge 4$ we have

 $S(n-1,1) \otimes S(n-1,1) = S(n) \oplus S(n-1,1) \oplus S(n-2,1^2) \oplus S(n-2,2).$

イロト イポト イヨト イヨト 二日

• Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.

• • • • • • • • • • • • •

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.

A (10) A (10)

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for g^ν_{λ,μ} (for large enough *n*) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for g^ν_{λ,μ} (for large enough *n*) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for g^ν_{λ,μ} (for large enough *n*) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

Note: All proofs are very elementary.

- Murnaghan's stability property follows directly from the fact that $P_r(n)$ is semisimple for large *n*.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for g^ν_{λ,μ} (for large enough *n*) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

Note: All proofs are very elementary.

THANK YOU

Let
$$\lambda_{[n]}, \mu_{[n]}, \nu_{[n]}$$
 be partitions of *n* with $|\lambda| = r$, $|\mu| = s$ and $|\nu| = r + s - l$.
(i) Suppose $\nu_{[n]} = (n - k, k)$ is a two-part partition. Then we have

$$g_{\lambda_{[n]},\mu_{[n]}}^{(n-k,k)} = \overline{g}_{\lambda,\mu}^{(k)} = \sum_{\substack{l_1,l_2\\l=l_1+2l_2}} \sum_{\substack{\sigma \vdash l_1\\ \gamma \vdash l_2}} c_{(r-l_1-l_2),\sigma,\gamma}^{\lambda} c_{\gamma,\sigma,(s-l_1-l_2)}^{\mu}$$

for all $n \ge \min\{|\lambda| + \mu_1 + k, |\mu| + \lambda_1 + k\}$. (ii) Suppose $\nu_{[n]} = (n - k, 1^k)$ is a hook partition. Then we have

$$g^{(n-k,1^k)}_{\lambda_{[n]},\mu_{[n]}} = \overline{g}^{(1^k)}_{\lambda,\mu} = \sum_{\substack{l_1,l_2\ l=l_1+2l_2}} \sum_{\substack{\sigma \vdash l_1\ \sigma \vdash l_1}} c^{\lambda}_{(1^{r-l_1-l_2}),\sigma,\gamma} c^{\mu}_{\gamma,\sigma',(1^{s-l_1-l_2})}$$

for all $n \ge \min\{|\lambda| + |\mu| + 1, |\mu| + \lambda_1 + k, |\lambda| + \mu_1 + k\}$ and where σ' denotes the transpose of σ .

A I > A = A A