The Kronecker product and the partition algebra

Christopher Bowman Maud De Visscher Rosa Orellana

FPSAC'13

The Kronecker problem

The Kronecker problem

Complex representations of $G L_{n}$: simple (Weyl) modules $V(\lambda)$.

The Kronecker problem

Complex representations of $G L_{n}$: simple (Weyl) modules $V(\lambda)$.

$$
V(\lambda) \otimes V(\mu)=\sum_{\nu} c_{\lambda, \mu}^{\nu} V(\nu)
$$

where $c_{\lambda, \mu}^{\nu}$ are the Littlewood-Richardson coefficients.

The Kronecker problem

Complex representations of $G L_{n}$: simple (Weyl) modules $V(\lambda)$.

$$
V(\lambda) \otimes V(\mu)=\sum_{\nu} c_{\lambda, \mu}^{\nu} V(\nu)
$$

where $c_{\lambda, \mu}^{\nu}$ are the Littlewood-Richardson coefficients.
Complex representations of \mathfrak{S}_{n} : simple (Specht) modules $S(\lambda)$.

The Kronecker problem

Complex representations of $G L_{n}$: simple (Weyl) modules $V(\lambda)$.

$$
V(\lambda) \otimes V(\mu)=\sum_{\nu} c_{\lambda, \mu}^{\nu} V(\nu)
$$

where $c_{\lambda, \mu}^{\nu}$ are the Littlewood-Richardson coefficients.
Complex representations of \mathfrak{S}_{n} : simple (Specht) modules $S(\lambda)$.

$$
S(\lambda) \otimes S(\mu)=\sum_{\nu} g_{\lambda, \mu}^{\nu} S(\nu)
$$

where $g_{\lambda, \mu}^{\nu}$ are the Kronecker coefficients.
Combinatorial description of $g_{\lambda, \mu}^{\nu}$?

Schur-Weyl dualities

Schur-Weyl dualities

Let V_{n} be an n-dimensional \mathbb{C}-vector space and $r \geq 1$. Then we have the following Schur-Weyl dualities

Schur-Weyl dualities

Let V_{n} be an n-dimensional \mathbb{C}-vector space and $r \geq 1$. Then we have the following Schur-Weyl dualities

$$
\mathrm{GL}_{n} \rightarrow V^{\otimes r} \leftarrow \mathbb{C S}_{r}
$$

Schur-Weyl dualities

Let V_{n} be an n-dimensional \mathbb{C}-vector space and $r \geq 1$. Then we have the following Schur-Weyl dualities

Schur-Weyl dualities

Let V_{n} be an n-dimensional \mathbb{C}-vector space and $r \geq 1$. Then we have the following Schur-Weyl dualities

Idea: Use the partition algebra to study the Kronecker problem.

Structure of the talk

(1) The partition algebra $P_{r}(n)$: Definition and first properties.

Structure of the talk

(1) The partition algebra $P_{r}(n)$: Definition and first properties.
(2) Combinatorial representation theory of $P_{r}(n)$.

Structure of the talk

(1) The partition algebra $P_{r}(n)$: Definition and first properties.
(2) Combinatorial representation theory of $P_{r}(n)$.
(3) Application to the Kronecker problem.

1. The partition algebra $P_{r}(n)$ Definition and first properties

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.

1. The partition algebra $P_{r}(n)$ Definition and first properties

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.
$P_{r}(n): \mathbb{C}$-algebra with basis given by all set partitions of $\left\{1,2, \ldots, r, 1^{\prime}, 2^{\prime}, \ldots, r^{\prime}\right\}$.

1. The partition algebra $P_{r}(n)$ Definition and first properties

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.
$P_{r}(n): \mathbb{C}$-algebra with basis given by all set partitions of $\left\{1,2, \ldots, r, 1^{\prime}, 2^{\prime}, \ldots, r^{\prime}\right\}$.
$\left\{\left\{1,2,4,3^{\prime}\right\},\{3\},\left\{5,1^{\prime}, 2^{\prime}\right\},\left\{4^{\prime}\right\},\left\{5^{\prime}\right\}\right\}$

1. The partition algebra $P_{r}(n)$ Definition and first properties

Let $r \in \mathbb{Z}_{>0}$ and $n \in \mathbb{C}$.
$P_{r}(n): \mathbb{C}$-algebra with basis given by all set partitions of $\left\{1,2, \ldots, r, 1^{\prime}, 2^{\prime}, \ldots, r^{\prime}\right\}$.
$\left\{\left\{1,2,4,3^{\prime}\right\},\{3\},\left\{5,1^{\prime}, 2^{\prime}\right\},\left\{4^{\prime}\right\},\left\{5^{\prime}\right\}\right\} \leftrightarrow$

and multiplication given by concatenation and scalar multiplication by n^{t} where t is the number of connected components consisting of middle vertices only.
and multiplication given by concatenation and scalar multiplication by n^{t} where t is the number of connected components consisting of middle vertices only.

and multiplication given by concatenation and scalar multiplication by n^{t} where t is the number of connected components consisting of middle vertices only.

and multiplication given by concatenation and scalar multiplication by n^{t} where t is the number of connected components consisting of middle vertices only.

Remark: The group algebra \mathbb{C}_{r} appears naturally as a subalgebra of $P_{r}(n)$ (as the span of all diagrams having precisely r 'propagating blocks').

Assume throughout this talk that $n \neq 0$. Write $P_{r}=P_{r}(n)$.

Assume throughout this talk that $n \neq 0$. Write $P_{r}=P_{r}(n)$.

$$
e^{2}=e
$$

Assume throughout this talk that $n \neq 0$. Write $P_{r}=P_{r}(n)$.

$$
e^{2}=e
$$

$$
e P_{r} e \cong P_{r-1}, \quad P_{r} / P_{r} e P_{r} \cong \mathbb{C} \mathfrak{S}_{r}
$$

Assume throughout this talk that $n \neq 0$. Write $P_{r}=P_{r}(n)$.

$$
\begin{aligned}
& e=\frac{1}{n} \begin{array}{|l|l|l}
\lceil\boxed{~} & \\
\hline
\end{array} \\
& e^{2}=e . \\
& e P_{r} e \cong P_{r-1}, \quad P_{r} / P_{r} e P_{r} \cong \mathbb{C} \mathfrak{S}_{r} .
\end{aligned}
$$

Let L be a simple P_{r}-module. Then either $e L=0$ and so L is a simple $\mathbb{C S}_{r}$-module, or $e L \neq 0$ and so $e L$ is a simple P_{r-1}-module.

Assume throughout this talk that $n \neq 0$. Write $P_{r}=P_{r}(n)$.

$$
\begin{aligned}
& e=\frac{1}{n} \begin{array}{|l|l|l}
\lceil\boxed{~} & \\
\hline
\end{array} \\
& e^{2}=e . \\
& e P_{r} e \cong P_{r-1}, \quad P_{r} / P_{r} e P_{r} \cong \mathbb{C} \mathfrak{S}_{r} .
\end{aligned}
$$

Let L be a simple P_{r}-module. Then either $e L=0$ and so L is a simple $\mathbb{C S}_{r}$-module, or $e L \neq 0$ and so $e L$ is a simple P_{r-1}-module.

Thus we have that the simple P_{r}-modules are indexed by partitions of degree $\leq r$.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.

- $\lambda \vdash r, \Delta_{r}(\lambda)=S(\lambda)$ Specht module.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.
- $\lambda \vdash r, \Delta_{r}(\lambda)=S(\lambda)$ Specht module.
- $\lambda \vdash r-1, \Delta_{r}(\lambda)=P_{r} e \otimes_{P_{r-1}} S(\lambda)$.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.
- $\lambda \vdash r, \Delta_{r}(\lambda)=S(\lambda)$ Specht module.
- $\lambda \vdash r-1, \Delta_{r}(\lambda)=P_{r} e \otimes_{P_{r-1}} S(\lambda)$.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.
- $\lambda \vdash r, \Delta_{r}(\lambda)=S(\lambda)$ Specht module.
- $\lambda \vdash r-1, \Delta_{r}(\lambda)=P_{r} e \otimes_{P_{r-1}} S(\lambda)$.
P_{r} is not a semisimple algebra in general but it is a cellular algebra (as defined by Graham-Lehrer).
$\Lambda_{\leq r}=\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq 0, \sum_{i} \lambda_{i} \leq r\right\}$.
For each $\lambda \in \Lambda_{\leq r}$ we have a cell module $\Delta_{r}(\lambda)$, obtained by 'inflating' the corresponding Specht module.
- $\lambda \vdash r, \Delta_{r}(\lambda)=S(\lambda)$ Specht module.
- $\lambda \vdash r-1, \Delta_{r}(\lambda)=P_{r} e \otimes_{P_{r-1}} S(\lambda)$.

A complete set of non-isomorphic simple P_{r}-modules is given by

$$
\left\{L_{r}(\lambda):=\operatorname{hd} \Delta_{r}(\lambda), \quad \lambda \in \Lambda_{\leq r}\right\} .
$$

2. Combinatorial representation theory of $P_{r}(n)$ (P. Martin)
3. Combinatorial representation theory of $P_{r}(n)$ (P. Martin)

Theorem: $P_{r}(n)$ is semisimple $\Leftrightarrow n \notin\{0,1,2, \ldots, 2 r-2\}$.

2. Combinatorial representation theory of $P_{r}(n)$ (P. Martin)

Theorem: $P_{r}(n)$ is semisimple $\Leftrightarrow n \notin\{0,1,2, \ldots, 2 r-2\}$.
We now take $n \in \mathbb{Z}_{>0}$.

2. Combinatorial representation theory of $P_{r}(n)$ (P. Martin)

Theorem: $P_{r}(n)$ is semisimple $\Leftrightarrow n \notin\{0,1,2, \ldots, 2 r-2\}$.
We now take $n \in \mathbb{Z}_{>0}$.
Definition: Let λ, μ be partitions. We say that (μ, λ) form an n-pair and we write $\mu \hookrightarrow_{n} \lambda$ if $\mu \subset \lambda$ and λ / μ consists of a single row of boxes of which the last (rightmost) one has content $n-|\mu|$.

2. Combinatorial representation theory of $P_{r}(n)$ (P. Martin)

Theorem: $P_{r}(n)$ is semisimple $\Leftrightarrow n \notin\{0,1,2, \ldots, 2 r-2\}$.
We now take $n \in \mathbb{Z}_{>0}$.
Definition: Let λ, μ be partitions. We say that (μ, λ) form an n-pair and we write $\mu \hookrightarrow_{n} \lambda$ if $\mu \subset \lambda$ and λ / μ consists of a single row of boxes of which the last (rightmost) one has content $n-|\mu|$.

Example: $((2,1),(4,1))$ form a 6-pair (with $6-|\mu|=3)$.

$$
\begin{array}{|c|c|}
\hline 0 & 1 \\
\hline-1 & \\
\hline
\end{array} \subset \begin{array}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline-1 & & & \\
\hline
\end{array}
$$

Proposition: The set $\Lambda_{\leq r}$ splits into maximal chains of n-pairs:

$$
\lambda^{(0)} \hookrightarrow_{n} \lambda^{(1)} \hookrightarrow_{n} \lambda^{(2)} \hookrightarrow_{n} \ldots \hookrightarrow_{n} \lambda^{(t)}
$$

(where t depends on the chain).

Proposition: The set $\Lambda_{\leq r}$ splits into maximal chains of n-pairs:

$$
\lambda^{(0)} \hookrightarrow_{n} \lambda^{(1)} \hookrightarrow_{n} \lambda^{(2)} \hookrightarrow_{n} \ldots \hookrightarrow_{n} \lambda^{(t)}
$$

(where t depends on the chain).
Each cell module $\Delta_{r}\left(\lambda^{(i)}\right)(0 \leq i \leq t-1)$ has Loewy structure

$$
\begin{gathered}
L_{r}\left(\lambda^{(i)}\right) \\
L_{r}\left(\lambda^{(i+1)}\right)
\end{gathered}
$$

Proposition: The set $\Lambda_{\leq r}$ splits into maximal chains of n-pairs:

$$
\lambda^{(0)} \hookrightarrow_{n} \lambda^{(1)} \hookrightarrow_{n} \lambda^{(2)} \hookrightarrow_{n} \ldots \hookrightarrow_{n} \lambda^{(t)}
$$

(where t depends on the chain).
Each cell module $\Delta_{r}\left(\lambda^{(i)}\right)(0 \leq i \leq t-1)$ has Loewy structure

$$
\begin{gathered}
L_{r}\left(\lambda^{(i)}\right) \\
L_{r}\left(\lambda^{(i+1)}\right)
\end{gathered}
$$

In the Grothendieck group we have

$$
\left[L_{r}\left(\lambda^{(i)}\right)\right]=\sum_{j=i}^{t}(-1)^{j-i}\left[\Delta_{r}\left(\lambda^{(j)}\right]\right.
$$

3. Application to the Kronecker problem

3. Application to the Kronecker problem

Back to Schur-Weyl duality: As a $\left(\mathfrak{S}_{n}, P_{r}(n)\right)$-bimodule we have

$$
V_{n}^{\otimes r}=\sum S(\lambda) \otimes L_{r}\left(\lambda_{>1}\right)
$$

where the sum is over all $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ partitions of n with $\lambda_{>1}=\left(\lambda_{2}, \lambda_{3}, \ldots\right) \in \Lambda_{\leq r}$.

3. Application to the Kronecker problem

Back to Schur-Weyl duality: As a $\left(\mathfrak{S}_{n}, P_{r}(n)\right)$-bimodule we have

$$
V_{n}^{\otimes r}=\sum S(\lambda) \otimes L_{r}\left(\lambda_{>1}\right)
$$

where the sum is over all $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ partitions of n with $\lambda_{>1}=\left(\lambda_{2}, \lambda_{3}, \ldots\right) \in \Lambda_{\leq r}$.

Theorem: Let $\lambda, \mu, \nu \vdash n$ with $\lambda_{>1} \vdash r$ and $\mu_{>1} \vdash s$ then we have

$$
\begin{aligned}
& g_{\lambda, \mu}^{\nu}= \begin{cases}{\left[L_{r+s}\left(\nu_{>1}\right) \downarrow p_{r} \otimes P_{s}: L_{r}\left(\lambda_{>1}\right) \otimes L_{s}\left(\mu_{>1}\right)\right]} & \text { if } \nu_{>1} \in \Lambda_{\leq r+s} \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\sum_{i=0}^{t}(-1)^{i}\left[\Delta_{r+s}\left(\eta^{(i)}\right) \downarrow P_{r} \otimes P_{s}: L_{r}\left(\lambda_{>1}\right) \otimes L_{s}\left(\mu_{>1}\right)\right] & \text { if } \nu_{>1} \in \Lambda_{\leq r+s} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\nu_{>1}=\eta^{(0)} \hookrightarrow_{n} \eta^{(1)} \hookrightarrow_{n} \eta^{(2)} \hookrightarrow_{n} \ldots \hookrightarrow_{n} \eta^{(t)}$ is the chain containing $\nu_{>1}$.

Consequences:

Consequences:

Murnaghan's stability property:
As we increase the length of the first row of the partitions we have

$$
g_{\lambda, \mu}^{\nu} \rightarrow \bar{g}_{\lambda>1, \mu>1}^{\nu>1} \quad \text { reduced Kronecker coefficients }
$$

Consequences:

Murnaghan's stability property:
As we increase the length of the first row of the partitions we have

$$
g_{\lambda, \mu}^{\nu} \rightarrow \bar{g}_{\lambda_{>1}, \mu>1}^{\nu>1} \quad \text { reduced Kronecker coefficients }
$$

Example

$$
S\left(1^{2}\right) \otimes S\left(1^{2}\right)=S(2)
$$

Consequences:

Murnaghan's stability property:
As we increase the length of the first row of the partitions we have

$$
g_{\lambda, \mu}^{\nu} \rightarrow \bar{g}_{\lambda_{>1}, \mu>1}^{\nu>1} \quad \text { reduced Kronecker coefficients }
$$

Example

$$
\begin{aligned}
& S\left(1^{2}\right) \otimes S\left(1^{2}\right)=S(2) \\
& S(2,1) \otimes S(2,1)=S(3) \oplus S(2,1) \oplus S\left(1^{3}\right)
\end{aligned}
$$

Consequences:

Murnaghan's stability property:
As we increase the length of the first row of the partitions we have

$$
g_{\lambda, \mu}^{\nu} \rightarrow \bar{g}_{\lambda>1, \mu>1}^{\nu_{>1}} \quad \text { reduced Kronecker coefficients }
$$

Example

$$
\begin{aligned}
& S\left(1^{2}\right) \otimes S\left(1^{2}\right)=S(2) \\
& S(2,1) \otimes S(2,1)=S(3) \oplus S(2,1) \oplus S\left(1^{3}\right) \\
& S(3,1) \otimes S(3,1)=S(4) \oplus S(3,1) \oplus S\left(2,1^{2}\right) \oplus S\left(2^{2}\right)
\end{aligned}
$$

Consequences:

Murnaghan's stability property:
As we increase the length of the first row of the partitions we have

$$
g_{\lambda, \mu}^{\nu} \rightarrow \bar{g}_{\lambda_{>1}, \mu_{>1}}^{\nu>1} \quad \text { reduced Kronecker coefficients }
$$

Example

$$
\begin{aligned}
& S\left(1^{2}\right) \otimes S\left(1^{2}\right)=S(2) \\
& S(2,1) \otimes S(2,1)=S(3) \oplus S(2,1) \oplus S\left(1^{3}\right) \\
& S(3,1) \otimes S(3,1)=S(4) \oplus S(3,1) \oplus S\left(2,1^{2}\right) \oplus S\left(2^{2}\right)
\end{aligned}
$$

Then for all $n \geq 4$ we have
$S(n-1,1) \otimes S(n-1,1)=S(n) \oplus S(n-1,1) \oplus S\left(n-2,1^{2}\right) \oplus S(n-2,2)$.

- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for $g_{\lambda, \mu}^{\nu}$ (for large enough n) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).
- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for $g_{\lambda, \mu}^{\nu}$ (for large enough n) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).
- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for $g_{\lambda, \mu}^{\nu}$ (for large enough n) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

Note: All proofs are very elementary.

- Murnaghan's stability property follows directly from the fact that $P_{r}(n)$ is semisimple for large n.
- Representation theoretic interpretation of reduced Kronecker coefficients as composition factors of restriction of cell modules for partitions algebra to Young subalgebras.
- Recover bounds for this stability (Brion).
- Closed positive formula for $g_{\lambda, \mu}^{\nu}$ (for large enough n) when one of the labelling partition is either a 2-part or a hook partition (as a sum of products of LR coefficients). This improves on work by Ballantine-Orellana (2-part case) and Blasiak (hook case).

Note: All proofs are very elementary.

THANK YOU

Let $\lambda_{[n]}, \mu_{[n]}, \nu_{[n]}$ be partitions of n with $|\lambda|=r,|\mu|=s$ and $|\nu|=r+s-l$.
(i) Suppose $\nu_{[n]}=(n-k, k)$ is a two-part partition. Then we have

$$
g_{\lambda_{[n]}, \mu_{[n]}}^{(n-k, k)}=\bar{g}_{\lambda, \mu}^{(k)}=\sum_{\substack{l_{1}, l_{2} \\ I=l_{1}+2 l_{2}}} \sum_{\substack{\sigma \vdash l_{1} \\ \gamma \vdash l_{2}}} c_{\left(r-l_{1}-l_{2}\right), \sigma, \gamma}^{\lambda} c_{\gamma, \sigma,\left(s-l_{1}-l_{2}\right)}^{\mu}
$$

for all $n \geq \min \left\{|\lambda|+\mu_{1}+k,|\mu|+\lambda_{1}+k\right\}$.
(ii) Suppose $\nu_{[n]}=\left(n-k, 1^{k}\right)$ is a hook partition. Then we have

$$
g_{\lambda_{[n]}, \mu_{[n]}}^{\left(n-k, 1^{k}\right)}=\bar{g}_{\lambda, \mu}^{\left(1^{k}\right)}=\sum_{\substack{l_{1}, l_{2} \\ I=l_{1}+2 l_{2}}} \sum_{\sigma \vdash l_{1} \gamma \not l_{2}} c_{\left(1^{r-l_{1}-l_{2}}\right), \sigma, \gamma}^{\lambda} c_{\gamma, \sigma^{\prime},\left(1^{s-l_{1}-l_{2}}\right)}^{\mu}
$$

for all $n \geq \min \left\{|\lambda|+|\mu|+1,|\mu|+\lambda_{1}+k,|\lambda|+\mu_{1}+k\right\}$ and where σ^{\prime} denotes the transpose of σ.

