Introduction	Results	Towards algebraic tools	
00000	00000	000000	

A generalization of the quadrangulation relation to constellations and hypermaps

Wenjie Fang, LIAFA

FPSAC 2013 26 July 2013, Université Sorbonne Nouvelle - Paris 3

- 4 同 ト - 4 日 ト

Wenjie Fang, LIAFA

Introduction	Towards algebraic tools	
00000		
Motivation		

A planar quadrangulation ...

・ロト・日本・日本・日本・日本・日本

Introduction	Towards algebraic tools	
0000		
Motivation		

... is always bipartite, ...

Wenjie Fang, LIAFA

ntroduction	Towards algebraic tools	
00000		
Activation		

... which is not true in higher genus.

Case g = 1 (on a torus) (bipartite iff m, n are even)

Wenjie Fang, LIAFA

Introduction		
00000		
Motivation		

Quadrangulation relation

Let $Q_n^{(g)}$ and $B_n^{(g,k)}$ be the number of quadrangulations (resp. bipartite quadrangulations with marked vertices) with:

- n edges,
- g as genus,
- k marked black vertices.

Theorem (The quadrangulation relation (Jackson and Visentin, 1990))

We have the following relation.

$$Q_n^{(g)} = 2^{2g} B_n^{(g,0)} + 2^{2g-2} B_n^{(g-1,2)} + 2^{2g-4} B_n^{(g-2,4)} \dots$$

For the planar case, we have $Q_n^{(0)} = B_n^{(0,0)}$.

Obtained using algebraic method, can be generalized to general bipartite maps (Jackson and Visentin (1999)).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Wenjie Fang, LIAFA

Introduction	Towards algebraic tools	
00000		
Motivation		

Asymptotic behavior of quadrangulations

We admit that the number of bipartite quadragulation of fixed genus g grows as $\Theta(n^{\frac{5}{2}(g-1)}12^n)$. (c.f. Bender and Canfield (1986))

Theorem (The quadrangulation relation (Jackson and Visentin, 1990))

We have the following relation.

$$Q_n^{(g)} = 2^{2g} B_n^{(g,0)} + 2^{2g-2} B_n^{(g-1,2)} + 2^{2g-4} B_n^{(g-2,4)} \dots$$

The first term dominates, and we have $Q_n^{(g)} \sim 2^{2g} B_n^{(g,0)}$.

Corollary

For any fixed g, the probability for a quadrangulation of genus g with n edges to be bipartite converges to 2^{-2g} when $n \to \infty$.

Results

Towards algebraic tools

Conclusion 00

Constellations and hypermaps

The m-constellations can be seen as a generalization of bipartite maps.

bipartite map	<i>m</i> -constellation
2 colors	$m \operatorname{colors}$
edges	hyperedges (black)
faces	hyperfaces (white)
even degree	degree divisible by m

C.f. Lando and Zvonkin (2004), also Bousquet-Mélou and Schaeffer (2000), Bouttier, Di Francesco and Guitter (2004).

We define *m*-**hypermaps** as the counterpart of ordinary maps for *m*-constellations, *i.e.* without coloring.

	Results	Towards algebraic tools	
	0000		
Results			

Our generalization

Let $H_{n,m}^{(g)}$ and $C_{n,m}^{(g,l_1,\ldots,l_{m-1})}$ be the number of *m*-hypermaps (resp. *m*-constellations with marked vertices) with:

- n hyperedges,
- g as genus,
- l_i marked vertices with color i.

Theorem (Our generalized relation)

We have the following relation:

$$H_{n,m}^{(g)} = \sum_{i=0}^{g} m^{2g-2i} \sum_{l_1+\ldots+l_{m-1}=2i} c_{l_1,\ldots,l_{m-1}}^{(m)} C_{n,m}^{(g-i,l_1,\ldots,l_{m-1})}.$$

・ロト ・聞 ト ・ヨト ・ヨト

2

Here, the coefficients $c_{l_1,\ldots,l_{m-1}}^{(m)}$ are all positive integers with explicit expression.

Wenjie Fang, LIAFA

	Results	
	00000	
Results		

Some examples

Corollary (Our generalized relation, case m = 2, 3, 4)

$$\begin{split} H_{n,2}^{(g)} &= \sum_{i=0}^{g} 2^{2g-2i} C_{n,2}^{(g-i,l,2i-l)}, \\ H_{n,3}^{(g)} &= \sum_{i=0}^{g} 3^{2g-2i} \sum_{l=0}^{2i} \frac{2 \cdot 2^l + (-1)^l}{3} C_{n,3}^{(g-i,l,2i-l)}, \\ H_{n,4}^{(g)} &= \sum_{i=0}^{g} 4^{2g-2i} \sum_{\substack{l_1,l_2 \geq 0 \\ l_1+l_2 \leq 2i}} \frac{2(3^{l_1}2^{l_2} + 2^{l_2}(-1)^{l_1})}{4} C_{n,4}^{(g-i,l_1,l_2,2i-l_1-l_2)}. \end{split}$$

◆□> ◆□> ◆目> ◆目> ◆目> □ のへの

Wenjie Fang, LIAFA

	Results	Towards algebraic tools	
	00000		
Results			

Application: asymptotic counting

In Chapuy (2009), the number $C_{n,m}^{(g)} = C_{n,m}^{(g,0,\ldots,0)}$ of *m*-constellations behaves as $\Theta(n^{\frac{5}{2}(g-1)}\rho_m^n)$ when *n* tends to infinity. We recover the following result given by Chapuy (2009).

Corollary (Asymptotique behavior of *m*-hypermaps)

When n tends to infinity,

$$H_{n,m}^{(g)} \sim m^{2g} C_{n,m}^{(g)}.$$

Our relation can be viewed as a "higher order development" of this corollary.

Corollary

For any fixed g, the probability for an m-hypermap of genus g with n hyperedges to be an m-constellation converges to m^{-2g} when $n \to \infty$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Wenjie Fang, LIAFA

Introduction	Results	Towards algebraic tools	
00000	0000●	000000	
Results			

Algebraic approach of maps

	Towards algebraic tools	
	00000	
Towards algebrais tools		

Maps as decompositions

Map model	Decomposition form	Group
m-constellation with n hyperedges	$\sigma_1 \sigma_2 \cdots \sigma_m \phi = id$	S_n (hyperedges)
m-hypermap with n hyperedges	$\begin{split} \sigma_\bullet \sigma_\circ \phi &= id \\ \text{with } \sigma_\bullet \text{ of cycle type } [m^n] \\ \text{and } \sigma_\circ \text{ of cycle type } m\mu \end{split}$	S_{mn} (edges)

For a partition $\mu = (\mu_1, \mu_2, \dots, \mu_k)$, we note $m\mu$ the scaled partition $(m\mu_1, m\mu_2, \dots, m\mu_k)$.

▲□▶ ▲圖▶ ▲厘▶

3

	Towards algebraic tools	
	00000	
Towards algebraic tools		

Counting decompositions

By the general representation theory, the number of decompositions of the form $\sigma_1 \sigma_2 \cdots \sigma_m = id$, with σ_i of cycle type $\lambda^{(i)}$, can be expressed with characters evaluated at each $\lambda^{(i)}$.

Frobenius formula

The number of such decompositions is

$$\sum_{\theta \vdash n} \frac{1}{\dim(V_{\theta})^m \# S_n} \left(\prod_{i=1}^m \# C_{\lambda^{(i)}} \right) \prod_{i=1}^m \chi_{\lambda^{(i)}}^{\theta}.$$

Here C_{λ} is the set of permutations with cycle type λ . Then, for *m*-hypermaps, we need to evaluate characters in S_{mn} at $m\mu$. How to exploit?

イロト イ部ト イヨト イヨト 三日

	Towards algebraic tools	
	00000	
Towards algebraic tools		

Key algebraic result - factorization of $\chi^{\theta}_{m\mu}$

In fact, we can express a character of the form $\chi^{\theta}_{m\mu}$ of S_{mn} with characters in smaller groups. The following theorem generalizes results in Jackson and Visentin (1990) and in the book of James and Kerber (1981).

Theorem (Factorization of certain characters (W.F.))

Let m, n be positive integers, and $\mu \vdash n$, $\theta \vdash mn$ two partitions. We have

$$\chi_{m\mu}^{\theta} = z_{\mu} \text{sgn}(\pi_{\theta} \pi_{\theta}') \sum_{\mu^{(1)} \uplus \dots \uplus \mu^{(m)} = \mu} \prod_{i=1}^{m} \chi_{\mu^{(i)}}^{\theta^{(i)}} z_{\mu^{(i)}}^{-1}.$$

Here $z_{\mu} = \#S_n / \#C_{\mu}$.

Wenjie Fang, LIAFA

Introduction	Results	Towards algebraic tools	Conclusion
00000	00000	000000	00
Towards algebraic tools			

Two possible approaches

There are two different approaches to obtain this result.

Algebraic approach

Using the Jacobi-Trudi identity, we can express $\chi^{\theta}_{m\mu}$ with a determinant, which has a block structure, resulting in the wanted factorization.

Combinatorial approach

There is a combinatorial interpretation of $\chi^{\theta}_{m\mu}$ using ribbon tableaux. In the framework of the boson-fermion correspondence, it gives the wanted character factorization.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu} [p_{3\mu}] s_{\theta}$$

Here, $p_{3\mu}$ is the powersum symmetric function indexed by 3μ , s_{θ} the Schur function indexed by the partition θ , and $z_{\lambda} = \#S_n/\#C_{\lambda}$ for $\lambda \vdash n$. This is a consequence of the change of basis from Schur functions to powersum functions in the symmetric function ring.

ヘロト 人間ト 人間ト 人間ト

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \det \begin{bmatrix} h_6 & h_7 & h_8 & h_9 & h_{10} & h_{11} & h_{12} \\ h_5 & h_6 & h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_2 & h_3 & h_4 & h_5 & h_6 & h_7 & h_8 \\ h_1 & h_2 & h_3 & h_4 & h_5 & h_6 & h_7 \\ h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 0 & h_0 & h_1 & h_2 & h_3 & h_4 \\ 0 & 0 & 0 & h_0 & h_1 & h_2 & h_3 \end{bmatrix}$$

2

This is an application of the Jacobi-Trudi formula. Here h_k is the homogeneous symmetric function of degree k.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \det \begin{bmatrix} h_6 & h_7 & h_8 & h_9 & h_{10} & h_{11} & h_{12} \\ h_5 & h_6 & h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_2 & h_3 & h_4 & h_5 & h_6 & h_7 & h_8 \\ h_1 & h_2 & h_3 & h_4 & h_5 & h_6 & h_7 \\ h_0 & h_1 & h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 0 & h_0 & h_1 & h_2 & h_3 & h_4 \\ 0 & 0 & 0 & h_0 & h_1 & h_2 & h_3 \end{bmatrix}$$

Gray terms don't contribute, because $[p_{3\mu'}]h_m = 0$ for all μ' if $3 \nmid m$.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \det \begin{bmatrix} h_6 & 0 & 0 & h_9 & 0 & 0 & h_{12} \\ 0 & h_6 & 0 & 0 & h_9 & 0 & 0 \\ 0 & h_3 & 0 & 0 & h_6 & 0 & 0 \\ 0 & 0 & h_3 & 0 & 0 & h_6 & 0 \\ h_0 & 0 & 0 & h_3 & 0 & 0 & h_6 \\ 0 & 0 & h_0 & 0 & 0 & h_3 & 0 \\ 0 & 0 & 0 & h_0 & 0 & 0 & h_3 \end{bmatrix}$$

イロト イ理ト イヨト イヨト

Since gray terms don't contribute, we can replace them by 0.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \det \begin{bmatrix} h_6 & 0 & 0 & h_9 & 0 & 0 & h_{12} \\ 0 & h_6 & 0 & 0 & h_9 & 0 & 0 \\ 0 & h_3 & 0 & 0 & h_6 & 0 & 0 \\ 0 & 0 & h_3 & 0 & 0 & h_6 & 0 \\ h_0 & 0 & 0 & h_3 & 0 & 0 & h_6 \\ 0 & 0 & h_0 & 0 & 0 & h_3 & 0 \\ 0 & 0 & 0 & h_0 & 0 & 0 & h_3 \end{bmatrix}$$

イロン イ団と イヨン ・

2

The remaining terms can be divided into three groups.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \det \begin{bmatrix} h_6 & h_9 & h_{12} & 0 & 0 & 0 & 0 \\ h_0 & h_3 & h_6 & 0 & 0 & 0 & 0 \\ 0 & h_0 & h_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_6 & h_9 & 0 & 0 \\ 0 & 0 & 0 & h_3 & h_6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & h_3 & h_6 \\ 0 & 0 & 0 & 0 & 0 & 0 & h_0 & h_3 \end{bmatrix}$$

イロン イ団と イヨン ・

2

We can rearrange them into blocks.

	Towards algebraic tools	
	000000	
Towards algebraic tools		

We try to evaluate $\chi^{\theta}_{3\mu}$, with $\theta = (6, 6, 4, 4, 4, 3, 3)$.

$$\chi^{\theta}_{3\mu} = z_{3\mu}[p_{3\mu}] \left(\det \begin{bmatrix} h_6 & h_9 & h_{12} \\ h_0 & h_3 & h_6 \\ 0 & h_0 & h_3 \end{bmatrix} \det \begin{bmatrix} h_6 & h_9 \\ h_3 & h_6 \end{bmatrix} \det \begin{bmatrix} h_3 & h_6 \\ h_0 & h_3 \end{bmatrix} \right)$$

3

We thus obtain a factorization where factors are similar to the determinant in the Jacobi-Trudi formula. These factors can also be expressed with characters.

		Towards algebraic tools	
00000	00000	000000	00
Towards algebraic tools			

Proof ideas of main result

- Character factorization ⇒ the series of hypermaps as product of copies of the series of constellations
- \blacksquare Imposing connectedness by taking $\log \Rightarrow$ the product transforming into a sum
- Direct extraction of coefficient while controlling the genus
- Positivity of coefficients require some more work.

Introduction	Results	Towards algebraic tools	Conclusion
00000	00000	000000	●O
Conclusion			

Combinatorial proof?

Corollary (Our generalized relation, case m = 3, 4)

$$\begin{split} H_{n,3,D}^{(g)} &= \sum_{i=0}^{g} 3^{2g-2i} \sum_{l=0}^{2i} \frac{2 \cdot 2^{l} + (-1)^{l}}{3} C_{n,3,D}^{(g-i,l,2i-l)}, \\ H_{n,4,D}^{(g)} &= \sum_{i=0}^{g} 4^{2g-2i} \sum_{\substack{l_{1},l_{2} \geq 0\\ l_{1}+l_{2} \leq 2i}} \frac{2(3^{l_{1}}2^{l_{2}} + 2^{l_{2}}(-1)^{l_{1}})}{4} C_{n,4,D}^{(g-i,l_{1},l_{2},2i-l_{1}-l_{2})}. \end{split}$$

イロト イポト イヨト イヨト 二日

Is there a combinatorial proof? What is the combinatorial meaning of the coefficients?

	Towards algebraic tools	Conclusion
		00
Conclusion		

Thank you for your attention.