Structure and enumeration

of $(3+1)$-free posets

Mathieu Guay-Paquet
Alejandro H. Morales
Eric Rowland

(LaCIM, Université du Québec à Montréal, Canada)

FPSAC / SFCA 2013
June 24, 2013

The story of a table of numbers

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots(3+1)$-free	1	2	5	15	49	173
\ldots and $(2+2)$-free	1	2	5	14	42	132
Number of vertices	7	8	9	10		
All posets	2045	16999	183231	2567284		
$\ldots(3+1)$-free	639	2469	9997	43109		
\ldots and $(2+2)$-free	429	1430	4862	16796		

The graded case: (Lewis-Zhang FPSAC 2012)

Colourings

\ngtr

Colourings

Colourings

Colourings

Graphs:
independent sets

Posets:
chains

Stanley's chromatic symmetric functions

- Chromatic polynomial $\chi_{G}(n)$:

Polynomial function, counts the number of proper colourings with n colours.

Stanley's chromatic symmetric functions

- Chromatic polynomial $\chi_{G}(n)$:

Polynomial function, counts the number of proper colourings with n colours.

- Chromatic symmetric function $X_{G}\left(x_{1}, x_{2}, \ldots\right)$:

Generating function for proper colourings, records the size of colour class i as the exponent of x_{i}.

Stanley's chromatic symmetric functions

- Chromatic polynomial $\chi_{G}(n)$:

Polynomial function, counts the number of proper colourings with n colours.

- Chromatic symmetric function $X_{G}\left(x_{1}, x_{2}, \ldots\right)$:

Generating function for proper colourings, records the size of colour class i as the exponent of x_{i}.

- Chromatic symmetric function $X_{P}\left(x_{1}, x_{2}, \ldots\right)$:

Generating function for chain colourings, records the size of colour class i as the exponent of x_{i}.

Example

$$
\begin{aligned}
& X_{P}\left(x_{1}, x_{2}, \ldots\right) \\
& \quad=x_{1}^{3} x_{2}+x_{2}^{3} x_{1}+x_{1}^{3} x_{3}+6 x_{1}^{2} x_{2} x_{3}+\cdots
\end{aligned}
$$

$$
(3+1)
$$

Example

$$
\begin{aligned}
& X_{P}\left(x_{1}, x_{2}, \ldots\right) \\
& \quad=x_{1}^{3} x_{2}+x_{2}^{3} x_{1}+x_{1}^{3} x_{3}+6 x_{1}^{2} x_{2} x_{3}+\cdots \\
& =m_{31}+6 m_{211}+24 m_{1111} \\
& =p_{1111}-3 p_{211}+3 p_{31}-p_{4} \\
& =8 s_{1111}+5 s_{211}-s_{22}+s_{31} \\
& =e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \\
& =\ldots
\end{aligned}
$$

Example

$$
\begin{aligned}
& X_{P}\left(x_{1}, x_{2}, \ldots\right) \\
& \quad=x_{1}^{3} x_{2}+x_{2}^{3} x_{1}+x_{1}^{3} x_{3}+6 x_{1}^{2} x_{2} x_{3}+\cdots \\
& =m_{31}+6 m_{211}+24 m_{1111} \\
& =p_{1111}-3 p_{211}+3 p_{31}-p_{4} \\
& =8 s_{1111}+5 s_{211}-s_{22}+s_{31} \\
& =e_{211}-2 e_{22}+5 e_{31}+4 e_{4} \\
& =\ldots
\end{aligned}
$$

Question:

Which posets have positive coefficients in which bases?

Stanley and Stembridge's conjecture (1993)

The data:

Contains $(3+1) ?$	e-positive?	$n=4$	$n=5$	$n=6$	$n=7$
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

Stanley and Stembridge's conjecture (1993)

The data:

Contains $(3+1) ?$	e-positive?	$n=4$	$n=5$	$n=6$	$n=7$
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

Stanley and Stembridge's conjecture (1993)

The data:

Contains $(3+1) ?$	e-positive?	$n=4$	$n=5$	$n=6$	$n=7$
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

The conjecture:

If a poset P is $(3+1)$-free, then its chromatic symmetric function $X_{P}\left(x_{1}, x_{2}, \ldots\right)$ is e-positive.

Stanley and Stembridge's conjecture (1993)

The data:

Contains $(3+1) ?$	e-positive?	$n=4$	$n=5$	$n=6$	$n=7$
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

The conjecture:

If a poset P is $(3+1)$-free, then its chromatic symmetric function $X_{P}\left(x_{1}, x_{2}, \ldots\right)$ is e-positive.

Theorem (Gasharov 1996):

P is $(3+1)$-free implies $X_{P}\left(x_{1}, x_{2}, \ldots\right)$ is s-positive.

Numbers again

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots(3+1)$-free	1	2	5	15	49	173
\ldots and $(2+2)$-free	1	2	5	14	42	132
Number of vertices	7	8	9	10		
All posets	2045	16999	183231	2567284		
$\ldots(3+1)$-free	639	2469	9997	43109		
\ldots and $(2+2)$-free	429	1430	4862	16796		

Generating posets: level by level

First idea:
Construct each poset one level at a time, starting from the
 minimal elements.

Generating posets: level by level

First idea:
Construct each poset one level at a time, starting from the minimal elements.

Generating posets: level by level

First idea:
Construct each poset one level at a time, starting from the minimal elements.

.

Generating posets: level by level

First idea:
Construct each poset one level at a time, starting from the minimal elements.

Generating posets: focus on adjacent levels

Observation:

If vertices are more than one level apart, they are comparable.

Generating posets: focus on adjacent levels

Observation:
If vertices are more than
one level apart, they are comparable.

Proof:

Generating posets: focus on adjacent levels

Observation:
If vertices are more than
one level apart, they are comparable.

Proof:

Generating posets: focus on adjacent levels

Observation:
If vertices are more than
one level apart, they are comparable.

Proof:

Generating posets: focus on adjacent levels

Observation:
If vertices are more than
one level apart, they are comparable.

Proof:

Generating posets: focus on adjacent levels

Observation:
If vertices are more than
one level apart, they are comparable.

Proof:

Generating posets: up-degree and down-degree

High up-degree:

Generating posets: up-degree and down-degree

High up-degree:

High down-degree:

Generating posets: up-degree and down-degree

High up-degree:

High down-degree:

Both:

Generating posets: combing
'Low down-degree’ 'High down-degree’

'High up-degree'
'Low up-degree'

Generating posets: combing

Generating posets: combing

Sorted components for combing

Generating posets: tangles

Observation 1:

$(2+2)$ cannot be decomposed by combing.

Generating posets: tangles

Observation 1:
$(2+2)$ cannot be decomposed by combing.

Observation 2:
Irreducible components are single vertices or connected by copies of $(2+2)$.

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

$$
B(x, y)=\frac{1}{1-x-y-T(x, y)}
$$

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

$$
\begin{aligned}
& B(x, y)=\frac{1}{1-x-y-T(x, y)} \\
& T(x, y)=1-x-y-\frac{1}{B(x, y)}
\end{aligned}
$$

Generating poset: sorting all levels

Theorem:

Sorting the vertices of a level by combing with the level above or by combing with the level below gives compatible orderings.
In particular, tangles on different levels do not overlap.

Generating function for skeleta

Theorem:
There is a bijection between skeleta of $(3+1)$-free posets and certain decorated Dyck paths.

Generating function for skeleta

Theorem:

There is a bijection between skeleta of $(3+1)$-free posets and certain decorated Dyck paths.

$$
S(c, t)=\sum_{r, s \geq 0}\left(\begin{array}{l}
\# \text { of skeleta with } \\
r \text { clone sets and } \\
s \text { tangles }
\end{array}\right) c^{r} t^{s}
$$

Generating function for skeleta

Theorem:

There is a bijection between skeleta of $(3+1)$-free posets and certain decorated Dyck paths.

$$
\begin{aligned}
S(c, t) & =\sum_{r, s \geq 0}\left(\begin{array}{l}
\# \text { of skeleta with } \\
r \text { clone sets and } \\
s \text { tangles }
\end{array}\right) c^{r} t^{s} \\
S(c, t) & =1+\frac{c}{1+c} S(c, t)^{2}+t S(c, t)^{3}
\end{aligned}
$$

Numbers once more

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots(3+1)$-free	1	2	5	15	49	173
\ldots and $(2+2)$-free	1	2	5	14	42	132

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots(3+1)$-free	639	2469	9997	43109
\ldots and $(2+2)$-free	429	1430	4862	16796

Bonus

Theorem:

The e-positivity conjecture only needs to be checked for the smaller class of $(3+1)$-and- $(2+2)$-free posets.

Computation:

The e-positivity conjecture has been checked for all posets on up to 20 vertices.

Thank you!

Bijection with (certain) Dyck paths

Modular relation

Extra numbers

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots(3+1)$-free	1	2	5	15	49	173
\ldots and $(2+2)$-free	1	2	5	14	42	132
\ldots and basic	1	1	1	1	1	1

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots(3+1)$-free	639	2469	9997	43109
\ldots and $(2+2)$-free	429	1430	4862	16796
\ldots and basic	2	2	5	11

