Structure and enumeration of (3+1)-free posets

Mathieu Guay-Paquet Alejandro H. Morales Eric Rowland

(LaCIM, Université du Québec à Montréal, Canada)

FPSAC / SFCA 2013

June 24, 2013

The story of a table of numbers

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots (3+1)$ -free	1	2	5	15	49	173
\dots and $(2+2)$ -free	1	2	5	14	42	132

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots (3+1)$ -free	639	2469	9997	43109
\dots and $(2+2)$ -free	429	1430	4862	16796

The graded case: (Lewis-Zhang FPSAC 2012)

Graphs: independent sets

Posets: chains Stanley's chromatic symmetric functions

• Chromatic polynomial $\chi_G(n)$:

Polynomial function, counts the number of proper colourings with n colours.

Stanley's chromatic symmetric functions

- Chromatic polynomial $\chi_G(n)$: Polynomial function, counts the number of proper colourings with n colours.
- Chromatic symmetric function $X_G(x_1, x_2, ...)$: Generating function for proper colourings, records the size of colour class i as the exponent of x_i .

Stanley's chromatic symmetric functions

- Chromatic polynomial $\chi_G(n)$: Polynomial function, counts the number of proper colourings with n colours.
- Chromatic symmetric function $X_G(x_1, x_2, ...)$: Generating function for proper colourings, records the size of colour class i as the exponent of x_i .
- Chromatic symmetric function $X_P(x_1, x_2, ...)$: Generating function for chain colourings, records the size of colour class *i* as the exponent of x_i .

Example

Example

Example

Question:

Which posets have positive coefficients in which bases?

Contains	<i>e</i> -positive?	n=4	n = 5	n = 6	n = 7
(3+1)?					
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

Contains	<i>e</i> -positive?	n=4	n = 5	n = 6	n = 7
(3+1)?					
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

Contains	<i>e</i> -positive?	n=4	n = 5	n = 6	n = 7
(3+1)?					
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

The conjecture:

If a poset P is (3+1)-free, then its chromatic symmetric function $X_P(x_1, x_2, ...)$ is *e*-positive.

Contains	<i>e</i> -positive?	n=4	n = 5	n = 6	n = 7
(3+1)?					
Yes	Yes	0	5	39	469
Yes	No	1	9	106	938
No	Yes	15	49	173	639
No	No	0	0	0	0

The conjecture:

If a poset P is (3+1)-free, then its chromatic symmetric function $X_P(x_1, x_2, ...)$ is e-positive.

Theorem (Gasharov 1996):

P is (3+1)-free implies $X_P(x_1, x_2, ...)$ is s-positive.

Numbers again

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots (3+1)$ -free	1	2	5	15	49	173
\dots and $(2+2)$ -free	1	2	5	14	42	132

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots (3+1)$ -free	639	2469	9997	43109
\dots and $(2+2)$ -free	429	1430	4862	16796

First idea:

First idea:

First idea:

First idea:

Observation:

If vertices are more than one level apart, they are comparable.

Observation:

If vertices are more than one level apart, they are comparable.

Proof:

Observation:

If vertices are more than one level apart, they are comparable.

Observation:

If vertices are more than one level apart, they are comparable.

Proof:

Observation:

If vertices are more than one level apart, they are comparable.

Proof:

Observation:

If vertices are more than one level apart, they are comparable.

Generating posets: up-degree and down-degree

High up-degree:

Generating posets: up-degree and down-degree

High down-degree:

Generating posets: up-degree and down-degree

High down-degree:

Both:

Generating posets: combing

Generating posets: combing

Generating posets: combing

Generating posets: tangles

Observation 1:

(2+2) cannot be decomposed by combing.

Generating posets: tangles

Observation 1:

(2+2) cannot be decomposed by combing.

Observation 2:

Irreducible components are single vertices or connected by copies of (2+2).

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

$$B(x,y) = \frac{1}{1 - x - y - T(x,y)}$$

Generating function for tangles

"A bicoloured graph can be decomposed uniquely as a list of vertices above, vertices below, and tangles."

$$B(x,y) = \frac{1}{1 - x - y - T(x,y)}$$

$$T(x,y) = 1 - x - y - \frac{1}{B(x,y)}$$

Generating poset: sorting all levels

Theorem:

Sorting the vertices of a level by combing with the level above or by combing with the level below gives compatible orderings.

In particular, tangles on different levels do not overlap.

Generating function for skeleta

Theorem:

There is a bijection between skeleta of (3+1)-free posets and certain decorated Dyck paths.

Generating function for skeleta

Theorem:

There is a bijection between skeleta of (3+1)-free posets and certain decorated Dyck paths.

$$S(c,t) = \sum_{r,s \ge 0} \begin{pmatrix} \# \text{ of skeleta with} \\ r \text{ clone sets and} \\ s \text{ tangles} \end{pmatrix} c^r t^s$$

Generating function for skeleta

Theorem:

There is a bijection between skeleta of (3+1)-free posets and certain decorated Dyck paths.

$$S(c,t) = \sum_{r,s \ge 0} \begin{pmatrix} \# \text{ of skeleta with} \\ r \text{ clone sets and} \\ s \text{ tangles} \end{pmatrix} c^r t^s$$

$$S(c,t) = 1 + \frac{c}{1+c}S(c,t)^2 + tS(c,t)^3$$

Numbers once more

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots (3+1)$ -free	1	2	5	15	49	173
\dots and $(2+2)$ -free	1	2	5	14	42	132

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots (3+1)$ -free	639	2469	9997	43109
\ldots and $(2+2)$ -free	429	1430	4862	16796

Bonus

Theorem:

The *e*-positivity conjecture only needs to be checked for the smaller class of (3 + 1)-and-(2 + 2)-free posets.

Computation:

The *e*-positivity conjecture has been checked for all posets on up to 20 vertices.

Thank you!

Bijection with (certain) Dyck paths

Modular relation

Extra numbers

Number of vertices	1	2	3	4	5	6
All posets	1	2	5	16	63	318
$\ldots (3+1)$ -free	1	2	5	15	49	173
\ldots and $(2+2)$ -free	1	2	5	14	42	132
and basic	1	1	1	1	1	1

Number of vertices	7	8	9	10
All posets	2045	16999	183231	2567284
$\ldots (3+1)$ -free	639	2469	9997	43109
\ldots and $(2+2)$ -free	429	1430	4862	16796
and basic	2	2	5	11