Edelman－Greene insertion and the Little map

Zachary Hamaker and Benjamin Young
Dartmouth College and University of Oregon

FPSAC 2013
Paris 3

June 25， 2013

Reduced Words

The symmetric group S_{n} is a Coxeter group with generators s_{1}, \ldots, s_{n-1} and relations

$$
s_{i}^{2}=1, s_{i} s_{j}=s_{j} s_{i} \text { for }|i-j|>1, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} .
$$

Reduced Words

The symmetric group S_{n} is a Coxeter group with generators s_{1}, \ldots, s_{n-1} and relations

$$
s_{i}^{2}=1, s_{i} s_{j}=s_{j} s_{i} \text { for }|i-j|>1, s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

(1)

(2)

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad I(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad I(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ. We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ. We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

Reduced words

Call $w=w_{1} w_{2} \ldots w_{m}$ is a reduced word of $\sigma \in S_{n}$ if

$$
\sigma=s_{w_{1}} s_{w_{2}} \ldots s_{w_{m}} \quad \text { and } \quad l(\sigma)=m
$$

where $I(\sigma)$ is the number of inversions in σ.
We depict $w=12534354$.

History

Let $\operatorname{Red}(\sigma)$ be the set of all reduced words of $\sigma, \sigma_{0}=n(n-1) \ldots 1$ be the reverse permutation and $\Delta_{n}=(n-1, n-2, \ldots, 1) \vdash\binom{n}{2}$.

History

Let $\operatorname{Red}(\sigma)$ be the set of all reduced words of $\sigma, \sigma_{0}=n(n-1) \ldots 1$ be the reverse permutation and $\Delta_{n}=(n-1, n-2, \ldots, 1) \vdash\binom{n}{2}$.

Theorem (Stanley '80)

$$
\left|\operatorname{Red}\left(\sigma_{0}\right)\right|=\frac{\binom{n}{2}!}{(2 n-3)(2 n-5)^{2} \ldots 3^{n-2}}=f^{\Delta_{n}}
$$

History

Let $\operatorname{Red}(\sigma)$ be the set of all reduced words of $\sigma, \sigma_{0}=n(n-1) \ldots 1$ be the reverse permutation and $\Delta_{n}=(n-1, n-2, \ldots, 1) \vdash\binom{n}{2}$.

Theorem (Stanley '80)

$$
\left|\operatorname{Red}\left(\sigma_{0}\right)\right|=\frac{\binom{n}{2}!}{(2 n-3)(2 n-5)^{2} \ldots 3^{n-2}}=f^{\Delta_{n}}
$$

The original proof uses algebraic techniques.

Counting reduced words

Overview:

Counting reduced words

Overview:

- Edelman-Greene insertion ('84): prove Stanley's result bijectively and show reduced words can be enumerated by standard Young tableaux (also known as Coxeter-Knuth insertion).

Counting reduced words

Overview:

- Edelman-Greene insertion ('84): prove Stanley's result bijectively and show reduced words can be enumerated by standard Young tableaux (also known as Coxeter-Knuth insertion).
- Lascoux-Schützenberger tree ('85): allows you to determine which standard Young tableaux.

Counting reduced words

Overview:

- Edelman-Greene insertion ('84): prove Stanley's result bijectively and show reduced words can be enumerated by standard Young tableaux (also known as Coxeter-Knuth insertion).
- Lascoux-Schützenberger tree ('85): allows you to determine which standard Young tableaux.
- The Little map ('03): bijectively realizes enumeration via the Lascoux-Schützenberger tree. Another map, due to Billey and Bergeron ('93), also does this, and may be related.

Counting reduced words

Overview:

- Edelman-Greene insertion ('84): prove Stanley's result bijectively and show reduced words can be enumerated by standard Young tableaux (also known as Coxeter-Knuth insertion).
- Lascoux-Schützenberger tree ('85): allows you to determine which standard Young tableaux.
- The Little map ('03): bijectively realizes enumeration via the Lascoux-Schützenberger tree. Another map, due to Billey and Bergeron ('93), also does this, and may be related.
Goal: Relate Edelman-Greene insertion to the Little map.

Grassmannian words

A permutation σ is Grassmannian if it has exactly one descent.

Grassmannian words

A permutation σ is Grassmannian if it has exactly one descent.

Proposition

For σ Grassmannian,

$$
|\operatorname{Red}(\sigma)|=f^{\lambda}
$$

for some λ determined by σ.

Grassmannian words

A permutation σ is Grassmannian if it has exactly one descent.

Proposition

For σ Grassmannian,

$$
|\operatorname{Red}(\sigma)|=f^{\lambda}
$$

for some λ determined by σ.

Proof.

By example.

Grassmannian example

For $\sigma=23468157$, examine the reduced word $w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157}$, examine the reduced word $w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

	1	5	7
8	1	2	
6	3	4	
4	5		
3			
2			

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

	1	5	7
8	1	2	6
6	3	4	
4	5		
3			
2			

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

	1	5	7
8	1	2	6
6	3	4	
4	5		
3			
2			

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

	1	5	7
8	1	2	6
6	3	4	
4	5		
3	7		
2			

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

8	1	2	6
6	3	4	
4	5		
	7		

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157, ~ e x a m i n e ~ t h e ~ r e d u c e d ~ w o r d ~} w=12735465$.

For $\sigma=\underline{23468157}$, examine the reduced word $w=12735465$.

	1	5	7
8	1	2	6
6	3	4	
4	5		
3	7		
2	8		

Call this map $\operatorname{Tab}(w)$.

The Lascoux-Schützenberger tree

The Lascoux-Schützenberger tree for $\sigma=2416573$

The Little map

The approach is to modify a reduced word until it is Grassmannian. We do this using Little bumps, denoted by \uparrow. Cue David Little's applet.

The Little map

The approach is to modify a reduced word until it is Grassmannian. We do this using Little bumps, denoted by \uparrow. Cue David Little's applet.

1	2	6
3	4	
5		
7		
8		

The Little map

The approach is to modify a reduced word until it is Grassmannian. We do this using Little bumps, denoted by \uparrow. Cue David Little's applet.

Call this map $\mathrm{LS}(w)$.

Inverting the Little map

From the sequence of permutations passed through and the output LS(w), we can reconstruct w.

Inverting the Little map

From the sequence of permutations passed through and the output LS(w), we can reconstruct w.

1	2	6
3	4	
5		
7		
8		

$$
\begin{gathered}
236541 \\
2347615 \\
2357416 \\
23468157
\end{gathered}
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.
$P(w)$

4
4
$Q(W)$

1

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.
$P(w)$

4
4
$Q(W)$

1

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

1	$2(W)$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

1	$2(W)$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

	$P(w)$
3	4
4	5

	$Q(W)$
1	2
3	4

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=125 \underline{3} 4354$.

	$P(w)$
3	4
4	5

	$Q(W)$
1	2
3	4

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12534354$.

	$P(w)$
3	4
4	5

1	$2(W)$
3	4

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=125 \underline{3} 4354$.

$Q(W)$ 1	2
3	4
5	

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12 \underline{5} 34354$.

$Q(W)$ 1	2
3	4
5	

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=12 \underline{5} 34354$.

$Q(W)$
1 2 6 3 4 5

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
\ldots \quad n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=1 \underline{2} 534354$.

$Q(W)$
1 2 6 3 4 5

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
\ldots \quad n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=1 \underline{2} 534354$.

$Q(W)$		
1 2	6	
3	4	
5		
7		

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto$... $n n+1 \ldots$

$$
n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=\underline{12534354}$.

$Q(W)$		
1 2	6	
3	4	
5		
7		

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
\ldots \quad n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left.

Edelman-Greene insertion for $w=\underline{12534354}$.

- $n \hookrightarrow \ldots n n+1 \ldots \quad \mapsto \quad n n+1 \ldots$

$$
\ldots \quad n+1 \hookrightarrow \ldots
$$

Edelman-Greene insertion

Edelman-Greene insertion is a variant of RSK.

- Insertion takes place from right to left. Edelman-Greene insertion for $w=12534354$.

$Q(W)$		
1	2	6
3	4	
5		
7		
8		

Remark

$P(w)$ is row and column strict, while $Q(w)$ is standard.

The relationship

Conjecture (Little '03)
Let $w \in \operatorname{Red}\left(\sigma_{0}\right)$ where σ_{0} is the reverse permutation. Then

$$
L S(w)=Q(w)
$$

The relationship

Conjecture (Little '03)

Let $w \in \operatorname{Red}\left(\sigma_{0}\right)$ where σ_{0} is the reverse permutation. Then

$$
L S(w)=Q(w) .
$$

Theorem (H., Young '12)

Let w be any reduced word. Then

$$
L S(w)=Q(w) .
$$

Proof

$\mathrm{LS}(w)$
$Q(w)$

Proof

$\mathrm{LS}(w)$
 $Q(w)$

$\operatorname{Tab}(w \uparrow \ldots \uparrow)$

Proof

$$
\begin{array}{ccc}
\operatorname{LS}(w) & & Q(w) \\
\| & & \\
\operatorname{Tab}(w \uparrow \ldots \uparrow) \stackrel{(1)}{=} & Q(w \uparrow \ldots \uparrow)
\end{array}
$$

Proof

$$
\begin{array}{ccc}
\operatorname{LS}(w) & & Q(w) \\
\| & & \|(2) \\
\operatorname{Tab}(w \uparrow \ldots \uparrow) \stackrel{(1)}{=} & Q(w \uparrow \ldots \uparrow)
\end{array}
$$

Proof

$$
\begin{array}{ccc}
\operatorname{LS}(w) & & Q(w) \\
\| & & \|(2) \\
\operatorname{Tab}(w \uparrow \ldots \uparrow) \stackrel{(1)}{=} & Q(w \uparrow \ldots \uparrow)
\end{array}
$$

Lemma (1)

Let w be a Grassmannian word. Then

$$
\operatorname{Tab}(w)=Q(w) .
$$

Proof

$$
\begin{array}{ccc}
\operatorname{LS}(w) & & Q(w) \\
\| & & \|(2) \\
\operatorname{Tab}(w \uparrow \ldots \uparrow) \stackrel{(1)}{=} & Q(w \uparrow \ldots \uparrow)
\end{array}
$$

Lemma (1)

Let w be a Grassmannian word. Then

$$
\operatorname{Tab}(w)=Q(w) .
$$

The proof is direct and would be a hard homework problem.

Proof ctd.

Lemma (2)

Let w be a reduced word and \uparrow be a Little bump. Then

$$
Q(w)=Q(w \uparrow) .
$$

Proof ctd.

Lemma (2)
Let w be a reduced word and \uparrow be a Little bump. Then

$$
Q(w)=Q(w \uparrow) .
$$

The proof is an argument from canonical form.

Proof ctd.

Lemma (2)

Let w be a reduced word and \uparrow be a Little bump. Then

$$
Q(w)=Q(w \uparrow) .
$$

The proof is an argument from canonical form.

- Define a canonical form $\tau(w)$ that is invariant under Little bumps

Proof ctd.

Lemma (2)

Let w be a reduced word and \uparrow be a Little bump. Then

$$
Q(w)=Q(w \uparrow) .
$$

The proof is an argument from canonical form.

- Define a canonical form $\tau(w)$ that is invariant under Little bumps
- Show this invariance is preserved while transforming $\tau(w)$ back to w.

Column word

The column word by example:

Column word

The column word by example:

$$
\tau(w)=
$$

Column word

The column word by example:

$$
\tau(w)=
$$

Column word

The column word by example:

$$
\tau(w)=\underline{5}
$$

Column word

The column word by example:

$$
\tau(w)=5
$$

Column word

The column word by example:

$$
\tau(w)=5 \underline{45}
$$

Column word

The column word by example:

$$
\tau(w)=545
$$

Column word

The column word by example:

$$
\tau(w)=54512345
$$

Column word

The column word by example:

$$
\tau(w)=54512345
$$

Column word

The column word by example:

$$
\tau(w)=54512345
$$

Lemma
Let w be a column word and \uparrow be a Little bump. Then $w \uparrow$ is also a column word.

Coxeter-Knuth moves

Let $x<y<z$. There are three types of Coxeter-Knuth moves.

Coxeter-Knuth moves

Let $x<y<z$. There are three types of Coxeter-Knuth moves.

Coxeter-Knuth moves

Theorem (Edelman-Greene '84)

Let v and w be reduced words such that $P(v)=P(w)$. Then there exists a sequence of Coxeter-Knuth moves transforming v to w.

Coxeter-Knuth moves

Theorem (Edelman-Greene '84)

Let v and w be reduced words such that $P(v)=P(w)$. Then there exists a sequence of Coxeter-Knuth moves transforming v to w.

Lemma

Let α be a Coxeter-Knuth move. Then $Q(w)$ differs from $Q(w \alpha)$ in the same way as $Q(w \uparrow)$ differs from $Q(w \uparrow \alpha)$.

Coxeter-Knuth moves

Theorem (Edelman-Greene '84)

Let v and w be reduced words such that $P(v)=P(w)$. Then there exists a sequence of Coxeter-Knuth moves transforming v to w.

Lemma

Let α be a Coxeter-Knuth move. Then $Q(w)$ differs from $Q(w \alpha)$ in the same way as $Q(w \uparrow)$ differs from $Q(w \uparrow \alpha)$.

This allows us to complete the proof of Lemma (2).

Lam's Conjecture

Two reduced words v and w communicate if there exists a sequence of Little bumps transforming v to w.

Lam's Conjecture

Two reduced words v and w communicate if there exists a sequence of Little bumps transforming v to w.

Conjecture (Lam '10)

The reduced words v and w communicate if and only if $Q(v)=Q(w)$.

Lam's Conjecture

Two reduced words v and w communicate if there exists a sequence of Little bumps transforming v to w.

Theorem (H., Young '12)

The reduced words v and w communicate if and only if $Q(v)=Q(w)$.

Lam's Conjecture

Two reduced words v and w communicate if there exists a sequence of Little bumps transforming v to w.

Theorem (H., Young '12)

The reduced words v and w communicate if and only if $Q(v)=Q(w)$.

The proof follows from Lemma (2) and a bit more work.

Lam's Conjecture

Two reduced words v and w communicate if there exists a sequence of Little bumps transforming v to w.

Theorem (H., Young '12)

The reduced words v and w communicate if and only if $Q(v)=Q(w)$.

The proof follows from Lemma (2) and a bit more work.

Remark

Little bumps act on Edelman-Greene insertion in a role analogous to that of dual Knuth moves for RSK.

Thank you!

