Quiver mutation and combinatorial DT-invariants

Bernhard Keller

U.F.R. de Mathématiques et Institut de Mathématiques de Jussieu-PRG Université Paris Diderot - Paris 7

FPSAC 2013

25 juin 2013

Context

FG=Fock-Goncharov, Na=Nakanishi, DT=Donaldson-Thomas, Br=Bridgeland, J=Joyce, Sz=Szendröi, KS=Konts.-Soibelman

Plan

Quiver mutation

Combinatorial DT-invariants

Quivers: example and terminology

Example

We have $Q_0 = \{1, 2, 3, 4, 5, 6, 7\}$, $Q_1 = \{\alpha, \beta, ...\}$. α is a *loop*, (β, γ) is a 2-*cycle*, (λ, μ, ν) is a 3-*cycle*.

Definition

A vertex *i* is a *source* of Q if no arrows stop at *i*. A vertex *i* is a *sink* of Q if no arrows start at *i*.

Definition of quiver mutation

Let *Q* be a quiver without loops or 2-cycles.

Definition (Fomin-Zelevinsky)

Let $j \in Q_0$. The *mutation* $\mu_j(Q)$ is the quiver obtained from Q as follows

- 1) for each subquiver $i \xrightarrow{b} j \xrightarrow{a} k$, add a new arrow $i \xrightarrow{[ab]} k$:
- 2) reverse all arrows incident with *j*;
- 3) remove the arrows in a maximal set of pairwise disjoint 2-cycles (e.g. ◆ → → , '2-reduction').

Examples of quiver mutation

A simple example:

1)

2)

3)

More complicated examples: Google 'quiver mutation'!

Towards green quiver mutation

Next aim: Green quiver mutation!

Green quiver mutation: the framed quiver

Let *Q* be a quiver without loops or 2-cycles, $Q_0 = \{1, ..., n\}$.

Definition

The framed quiver \widetilde{Q} is obtained from Q by adding, for each vertex i, a new vertex i' and a new arrow $i \to i'$.

Example

$$Q: 1 \longrightarrow 2$$
 $\widetilde{Q}: 1 \longrightarrow 2$

Definition

The vertices i' are frozen vertices, i.e. we never mutate at them.

Green and red vertices

Suppose that we have transformed \widetilde{Q} into \widetilde{Q}' by a finite sequence of mutations (at non frozen vertices).

Definition

A vertex i of Q is green in \widetilde{Q}' if there are no arrows $j' \to i$ in \widetilde{Q}' . It is red if there are no arrows $i \to j'$ in \widetilde{Q}' .

Green and red vertices in \widetilde{Q}'

Theorem (Derksen-Weyman-Zelevinsky 2010)

Each vertex of Q is either green or red in \tilde{Q}' and not both.

Green sequences

Definition

A sequence $\underline{i} = (i_1, \dots, i_N)$ is green if, for each $1 \le t \le N$, the vertex i_t is green in the partially mutated quiver

$$\mu_{i_{t-1}} \dots \mu_{i_2} \mu_{i_1}(\widetilde{Q}) =: \widetilde{Q}(\underline{i}, t).$$

Green quiver mutation: example

Reddening sequences

Theorem 1

If \underline{i} and \underline{i}' are maximal green sequences, then there is a frozen isomorphism

$$\mu_{\underline{i}}(\widetilde{\mathbf{Q}}) \stackrel{\sim}{\to} \mu_{\underline{i}'}(\widetilde{\mathbf{Q}}).$$

Remarks

• More generally, this holds for reddening sequences, i.e. arbitrary sequences $\underline{i} = (i_1, \dots, i_N)$ such that all vertices of Q are red in the final quiver

$$\mu_{\underline{i}}(\widetilde{Q}).$$

Not all quivers admit reddening sequences:

The exchange quiver

Definition

The exchange quiver $\mathcal{E}_{\mathcal{O}}$ has

- vertices: frozen isomorphism classes $\mu_{\underline{i}}(Q)$, where \underline{i} is any sequence of vertices,
- arrows: $\widetilde{Q}' \to \mu_j(\widetilde{Q}')$ if j is green in \widetilde{Q}' .

Example

 $Q: 1 \rightarrow 2$ yields $\mathcal{E}_Q:$

Reason

Key properties of the exchange quiver

Example (Reminder)

Remarks

- green seq. = formal comp. of arrows in \mathcal{E}_Q = path in \mathcal{E}_Q ,
- any mut. seq. = formal comp. of arrows^{±1} = walk in \mathcal{E}_Q .
- \mathcal{E}_Q has a sink iff Q admits a reddening sequence.
- This sink is then unique (final quiver of a reddening seq.).

Theorem (Nagao 2010)

The exchange quiver \mathcal{E}_Q is the Hasse diagram of a poset.

The 3-chain

The 3-cycle

Q: 1 $\mathcal{E}_Q:$ 2 $\mathcal{E}_Q:$

The 3-cycle with double arrow

The doubled 3-cycle

The quantum dilogarithm and the quiver \vec{A}_1

Aim

Define the combinatorial DT-invariant \mathbb{E}_Q as a formal power series intrinsically associated with Q, whenever Q admits a reddening sequence.

Definition

The (exponential of the) quantum dilogarithm series is

$$\mathbb{E}(y) = 1 + \frac{q^{1/2}}{q-1} \cdot y + \dots + \frac{q^{n^2/2}y^n}{(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})} + \dots$$

$$\in \mathbb{Q}(q^{1/2})[[y]].$$

Remark: For the quiver $Q = \vec{A}_1 = \bullet$, we will have $\mathbb{E}_Q = \mathbb{E}(y)$.

The pentagon identity and the quiver \vec{A}_2

Pentagon identity (Faddeev-Kashaev-Volkov 1993)

$$y_1y_2 = qy_2y_1 \Longrightarrow \mathbb{E}(y_1)\mathbb{E}(y_2) = \mathbb{E}(y_2)\mathbb{E}(q^{-1/2}y_1y_2)\mathbb{E}(y_1).$$

Combinatorial DT-invariant of \vec{A}_2

For

$$Q = \vec{A}_2 : 1 \longrightarrow 2$$

we will have

$$\mathbb{E}_Q = \mathbb{E}(y_1)\mathbb{E}(y_2) = \mathbb{E}(y_2)\mathbb{E}(q^{-1/2}y_1y_2)\mathbb{E}(y_1).$$

The pentagon and the quiver \vec{A}_2

In terms of the exchange quiver \mathcal{E}_Q

$$\mathbb{E}(y_1)\mathbb{E}(y_2) = \mathbb{E}_Q = \mathbb{E}(y_2)\mathbb{E}(q^{-1/2}y_1y_2)\mathbb{E}(y_1)$$

Each walk from the source to the sink of the exchange quiver yields a product expression for the combinatorial DT-invariant.

Key construction

Given any mutation sequence $\underline{i}=(i_1,\ldots,i_N)$, we need to construct a product $\mathbb{E}(\underline{i})$ of quantum dilogarithm series. This product is taken in the algebra $\widehat{\mathbb{A}}_Q$ constructed as follows: Let $\lambda_Q:\mathbb{Z}^n\times\mathbb{Z}^n\to\mathbb{Z}$ be bilinear antisymmetric such that

$$\lambda_{Q}(e_{i},e_{j})=\#(\text{arrows }i\rightarrow j\text{ in }Q)-\#(\text{arrows }j\rightarrow i\text{ in }Q).$$

Define

$$\widehat{\mathbb{A}}_Q := \mathbb{Q}(q^{1/2}) \langle \langle y^{\alpha}, \alpha \in \mathbb{N}^n \mid y^{\alpha} y^{\beta} = q^{1/2 \lambda(\alpha, \beta)} y^{\alpha + \beta} \rangle \rangle$$

$$\mathbb{E}(\underline{i}) := \mathbb{E}(y^{\alpha_1})^{\varepsilon_1} \dots \mathbb{E}(y^{\alpha_N})^{\varepsilon_N},$$

where

$$(\alpha_t)_j = \#(\text{arrows between } i_t \text{ and } j' \text{ in } \widetilde{Q}(\underline{i}, t))$$

and $\varepsilon_t = \pm 1$ depending on whether i_t is green or red in $\widetilde{Q}(\underline{i}, t)$.

The combinatorial DT-invariant

Main Theorem

Let \underline{i} and \underline{i}' be mutation sequences.

$$\exists$$
 frozen $\mu_i(\widetilde{Q}) \cong \mu_{i'}(\widetilde{Q}') \implies \mathbb{E}(\underline{i}) = \mathbb{E}(\underline{i}').$

Remark

In particular, if \underline{i} and \underline{i}' are reddening sequences, then by the first theorem, we have $\mathbb{E}(i) = \mathbb{E}(i')$.

Definition

If Q admits a reddening sequence \underline{i} , its combinatorial DT-invariant is

$$\mathbb{E}_{Q} = \mathbb{E}(\underline{i}) \in \widehat{\mathbb{A}}_{Q}.$$

The adjoint (combinatorial) DT-invariant

Definition (Reminder)

If Q admits a reddening sequence \underline{i} , its combinatorial DT-invariant is

$$\mathbb{E}_{Q} = \mathbb{E}(\underline{i}) \in \widehat{\mathbb{A}}_{Q}.$$

Definition

If Q admits a reddening sequence \underline{i} , its adjoint DT-invariant is

$$DT_Q : \operatorname{Frac}(\mathbb{A}_Q) \stackrel{\sim}{\to} \operatorname{Frac}(\mathbb{A}_Q), u \mapsto \mathbb{E}_Q(\Sigma u) \mathbb{E}_Q^{-1},$$

where
$$\Sigma(y^{\alpha}) = y^{-\alpha}$$
, $\alpha \in \mathbb{N}^n$.

Example

$$Q = \vec{A}_1 \Longrightarrow DT_Q^2 = \operatorname{Id}, \qquad \qquad Q = \vec{A}_2 \Longrightarrow DT_Q^5 = \operatorname{Id}.$$

Example 1: Dynkin quivers

Let Q be an alternating Dynkin quiver $\vec{\Delta}$, where Δ is an ADE Dynkin diagram, e. g.

$$Q = \vec{A}_5$$
: • $\longleftarrow \circ \longrightarrow \bullet \longleftarrow \circ \longrightarrow \bullet$

Put

 $i_+=\,$ sequence of all sources \circ

 $i_{-}=$ sequence of all sinks ullet.

Then $\underline{i} = i_+ i_-$ is maximal green and so is

$$\underline{i}' = \underbrace{i_- i_+ i_- \dots}_{h \text{ factors}} ,$$

where h is the Coxeter number of the underlying graph of Q. Thus, we have $\mathbb{E}_Q = \mathbb{E}(\underline{i}) = \mathbb{E}(\underline{i}')$. These are Reineke's identities. They follow from the pentagon. We have $DT_Q^{h+2} = \mathrm{Id}$.

Example 2: Square products of Dynkin diagrams

 $Q = \Delta \Box \Delta'$, where Δ and Δ' are ADE diagrams, e. g.

 $i_+=$ sequence of all \circ $i_-=$ sequence of all \bullet $\underline{i}_-=i_+i_-i_+\dots$ with h factors, is maximal green, $\underline{i}'=i_-i_+i_-\dots$ with h' factors, is maximal green.

We get
$$\mathbb{E}_Q = \mathbb{E}(\underline{i}) = \mathbb{E}(\underline{i}')$$
. We have $DT_Q^{2(h+h')} = \text{Id.}$

Two proofs of the main theorem

- 'Proof' based on Kontsevich-Soibelman's theory (preprints from November 2008 and June 2010),
- Proof based on the 'additive categorification' of cluster algebras

```
Some contributors to 'additive categorification' (in reverse chronological order): Derksen-Weyman-Zelevinsky, Nagao, Plamondon, ..., Berenstein-Zelevinsky, ..., Buan-Marsh-Reineke-Reiten-Todorov, ..., Caldero-Chapoton, Fock-Goncharov, Fomin-Zelevinsky.
```

Main steps of the second proof

- (1) $\mathbb{E}(\underline{i}) = \mathbb{E}(\underline{i}')$ in $\widehat{\mathbb{A}}_Q$ follows from
- (2) $\mathbb{E}(\underline{i}) = \mathbb{E}(\underline{i}')$ in $\widehat{\mathbb{A}}_{\widetilde{Q}}$ since $\widehat{\mathbb{A}}_{Q} \subset \widehat{\mathbb{A}}_{\widetilde{Q}}$.
- (3) The equality (2) is equivalent to

$$\mathsf{Ad}\,\mathbb{E}(\underline{i})=\mathsf{Ad}\,\mathbb{E}(\underline{i}')$$

because the center of $\widehat{\mathbb{A}}_{\widetilde{O}}$ is $\mathbb{Q}(q^{1/2})$.

- (4) The equality (3) is equivalent to its specialization at $q^{1/2} = 1$! (by a theorem on quantum cluster algebras due to Berenstein-Zelevinsky)
- (5) The specialization of Ad $\mathbb{E}(\underline{i})$ at $q^{1/2} = 1$ can be expressed in terms of Euler characteristics of quiver grassmannians of certain representations of Q (by the 'main theorem of additive categorification').
- (6) One shows that these representations only depend on the class of $\mu_i(\widetilde{Q})$ modulo frozen isomorphism.

Soon a third proof?

 Future proof based on mirror symmetry thanks to ongoing work by Gross–Keel–Kontsevich?

Summary

- Quiver mutation yields combinatorial DT invariants.
- At the same time, it yields a host of quantum dilogarithm identities.
- Do these follow from the pentagon ?
- Google 'quiver mutation in Java' or 'quiver mutation in Sage'!