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Kashiwara’s crystals

Colored directed graphs encoding certain representations V of the
quantum group Uq(g) as q → 0.

Kashiwara (crystal) operators are modified versions of the
Chevalley generators (indexed by the simple roots): ẽi , f̃i .

Fact. V has a crystal basis B (vertices) =⇒ in the limit q → 0
we have

f̃i , ẽi : B → B t {0} ,

f̃i b = b′ ⇐⇒ ẽi b′ = b ⇐⇒ b → b′ .
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Kirillov–Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not
highest weight) of affine Lie algebras ĝ.

The corresponding crystals have arrows f̃0, f̃1, . . ..

Labeled by p × q rectangles, so they are denoted Bp,q. We only
consider column shapes Bp,1.
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Tensor products of KR crystals

Definition. Given a composition p = (p1, p2, . . .), let

B⊗p = Bp1,1 ⊗ Bp2,1 ⊗ . . . .

The crystal operators are defined on B⊗p by a tensor product rule.

Fact. B⊗p is connected (with the 0-arrows).
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Models for KR crystals: type A
(1)
n−1 (ŝln)

Fact. We have as classical crystals (without the 0-arrows):

Bp,1 ' B(ωp) , where ωp = (1, . . . , 1, 0, . . . , 0) = (1p) .

The vertices of this crystal are labeled by strictly increasing fillings
of the Young diagram/column (1p) with 1, . . . , n.

The action of the crystal operators:

1
f̃1−→ 2

f̃2−→ . . . n − 1
f̃n−1−−→ n

f̃0−→ 1 .
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Fact. There are more involved type-specific models (based on
Kashiwara–Nakashima columns).

Goal. Uniform model for all types A
(1)
n−1 – G

(1)
2 , based on the

corresponding finite root systems An−1 – G2.
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The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components
(no 0-arrows) of B = B⊗p (Schilling and Tingley).

More precisely, DB : B → Z≥0 satisfies the following conditions:

I it is constant on classical components (0-arrows removed);

I it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the
combinatorial data associated with a crystal vertex (type A:
Lascoux–Schützenberger charge statistic).
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Setup: finite root systems

Root system Φ ⊂ V = Rr .

Reflections sα, α ∈ Φ .

Example. Type An−1.

V = (ε1 + . . .+ εn)⊥ in Rn = 〈ε1, . . . , εn〉 (r = n − 1).

Φ = {αij = εi − εj = (i , j) : 1 ≤ i 6= j ≤ n} .
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The Weyl group

W = 〈sα : α ∈ Φ〉 .

Length function: `(w) .

Example. Type An−1.

W = Sn , sεi−εj = (i , j) is the transposition tij .

The quantum Bruhat graph on W is the directed graph with
labeled edges

w
α−→ wsα ,

where
`(wsα) = `(w) + 1 (Bruhat graph) , or

`(wsα) = `(w)− 2ht(α∨) + 1 (ht(α∨) = 〈ρ, α∨〉) .

Comes from the multiplication of Schubert classes in the quantum
cohomology of flag varieties QH∗(G/B) (Fulton and Woodward).
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The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a
sequence of roots, called a λ-chain:

Γ = (β1, . . . , βm) .

Fact. A λ-chain corresponds to a sequence of alcoves.

Let ri := sβi .

We consider subsets of positions in Γ

J = (j1 < . . . < js) ⊆ {1, . . . ,m} .

We identify J with the chain in W

w0 = Id , . . . , wi := rj1 . . . rji , . . . , ws = wend .
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The quantum alcove model (cont.)

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

A position ji is called a positive (resp. negative) folding if

wi−1
βji−→ wi

is an up (resp. down) step.

Let
J− := {ji : wi−1 > wi} .

Let A(Γ) = A(λ) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on A(λ).



The quantum alcove model (cont.)

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

A position ji is called a positive (resp. negative) folding if

wi−1
βji−→ wi

is an up (resp. down) step.

Let
J− := {ji : wi−1 > wi} .

Let A(Γ) = A(λ) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on A(λ).



The quantum alcove model (cont.)

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

A position ji is called a positive (resp. negative) folding if

wi−1
βji−→ wi

is an up (resp. down) step.

Let
J− := {ji : wi−1 > wi} .

Let A(Γ) = A(λ) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on A(λ).



The quantum alcove model (cont.)

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

A position ji is called a positive (resp. negative) folding if

wi−1
βji−→ wi

is an up (resp. down) step.

Let
J− := {ji : wi−1 > wi} .

Let A(Γ) = A(λ) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on A(λ).



The quantum alcove model (cont.)

Definition. A subset J = {j1 < j2 < . . . < js} is admissible if we
have a path in the quantum Bruhat graph

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

A position ji is called a positive (resp. negative) folding if

wi−1
βji−→ wi

is an up (resp. down) step.

Let
J− := {ji : wi−1 > wi} .

Let A(Γ) = A(λ) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on A(λ).



The main result

Theorem. (LNSSS) Given p = (p1, p2, . . .) and an arbitrary Lie
type, let

λ = ωp1 + ωp2 + . . . .

The (combinatorial) crystal A(λ) is isomorphic to the tensor
product of KR crystals B⊗p.
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Proof sketch

Projected
level 0 LS paths =

(2)(1)
LS paths

Quantum
alcove model

Quantum

Level 0 LS (Lakshmibai–Seshadri) paths: certain piecewise-linear
paths with “directions” in Waf · λ.

Projected level 0 LS paths: project to the finite weight lattice.

Fact. B⊗λ realized in terms of projected level 0 LS paths
(Naito-Sagaki ’03-’08).

Quantum LS paths: the “directions” in W · λ 'W /Wλ are related
by paths in the parabolic quantum Bruhat graph QB(W /Wλ).
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Ingredients in the proof

Projected
level 0 LS paths =

(2)(1)
LS paths

Quantum
alcove model

Quantum

Ingredients for (1): we lift QB(W /Wλ) to

I Littelmann’s poset of level 0 weights Waf · λ =⇒ description
of covers;

I the Bruhat order on Waf (parabolic version of “quantum to
affine”, cf. Peterson ’97, Lam–Shimozono ’10).

Ingredients for (2):

I we study various other properties of the parabolic quantum
Bruhat graph.
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Example in type A2.

p = (1, 2, 2, 1) = ; λ = ω1 + ω2 + ω2 + ω1 = (4, 2, 0).

A λ-chain as a concatenation of ω1-, ω2-, ω2-, and ω1-chains:

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) .
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The corresponding element in B⊗p = B1,1 ⊗ B2,1 ⊗ B2,1 ⊗ B1,1

represented via column-strict fillings:

3 ⊗ 2
3
⊗ 1

2
⊗ 3 .



The energy function in arbitrary Lie type

Definition. Given the λ-chain

Γ = (β1, . . . , βm) ,

define the height sequence (h1, . . . , hm) by

hi := #{j ≥ i : βj = βi} .

Then, for J ∈ A(λ), define the statistic

height(J) :=
∑
j∈J−

hj .

Theorem. (LNSSS) Given J ∈ A(λ), which is identified with B⊗p,
we have

DB(J) = −height(J) .
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Example. Consider the running example: λ = ω1 + ω2 + ω2 + ω1 in
type A2.

We considered the λ-chain Γ and J = {1, 2, 3, 6, 7, 8} ∈ A(Γ):

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) ,

(hi ) = ( 2, 4 | 2, 3 | 1, 2 | 1, 1 ) .

We have
height(J) = 2 .

Remarks. (1) In type A, the height statistic translates into the
Lascoux–Schützenberger charge statistic on Young tableaux (L.).

(2) A similar charge statistic was defined in type C (L. and
Schilling), and one is being developed in type B (Briggs and L.).
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