A uniform model for Kirillov-Reshetikhin crystals

Cristian Lenart ${ }^{1}$ Satoshi Naito ${ }^{2}$ Daisuke Sagaki ${ }^{3}$ Anne Schilling ${ }^{4} \quad$ Mark Shimozono ${ }^{5}$
${ }^{1}$ State University of New York, Albany
${ }^{2}$ Tokyo Institute of Technology
${ }^{3}$ University of Tsukuba
${ }^{4}$ University of California, Davis
${ }^{5}$ Virginia Tech

FPSAC, June 26, 2013
Based on arXiv:1211.2042 and a forthcoming sequel.

Theorem (LNSSS 2012)
For all untwisted affine root systems,

$$
P_{\lambda}(x ; q, 0)=X_{\lambda}(x ; q),
$$

where $X_{\lambda}(x ; q)$ is the (graded) character of a tensor product of one-column Kirillov-Reshetikhin (KR) modules.

Summary

$$
\text { Ram-Yip formula for } P_{\lambda}(x ; q, t)
$$

uniform models for KR crystals
(the quantum alcove model)

$$
\longrightarrow X_{\lambda}(x ; q)=P_{\lambda}(x ; q, 0)
$$

Summary

$$
\text { Ram-Yip formula for } P_{\lambda}(x ; q, t)
$$

uniform models for KR crystals (the quantum alcove model)

$$
\longrightarrow X_{\lambda}(x ; q)=P_{\lambda}(x ; q, 0)
$$

computational applications

energy function
combinatorial R-matrix

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\widetilde{e}_{i}, \widetilde{f}_{i}$.

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_{q}(\mathfrak{g})$ as $q \rightarrow 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): $\widetilde{e}_{i}, \widetilde{f}_{i}$.

Fact. V has a crystal basis B (vertices) \Longrightarrow in the limit $q \rightarrow 0$ we have

$$
\begin{aligned}
& \widetilde{f}_{i}, \widetilde{e}_{i}: B \rightarrow B \sqcup\{0\}, \\
& \widetilde{f}_{i} b=b^{\prime} \Longleftrightarrow \widetilde{e}_{i} b^{\prime}=b \quad \Longleftrightarrow \quad b \rightarrow b^{\prime}
\end{aligned}
$$

Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not highest weight) of affine Lie algebras $\widehat{\mathfrak{g}}$.

Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not highest weight) of affine Lie algebras $\widehat{\mathfrak{g}}$.

The corresponding crystals have arrows $\widetilde{f}_{0}, \widetilde{f}_{1}, \ldots$.

Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not highest weight) of affine Lie algebras $\widehat{\mathfrak{g}}$.

The corresponding crystals have arrows $\widetilde{f}_{0}, \widetilde{f}_{1}, \ldots$.
Labeled by $p \times q$ rectangles, so they are denoted $B^{p, q}$.

Kirillov-Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not highest weight) of affine Lie algebras $\widehat{\mathfrak{g}}$.

The corresponding crystals have arrows $\widetilde{f}_{0}, \widetilde{f}_{1}, \ldots$.
Labeled by $p \times q$ rectangles, so they are denoted $B^{p, q}$. We only consider column shapes $B^{p, 1}$.

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$, let

$$
B^{\otimes \mathbf{p}}=B^{p_{1}, 1} \otimes B^{p_{2}, 1} \otimes \ldots
$$

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$, let

$$
B^{\otimes \mathbf{p}}=B^{p_{1}, 1} \otimes B^{p_{2}, 1} \otimes \ldots
$$

The crystal operators are defined on $B^{\otimes \mathbf{p}}$ by a tensor product rule.

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$, let

$$
B^{\otimes \mathbf{p}}=B^{p_{1}, 1} \otimes B^{p_{2}, 1} \otimes \ldots
$$

The crystal operators are defined on $B^{\otimes \mathbf{p}}$ by a tensor product rule.
Fact. $B^{\otimes \mathbf{p}}$ is connected (with the 0 -arrows).

Models for KR crystals: type $A_{n-1}^{(1)}\left(\widehat{\mathfrak{s l}}_{n}\right)$

Fact. We have as classical crystals (without the 0-arrows):

$$
B^{p, 1} \simeq B\left(\omega_{p}\right), \quad \text { where } \omega_{p}=(1, \ldots, 1,0, \ldots, 0)=\left(1^{p}\right)
$$

Models for KR crystals: type $A_{n-1}^{(1)}\left(\widehat{\mathfrak{s l}}_{n}\right)$

Fact. We have as classical crystals (without the 0-arrows):

$$
B^{p, 1} \simeq B\left(\omega_{p}\right), \quad \text { where } \omega_{p}=(1, \ldots, 1,0, \ldots, 0)=\left(1^{p}\right)
$$

The vertices of this crystal are labeled by strictly increasing fillings of the Young diagram/column (1^{p}) with $1, \ldots, n$.

Models for KR crystals: type $A_{n-1}^{(1)}\left(\widehat{\mathfrak{s l}}_{n}\right)$

Fact. We have as classical crystals (without the 0-arrows):

$$
B^{p, 1} \simeq B\left(\omega_{p}\right), \quad \text { where } \omega_{p}=(1, \ldots, 1,0, \ldots, 0)=\left(1^{p}\right)
$$

The vertices of this crystal are labeled by strictly increasing fillings of the Young diagram/column (1^{p}) with $1, \ldots, n$.

The action of the crystal operators:

$$
1 \xrightarrow{\widetilde{f}_{1}} 2 \xrightarrow{\widetilde{f}_{2}} \ldots n-1 \xrightarrow{\widetilde{f}_{n-1}} n \xrightarrow{\widetilde{f}_{0}} 1
$$

Models for KR crystals: types $B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1)}$

Fact. There are more involved type-specific models (based on Kashiwara-Nakashima columns).

Models for KR crystals: types $B_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1)}$

Fact. There are more involved type-specific models (based on Kashiwara-Nakashima columns).

Goal. Uniform model for all types $A_{n-1}^{(1)}-G_{2}^{(1)}$, based on the corresponding finite root systems $A_{n-1}-G_{2}$.

The energy function

It originates in the theory of exactly solvable lattice models.

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes p}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes p}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0 -arrows.

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes p}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0 -arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex

The energy function

It originates in the theory of exactly solvable lattice models.
The energy function defines a grading on the classical components (no 0-arrows) of $B=B^{\otimes p}$ (Schilling and Tingley).

More precisely, $D_{B}: B \rightarrow \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0 -arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex (type A : Lascoux-Schützenberger charge statistic).

Setup: finite root systems

Root system $\Phi \subset V=\mathbb{R}^{r}$.

Setup: finite root systems

Root system $\Phi \subset V=\mathbb{R}^{r}$.
Reflections $s_{\alpha}, \alpha \in \Phi$.

Setup: finite root systems

Root system $\Phi \subset V=\mathbb{R}^{r}$.
Reflections $s_{\alpha}, \alpha \in \Phi$.
Example. Type A_{n-1}.

$$
\begin{aligned}
& V=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{\perp} \text { in } \mathbb{R}^{n}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle(r=n-1) . \\
& \Phi=\left\{\alpha_{i j}=\varepsilon_{i}-\varepsilon_{j}=(i, j): 1 \leq i \neq j \leq n\right\} .
\end{aligned}
$$

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle .
$$

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle .
$$

Length function: $\ell(w)$.

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle .
$$

Length function: $\ell(w)$.
Example. Type A_{n-1}.
$W=S_{n}, \quad s_{\varepsilon_{i}-\varepsilon_{j}}=(i, j)$ is the transposition $t_{i j}$.

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle
$$

Length function: $\ell(w)$.
Example. Type A_{n-1}.
$W=S_{n}, \quad s_{\varepsilon_{i}-\varepsilon_{j}}=(i, j)$ is the transposition $t_{i j}$.
The quantum Bruhat graph on W is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}
$$

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle
$$

Length function: $\ell(w)$.
Example. Type A_{n-1}.
$W=S_{n}, \quad s_{\varepsilon_{i}-\varepsilon_{j}}=(i, j)$ is the transposition $t_{i j}$.
The quantum Bruhat graph on W is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}
$$

where

$$
\begin{aligned}
& \left.\ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad \text { Bruhat graph }\right), \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 \operatorname{ht}\left(\alpha^{\vee}\right)+1 \quad\left(\operatorname{ht}\left(\alpha^{\vee}\right)=\left\langle\rho, \alpha^{\vee}\right\rangle\right) .
\end{aligned}
$$

The Weyl group

$$
W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle .
$$

Length function: $\ell(w)$.
Example. Type A_{n-1}.
$W=S_{n}, \quad s_{\varepsilon_{i}-\varepsilon_{j}}=(i, j)$ is the transposition $t_{i j}$.
The quantum Bruhat graph on W is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}
$$

where

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad(\text { Bruhat graph }), \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 \operatorname{ht}\left(\alpha^{\vee}\right)+1 \quad\left(\operatorname{ht}\left(\alpha^{\vee}\right)=\left\langle\rho, \alpha^{\vee}\right\rangle\right) .
\end{aligned}
$$

Comes from the multiplication of Schubert classes in the quantum cohomology of flag varieties $Q H^{*}(G / B)$ (Fulton and Woodward).

Bruhat graph for S_{3} :

Quantum Bruhat graph for S_{3} :

The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

Fact. A λ-chain corresponds to a sequence of alcoves.

The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

Fact. A λ-chain corresponds to a sequence of alcoves.
Let $r_{i}:=s_{\beta_{i}}$.

The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

Fact. A λ-chain corresponds to a sequence of alcoves.
Let $r_{i}:=s_{\beta_{i}}$.
We consider subsets of positions in Γ

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

The quantum alcove model

Definition. Given a dominant weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

Fact. A λ-chain corresponds to a sequence of alcoves.
Let $r_{i}:=s_{\beta_{i}}$.
We consider subsets of positions in 「

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

We identify J with the chain in W

$$
w_{0}=I d, \ldots, \quad w_{i}:=r_{j_{1}} \ldots r_{j_{i}}, \ldots, \quad w_{s}=w_{\mathrm{end}}
$$

The quantum alcove model (cont.)

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

The quantum alcove model (cont.)

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

A position j_{i} is called a positive (resp. negative) folding if

$$
w_{i-1} \xrightarrow{\beta_{j_{i}}} w_{i}
$$

is an up (resp. down) step.

The quantum alcove model (cont.)

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

A position j_{i} is called a positive (resp. negative) folding if

$$
w_{i-1} \xrightarrow{\beta_{j_{i}}} w_{i}
$$

is an up (resp. down) step.
Let

$$
J^{-}:=\left\{j_{i}: w_{i-1}>w_{i}\right\} .
$$

The quantum alcove model (cont.)

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

A position j_{i} is called a positive (resp. negative) folding if

$$
w_{i-1} \xrightarrow{\beta_{j_{i}}} w_{i}
$$

is an up (resp. down) step.
Let

$$
J^{-}:=\left\{j_{i}: w_{i-1}>w_{i}\right\} .
$$

Let $\mathcal{A}(\Gamma)=\mathcal{A}(\lambda)$ be the collection of all admissible subsets.

The quantum alcove model (cont.)

Definition. A subset $J=\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$ is admissible if we have a path in the quantum Bruhat graph

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s} .
$$

A position j_{i} is called a positive (resp. negative) folding if

$$
w_{i-1} \xrightarrow{\beta_{j_{i}}} w_{i}
$$

is an up (resp. down) step.
Let

$$
J^{-}:=\left\{j_{i}: w_{i-1}>w_{i}\right\} .
$$

Let $\mathcal{A}(\Gamma)=\mathcal{A}(\lambda)$ be the collection of all admissible subsets.
Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) Crystal operators $\widetilde{f}_{1}, \ldots, \widetilde{f}_{r}$ and \widetilde{f}_{0} on $\mathcal{A}(\lambda)$.

The main result

Theorem. (LNSSS) Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

The main result

Theorem. (LNSSS) Given $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ and an arbitrary Lie type, let

$$
\lambda=\omega_{p_{1}}+\omega_{p_{2}}+\ldots
$$

The (combinatorial) crystal $\mathcal{A}(\lambda)$ is isomorphic to the tensor product of $K R$ crystals $B^{\otimes \mathbf{p}}$.

Proof sketch

Proof sketch

Level 0 LS (Lakshmibai-Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{\text {af }} \cdot \lambda$.

Proof sketch

Level 0 LS (Lakshmibai-Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{\mathrm{af}} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice.

Proof sketch

Level 0 LS (Lakshmibai-Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{\text {af }} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice.
Fact. $B^{\otimes \lambda}$ realized in terms of projected level 0 LS paths
(Naito-Sagaki '03-'08).

Proof sketch

Level 0 LS (Lakshmibai-Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{\text {af }} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice.
Fact. $B^{\otimes \lambda}$ realized in terms of projected level 0 LS paths
(Naito-Sagaki '03-'08).
Quantum LS paths: the "directions" in $W \cdot \lambda \simeq W / W_{\lambda}$ are related by paths in the parabolic quantum Bruhat graph $\mathrm{QB}\left(W / W_{\lambda}\right)$.

Ingredients in the proof

Ingredients in the proof

Ingredients for (1): we lift $\mathrm{QB}\left(W / W_{\lambda}\right)$ to

Ingredients in the proof

Ingredients for (1): we lift $\mathrm{QB}\left(W / W_{\lambda}\right)$ to

- Littelmann's poset of level 0 weights $W_{\text {af }} \cdot \lambda$

Ingredients in the proof

Ingredients for (1): we lift $\mathrm{QB}\left(W / W_{\lambda}\right)$ to

- Littelmann's poset of level 0 weights $W_{\mathrm{af}} \cdot \lambda \Longrightarrow$ description of covers;

Ingredients in the proof

Projected level 0 LS paths
 Quantum
LS paths

Ingredients for (1): we lift $\mathrm{QB}\left(W / W_{\lambda}\right)$ to

- Littelmann's poset of level 0 weights $W_{\mathrm{af}} \cdot \lambda \Longrightarrow$ description of covers;
- the Bruhat order on $W_{\text {af }}$ (parabolic version of "quantum to affine", cf. Peterson '97, Lam-Shimozono '10).

Ingredients in the proof

Projected level 0 LS paths
 Quantum
LS paths
(2)

Quantum alcove model

Ingredients for (1): we lift $\mathrm{QB}\left(W / W_{\lambda}\right)$ to

- Littelmann's poset of level 0 weights $W_{\mathrm{af}} \cdot \lambda \Longrightarrow$ description of covers;
- the Bruhat order on $W_{\text {af }}$ (parabolic version of "quantum to affine", cf. Peterson '97, Lam-Shimozono '10).

Ingredients for (2):

- we study various other properties of the parabolic quantum Bruhat graph.

Example in type A_{2}.

$$
\mathbf{p}=(1,2,2,1)=\begin{array}{|}
\square & \square & \square=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}=(4,2,0) .
\end{array}
$$

Example in type A_{2}.

$\mathbf{p}=(1,2,2,1)=$| \square | |
| :---: | :---: |
| \square | \square |,$\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}=(4,2,0)$.

A λ-chain as a concatenation of $\omega_{1^{-}}, \omega_{2^{-}}, \omega_{2^{-}}$, and $\omega_{1^{-}}$-chains:

$$
\Gamma=((1,2),(1,3)|(2,3),(1,3)|(2,3),(1,3) \mid(1,2),(1,3)) .
$$

Example. Let $J=\{1,2,3,6,7,8\}$. $(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)})$.

Example. Let $J=\{1,2,3,6,7,8\}$.
$(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|$
$(2,3), \underline{(1,3)} \mid \underline{(1,2)}$
$(1,3)$).

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

Example. Let $J=\{1,2,3,6,7,8\}$.
$((1,2),(1,3)|(2,3),(1,3)|$
$(2,3)$
$(1,3) \mid$
$(1,2),(1,3))$.

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

The corresponding element in $B^{\otimes \mathbf{p}}=B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ represented via column-strict fillings:

$$
3 \otimes \frac{2}{3} \otimes \frac{1}{2} \otimes 3 .
$$

The energy function in arbitrary Lie type

Definition. Given the λ-chain

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right),
$$

define the height sequence $\left(h_{1}, \ldots, h_{m}\right)$ by

$$
h_{i}:=\#\left\{j \geq i: \beta_{j}=\beta_{i}\right\}
$$

The energy function in arbitrary Lie type

Definition. Given the λ-chain

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right),
$$

define the height sequence $\left(h_{1}, \ldots, h_{m}\right)$ by

$$
h_{i}:=\#\left\{j \geq i: \beta_{j}=\beta_{i}\right\}
$$

Then, for $J \in \mathcal{A}(\lambda)$, define the statistic

$$
\operatorname{height}(J):=\sum_{j \in J^{-}} h_{j} .
$$

The energy function in arbitrary Lie type

Definition. Given the λ-chain

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right),
$$

define the height sequence $\left(h_{1}, \ldots, h_{m}\right)$ by

$$
h_{i}:=\#\left\{j \geq i: \beta_{j}=\beta_{i}\right\}
$$

Then, for $J \in \mathcal{A}(\lambda)$, define the statistic

$$
\operatorname{height}(J):=\sum_{j \in J^{-}} h_{j} .
$$

Theorem. (LNSSS) Given $J \in \mathcal{A}(\lambda)$, which is identified with $B^{\otimes \mathbf{p}}$, we have

$$
D_{B}(J)=-\operatorname{height}(J)
$$

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\left.\begin{array}{l}
\Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}) \\
\left(h_{i}\right)=(2, \quad 4|2, \quad 3| 1,
\end{array}\right) .
$$

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\begin{aligned}
& \Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}),
\end{aligned}
$$

We have

$$
\operatorname{height}(J)=2
$$

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\left.\begin{array}{l}
\Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}) \\
\left(h_{i}\right)=(2, \quad 4|2, \quad 3| 1,
\end{array}\right) .
$$

We have

$$
\operatorname{height}(J)=2
$$

Remarks. (1) In type A, the height statistic translates into the Lascoux-Schützenberger charge statistic on Young tableaux (L.).

Example. Consider the running example: $\lambda=\omega_{1}+\omega_{2}+\omega_{2}+\omega_{1}$ in type A_{2}.
We considered the λ-chain Γ and $J=\{1,2,3,6,7,8\} \in \mathcal{A}(\Gamma)$:

$$
\begin{aligned}
& \Gamma=(\underline{(1,2)}, \underline{(1,3)}|\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)} \mid \underline{(1,2)}, \underline{(1,3)}) \\
& \left(h_{i}\right)
\end{aligned}=\left(\begin{array}{l|l|l|l|}
2, & 4 & 2, \quad 3 \mid 1,
\end{array}\right) .
$$

We have

$$
\operatorname{height}(J)=2
$$

Remarks. (1) In type A, the height statistic translates into the Lascoux-Schützenberger charge statistic on Young tableaux (L.).
(2) A similar charge statistic was defined in type C (L. and Schilling), and one is being developed in type B (Briggs and L.).

