A uniform model for Kirillov-Reshetikhin crystals

Cristian Lenart¹ Satoshi Naito² Daisuke Sagaki³ Anne Schilling⁴ Mark Shimozono⁵

¹State University of New York, Albany

²Tokyo Institute of Technology

³University of Tsukuba

⁴University of California, Davis

⁵Virginia Tech

FPSAC, June 26, 2013

Based on arXiv:1211.2042 and a forthcoming sequel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (LNSSS 2012)

For all untwisted affine root systems,

$$P_{\lambda}(x;q,0)=X_{\lambda}(x;q)\,,$$

where $X_{\lambda}(x; q)$ is the (graded) character of a tensor product of one-column Kirillov-Reshetikhin (KR) modules.

Summary

uniform models for KR crystals (the quantum alcove model)

Summary

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_q(\mathfrak{g})$ as $q \to 0$.

・ロト・日本・モト・モート ヨー うへで

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_q(\mathfrak{g})$ as $q \to 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): \tilde{e}_i , \tilde{f}_i .

Kashiwara's crystals

Colored directed graphs encoding certain representations V of the quantum group $U_q(\mathfrak{g})$ as $q \to 0$.

Kashiwara (crystal) operators are modified versions of the Chevalley generators (indexed by the simple roots): \tilde{e}_i , \tilde{f}_i .

Fact. V has a crystal basis B (vertices) \implies in the limit $q \rightarrow 0$ we have

$$\begin{array}{ll} f_i, \widetilde{\mathbf{e}}_i \ : \ B \to B \sqcup \{\mathbf{0}\}\,, \\ \\ \widetilde{f}_i \, b = b' & \Longleftrightarrow \quad \widetilde{\mathbf{e}}_i \, b' = b \quad \Longleftrightarrow \quad b \to b'\,. \end{array}$$

Kirillov–Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations (not highest weight) of affine Lie algebras \hat{g} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kirillov–Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations (not highest weight) of affine Lie algebras \hat{g} .

The corresponding crystals have arrows $\widetilde{f}_0, \widetilde{f}_1, \ldots$

Kirillov–Reshetikhin (KR) crystals

Correspond to certain *finite*-dimensional representations (not highest weight) of affine Lie algebras \hat{g} .

The corresponding crystals have arrows $\widetilde{f}_0, \widetilde{f}_1, \ldots$

Labeled by $p \times q$ rectangles, so they are denoted $B^{p,q}$.

Correspond to certain *finite*-dimensional representations (not highest weight) of affine Lie algebras \hat{g} .

The corresponding crystals have arrows $\widetilde{f}_0, \widetilde{f}_1, \ldots$

Labeled by $p \times q$ rectangles, so they are denoted $B^{p,q}$. We only consider column shapes $B^{p,1}$.

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p} = (p_1, p_2, \ldots)$, let

 $B^{\otimes \mathbf{p}} = B^{\mathbf{p}_1, \mathbf{1}} \otimes B^{\mathbf{p}_2, \mathbf{1}} \otimes \ldots$

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p} = (p_1, p_2, \ldots)$, let

$$B^{\otimes \mathbf{p}} = B^{\mathbf{p}_1,1} \otimes B^{\mathbf{p}_2,1} \otimes \ldots$$

The crystal operators are defined on $B^{\otimes p}$ by a tensor product rule.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tensor products of KR crystals

Definition. Given a composition $\mathbf{p} = (p_1, p_2, \ldots)$, let

$$B^{\otimes \mathbf{p}} = B^{\mathbf{p}_1,1} \otimes B^{\mathbf{p}_2,1} \otimes \ldots$$

The crystal operators are defined on $B^{\otimes p}$ by a tensor product rule.

Fact. $B^{\otimes \mathbf{p}}$ is connected (with the 0-arrows).

Models for KR crystals: type $A_{n-1}^{(1)}(\widehat{\mathfrak{sl}}_n)$

Fact. We have as classical crystals (without the 0-arrows):

$$B^{p,1}\simeq B(\omega_p)\,, \hspace{1em}$$
 where $\omega_p=(1,\ldots,1,0,\ldots,0)=(1^p)\,.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Models for KR crystals: type $A_{n-1}^{(1)}(\widehat{\mathfrak{sl}}_n)$

Fact. We have as classical crystals (without the 0-arrows):

$$B^{p,1}\simeq B(\omega_p)\,, \quad ext{ where } \omega_p=(1,\ldots,1,0,\ldots,0)=(1^p)\,.$$

The vertices of this crystal are labeled by strictly increasing fillings of the Young diagram/column (1^p) with $1, \ldots, n$.

Models for KR crystals: type $A_{n-1}^{(1)}(\widehat{\mathfrak{sl}}_n)$

Fact. We have as classical crystals (without the 0-arrows):

$$B^{p,1}\simeq B(\omega_p)\,, \quad ext{ where } \omega_p=(1,\ldots,1,0,\ldots,0)=(1^p)\,.$$

The vertices of this crystal are labeled by strictly increasing fillings of the Young diagram/column (1^p) with $1, \ldots, n$.

The action of the crystal operators:

$$1 \xrightarrow{\widetilde{f}_1} 2 \xrightarrow{\widetilde{f}_2} \dots n - 1 \xrightarrow{\widetilde{f}_{n-1}} n \xrightarrow{\widetilde{f}_0} 1.$$

Models for KR crystals: types $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$

Fact. There are more involved type-specific models (based on Kashiwara–Nakashima columns).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Models for KR crystals: types $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$

Fact. There are more involved type-specific models (based on Kashiwara–Nakashima columns).

Goal. Uniform model for all types $A_{n-1}^{(1)} - G_2^{(1)}$, based on the corresponding finite root systems $A_{n-1} - G_2$.

It originates in the theory of exactly solvable lattice models.

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^{\otimes p}$ (Schilling and Tingley).

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

More precisely, D_B : $B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

it is constant on classical components (0-arrows removed);

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

More precisely, D_B : $B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

it is constant on classical components (0-arrows removed);

▶ it decreases by 1 along certain 0-arrows.

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

More precisely, $D_B : B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components (no 0-arrows) of $B = B^{\otimes \mathbf{p}}$ (Schilling and Tingley).

More precisely, D_B : $B \to \mathbb{Z}_{\geq 0}$ satisfies the following conditions:

- it is constant on classical components (0-arrows removed);
- it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the combinatorial data associated with a crystal vertex (type *A*: Lascoux–Schützenberger charge statistic).

Setup: finite root systems

Root system $\Phi \subset V = \mathbb{R}^r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setup: finite root systems

Root system $\Phi \subset V = \mathbb{R}^r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reflections s_{α} , $\alpha \in \Phi$.

Setup: finite root systems

Root system $\Phi \subset V = \mathbb{R}^r$.

Reflections s_{α} , $\alpha \in \Phi$.

Example. Type A_{n-1} . $V = (\varepsilon_1 + \ldots + \varepsilon_n)^{\perp}$ in $\mathbb{R}^n = \langle \varepsilon_1, \ldots, \varepsilon_n \rangle$ (r = n - 1). $\Phi = \{ \alpha_{ij} = \varepsilon_i - \varepsilon_j = (i, j) : 1 \le i \ne j \le n \}$.

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

Length function: $\ell(w)$.

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

Length function: $\ell(w)$.

Example. Type A_{n-1} .

 $W = S_n, \;\; s_{arepsilon_i - arepsilon_j} = (i,j) \;\; ext{is the transposition} \;\; t_{ij} \,.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

Length function: $\ell(w)$.

Example. Type A_{n-1} .

 $W = S_n, \ \ s_{arepsilon_i - arepsilon_j} = (i,j)$ is the transposition t_{ij} .

The quantum Bruhat graph on W is the directed graph with labeled edges

 $w \xrightarrow{\alpha} ws_{\alpha}$,

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

Length function: $\ell(w)$.

Example. Type A_{n-1} .

 $W = S_n, \;\; s_{arepsilon_i - arepsilon_j} = (i,j) \;\; ext{is the transposition} \;\; t_{ij} \;.$

The quantum Bruhat graph on W is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
,

where

$$\begin{split} \ell(\mathit{ws}_{\alpha}) &= \ell(\mathit{w}) + 1 \quad (\mathsf{Bruhat graph}), \quad \mathsf{or} \\ \ell(\mathit{ws}_{\alpha}) &= \ell(\mathit{w}) - 2\mathrm{ht}(\alpha^{\vee}) + 1 \qquad (\mathrm{ht}(\alpha^{\vee}) = \langle \rho, \alpha^{\vee} \rangle). \end{split}$$

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle.$$

Length function: $\ell(w)$.

Example. Type A_{n-1} .

 $W = S_n, \;\; s_{arepsilon_i - arepsilon_j} = (i,j) \;\; ext{is the transposition} \;\; t_{ij} \;.$

The quantum Bruhat graph on W is the directed graph with labeled edges

 $w \stackrel{\alpha}{\longrightarrow} ws_{\alpha}$,

where

$$\begin{split} \ell(\mathit{ws}_{\alpha}) &= \ell(\mathit{w}) + 1 \quad (\text{Bruhat graph}), \quad \text{or} \\ \ell(\mathit{ws}_{\alpha}) &= \ell(\mathit{w}) - 2\mathrm{ht}(\alpha^{\vee}) + 1 \qquad (\mathrm{ht}(\alpha^{\vee}) = \langle \rho, \alpha^{\vee} \rangle). \end{split}$$

Comes from the multiplication of Schubert classes in the quantum cohomology of flag varieties $QH^*(G/B)$ (Fulton and Woodward).

Bruhat graph for S_3 :

Quantum Bruhat graph for S_3 :

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Definition. Given a dominant weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition. Given a dominant weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fact. A λ -chain corresponds to a sequence of alcoves.

Definition. Given a dominant weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fact. A λ -chain corresponds to a sequence of alcoves.

Let $r_i := s_{\beta_i}$.

Definition. Given a dominant weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

Fact. A λ -chain corresponds to a sequence of alcoves.

Let $r_i := s_{\beta_i}$.

We consider subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

Definition. Given a dominant weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

Fact. A λ -chain corresponds to a sequence of alcoves.

Let $r_i := s_{\beta_i}$.

We consider subsets of positions in Γ

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

We identify J with the chain in W

$$w_0 = Id, \ldots, w_i := r_{j_1} \ldots r_{j_i}, \ldots, w_s = w_{end}$$

Definition. A subset $J = \{j_1 < j_2 < \ldots < j_s\}$ is admissible if we have a path in the quantum Bruhat graph

$$\mathit{Id} = \mathit{w}_0 \stackrel{\beta_{j_1}}{\longrightarrow} \mathit{w}_1 \stackrel{\beta_{j_2}}{\longrightarrow} \ldots \stackrel{\beta_{j_s}}{\longrightarrow} \mathit{w}_s$$
 .

Definition. A subset $J = \{j_1 < j_2 < \ldots < j_s\}$ is admissible if we have a path in the quantum Bruhat graph

$$Id = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} w_s.$$

A position j_i is called a positive (resp. negative) folding if

$$w_{i-1} \xrightarrow{\beta_{j_i}} w_i$$

is an up (resp. down) step.

Definition. A subset $J = \{j_1 < j_2 < \ldots < j_s\}$ is admissible if we have a path in the quantum Bruhat graph

$$Id = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} w_s.$$

A position j_i is called a positive (resp. negative) folding if

$$w_{i-1} \xrightarrow{\beta_{j_i}} w_i$$

is an up (resp. down) step.

Let

$$J^- := \{j_i : w_{i-1} > w_i\}.$$

Definition. A subset $J = \{j_1 < j_2 < \ldots < j_s\}$ is admissible if we have a path in the quantum Bruhat graph

$$Id = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} w_s$$

A position j_i is called a positive (resp. negative) folding if

$$w_{i-1} \xrightarrow{\beta_{j_i}} w_i$$

is an up (resp. down) step.

Let

$$J^- := \{j_i : w_{i-1} > w_i\}.$$

Let $\mathcal{A}(\Gamma) = \mathcal{A}(\lambda)$ be the collection of all admissible subsets.

Definition. A subset $J = \{j_1 < j_2 < \ldots < j_s\}$ is admissible if we have a path in the quantum Bruhat graph

$$Id = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} w_s$$

A position j_i is called a positive (resp. negative) folding if

$$w_{i-1} \xrightarrow{\beta_{j_i}} w_i$$

is an up (resp. down) step.

Let

$$J^- := \{j_i : w_{i-1} > w_i\}.$$

Let $\mathcal{A}(\Gamma) = \mathcal{A}(\lambda)$ be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov, Gaussent-Littelmann) Crystal operators $\tilde{f}_1, \ldots, \tilde{f}_r$ and \tilde{f}_0 on $\mathcal{A}(\lambda)$.

Theorem. (LNSSS) Given $\mathbf{p} = (p_1, p_2, ...)$ and an arbitrary Lie type, let

$$\lambda = \omega_{p_1} + \omega_{p_2} + \dots$$

Theorem. (LNSSS) Given $\mathbf{p} = (p_1, p_2, ...)$ and an arbitrary Lie type, let

$$\lambda = \omega_{p_1} + \omega_{p_2} + \dots$$

The (combinatorial) crystal $\mathcal{A}(\lambda)$ is isomorphic to the tensor product of KR crystals $B^{\otimes \mathbf{p}}$.

(日)、

æ

Level 0 LS (Lakshmibai–Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{af} \cdot \lambda$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Level 0 LS (Lakshmibai–Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{af} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Level 0 LS (Lakshmibai–Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{af} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice. Fact. $B^{\otimes \lambda}$ realized in terms of projected level 0 LS paths

(Naito-Sagaki '03-'08).

Level 0 LS (Lakshmibai–Seshadri) paths: certain piecewise-linear paths with "directions" in $W_{af} \cdot \lambda$.

Projected level 0 LS paths: project to the finite weight lattice.

Fact. $B^{\otimes \lambda}$ realized in terms of projected level 0 LS paths (Naito-Sagaki '03-'08).

Quantum LS paths: the "directions" in $W \cdot \lambda \simeq W/W_{\lambda}$ are related by paths in the parabolic quantum Bruhat graph QB(W/W_{λ}).

(日)、

イロト 不得 トイヨト イヨト

3

Ingredients for (1): we lift $QB(W/W_{\lambda})$ to

Ingredients for (1): we lift $QB(W/W_{\lambda})$ to

Littelmann's poset of level 0 weights $W_{
m af} \cdot \lambda$

 $\begin{array}{c|c} Projected \\ level 0 LS paths \end{array} \xrightarrow[]{} & \begin{array}{c} (1) \\ = \end{array} & \begin{array}{c} Quantum \\ LS paths \end{array} \xrightarrow[]{} & \begin{array}{c} (2) \\ \hline \hline \hline \\ alcove model \end{array}$

Ingredients for (1): we lift $QB(W/W_{\lambda})$ to

► Littelmann's poset of level 0 weights $W_{af} \cdot \lambda \implies$ description of covers;

 $\begin{array}{c|c} Projected \\ level 0 LS paths \end{array} \xrightarrow[]{} & \begin{array}{c} (1) \\ = \end{array} \xrightarrow[]{} & \begin{array}{c} Quantum \\ LS paths \end{array} \xrightarrow[]{} & \begin{array}{c} (2) \\ \hline \hline \hline \\ alcove model \end{array}$

Ingredients for (1): we lift $QB(W/W_{\lambda})$ to

- ► Littelmann's poset of level 0 weights $W_{af} \cdot \lambda \implies$ description of covers;
- ▶ the Bruhat order on W_{af} (parabolic version of "quantum to affine", cf. Peterson '97, Lam–Shimozono '10).

 $\begin{array}{c|c} Projected & (1) & Quantum & (2) & Quantum \\ level 0 LS paths & _ & LS paths & \checkmark & alcove model \end{array}$

Ingredients for (1): we lift $QB(W/W_{\lambda})$ to

- ► Littelmann's poset of level 0 weights $W_{af} \cdot \lambda \implies$ description of covers;
- ▶ the Bruhat order on W_{af} (parabolic version of "quantum to affine", cf. Peterson '97, Lam–Shimozono '10).

Ingredients for (2):

 we study various other properties of the parabolic quantum Bruhat graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example in type A_2 .

$$\mathbf{p} = (1, 2, 2, 1) =$$
; $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1 = (4, 2, 0).$

A $\lambda\text{-chain}$ as a concatenation of $\omega_1\text{-},\,\omega_2\text{-},\,\omega_2\text{-},$ and $\omega_1\text{-chains:}$

 $\Gamma = ((1,2), (1,3) \mid (2,3), (1,3) \mid (2,3), (1,3) \mid (1,2), (1,3)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Example. Let $J = \{1, 2, 3, 6, 7, 8\}$. ((1,2), (1,3) | (2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3)).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Example. Let $J = \{1, 2, 3, 6, 7, 8\}$. ((1,2), (1,3) | (2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3)).

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

Example. Let $J = \{1, 2, 3, 6, 7, 8\}$. ((1,2), (1,3) | (2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3)).

Claim: J is admissible. Indeed, the corresponding path in the quantum Bruhat graph is

The corresponding element in $B^{\otimes p} = B^{1,1} \otimes B^{2,1} \otimes B^{2,1} \otimes B^{1,1}$ represented via column-strict fillings:

$$3 \otimes \frac{2}{3} \otimes \frac{1}{2} \otimes 3.$$

The energy function in arbitrary Lie type

Definition. Given the λ -chain

$$\Gamma = (\beta_1, \ldots, \beta_m),$$

define the height sequence (h_1, \ldots, h_m) by

$$h_i := \#\{j \ge i : \beta_j = \beta_i\}.$$

・ロト・日本・モート モー うへぐ

The energy function in arbitrary Lie type

Definition. Given the λ -chain

$$\Gamma = (\beta_1, \ldots, \beta_m),$$

define the height sequence (h_1, \ldots, h_m) by

$$h_i := \#\{j \ge i : \beta_j = \beta_i\}.$$

Then, for $J \in \mathcal{A}(\lambda)$, define the statistic

$$\operatorname{height}(J) := \sum_{j \in J^-} h_j$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The energy function in arbitrary Lie type

Definition. Given the λ -chain

$$\Gamma = (\beta_1, \ldots, \beta_m),$$

define the height sequence (h_1, \ldots, h_m) by

$$h_i := \#\{j \ge i : \beta_j = \beta_i\}.$$

Then, for $J \in \mathcal{A}(\lambda)$, define the statistic

$$\operatorname{height}(J) := \sum_{j \in J^-} h_j.$$

Theorem. (LNSSS) Given $J \in \mathcal{A}(\lambda)$, which is identified with $B^{\otimes \mathbf{p}}$, we have

$$D_B(J) = -\mathrm{height}(J).$$

Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_1$ in type A_2 .

Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2 .

We considered the λ -chain Γ and $J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma)$:

Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2 .

We considered the λ -chain Γ and $J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma)$:

$$\Gamma = (\underline{(1,2)}, \underline{(1,3)} | \underline{(2,3)}, (1,3) | (2,3), \underline{(1,3)} | \underline{(1,2)}, \underline{(1,3)}), (h_i) = (2, 4 | 2, 3 | 1, 2 | 1, 1).$$

We have

 $\operatorname{height}(J) = 2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2 .

We considered the λ -chain Γ and $J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma)$:

$$\Gamma = ((\underline{1,2}), (\underline{1,3}) | (\underline{2,3}), (1,3) | (2,3), (\underline{1,3}) | (\underline{1,2}), (\underline{1,3})), (h_i) = (2, 4 | 2, 3 | 1, 2 | 1, 1).$$

We have

$$\operatorname{height}(J) = 2.$$

Remarks. (1) In type A, the height statistic translates into the Lascoux–Schützenberger charge statistic on Young tableaux (L.).
Example. Consider the running example: $\lambda = \omega_1 + \omega_2 + \omega_2 + \omega_1$ in type A_2 .

We considered the λ -chain Γ and $J = \{1, 2, 3, 6, 7, 8\} \in \mathcal{A}(\Gamma)$:

$$\Gamma = (\underline{(1,2)}, \underline{(1,3)} | \underline{(2,3)}, (1,3) | (2,3), \underline{(1,3)} | \underline{(1,2)}, \underline{(1,3)}), (h_i) = (2, 4 | 2, 3 | 1, 2 | 1, 1).$$

We have

$$\operatorname{height}(J) = 2.$$

Remarks. (1) In type A, the height statistic translates into the Lascoux–Schützenberger charge statistic on Young tableaux (L.).

(2) A similar charge statistic was defined in type C (L. and Schilling), and one is being developed in type B (Briggs and L.).