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Theorem (LNSSS 2012)

For all untwisted affine root systems,

Px(x; q,0) = Xi(x; q),

where X)(x; q) is the (graded) character of a tensor product of
one-column Kirillov-Reshetikhin (KR) modules.
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computational applications

energy function combinatorial R—matrix
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Kashiwara's crystals

Colored directed graphs encoding certain representations V of the
quantum group Ug(g) as g — 0.

Kashiwara (crystal) operators are modified versions of the
Chevalley generators (indexed by the simple roots): &, f;.

Fact. V has a crystal basis B (vertices) = in the limit ¢ — 0
we have

f,& : B— BL{0},

fb=b <= @b=b < b-b.
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Kirillov—Reshetikhin (KR) crystals

Correspond to certain finite-dimensional representations (not
highest weight) of affine Lie algebras g.

The corresponding crystals have arrows ?0,?1, e

Labeled by p x g rectangles, so they are denoted BP9. We only
consider column shapes BP!.
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Tensor products of KR crystals

Definition. Given a composition p = (p1, p2, - -.), let
B¥ =pPrloBrle . ...
The crystal operators are defined on B®P by a tensor product rule.

Fact. B®P is connected (with the 0-arrows).
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Models for KR crystals: type AEBl (sl,)

Fact. We have as classical crystals (without the 0-arrows):
BP! ~ B(wp), where w, =(1,...,1,0,...,0) = (1P).
The vertices of this crystal are labeled by strictly increasing fillings
of the Young diagram/column (1P) with 1,..., n.

The action of the crystal operators:

o (AR
1522  p—-125np5%1
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Models for KR crystals: types B,(,l), C,Sl), D,Sl)

Fact. There are more involved type-specific models (based on
Kashiwara—Nakashima columns).

Goal. Uniform model for all types Af,ljl— G2(1), based on the
corresponding finite root systems A,_1— Go.
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The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components
(no 0-arrows) of B = B®P (Schilling and Tingley).

More precisely, Dg : B — Zx> satisfies the following conditions:
> it is constant on classical components (0-arrows removed);

> it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the
combinatorial data associated with a crystal vertex (type A:
Lascoux—Schiitzenberger charge statistic).
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Setup: finite root systems

Root system & C V =R".

Reflections s, a € .

Example. Type Ap_1.
V=(e1+...+e)tinR"=(e1,...,e,) (r=n—1).

O={aj=¢ci—¢cj=(i,j) : 1<i#j<n}.
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The Weyl group
W=(sy : aed).

Length function: ¢(w).
Example. Type Ap_1.
W =S,, s—¢ = (i,j) is the transposition t;; .

The quantum Bruhat graph on W is the directed graph with
labeled edges
w - ws,

where

l(wsy) = ¢(w)+1 (Bruhat graph), or

Uwsy) = €(w) —2ht(a”)+1  (ht(a”) = (p,a")).
Comes from the multiplication of Schubert classes in the quantum
cohomology of flag varieties QH*(G/B) (Fulton and Woodward).
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Quantum Bruhat graph for Ss3:

321

231

213
a12




The quantum alcove model

Definition. Given a dominant weight A\, we associate with it a
sequence of roots, called a A-chain:

r:(ﬁl"'wﬁm)'



The quantum alcove model

Definition. Given a dominant weight A\, we associate with it a
sequence of roots, called a A-chain:

r:(ﬁl’-'wﬁm)'

Fact. A A-chain corresponds to a sequence of alcoves.



The quantum alcove model

Definition. Given a dominant weight A\, we associate with it a
sequence of roots, called a A-chain:

r:(ﬁl’-'wﬁm)'

Fact. A A-chain corresponds to a sequence of alcoves.

Let r; .= SB; -



The quantum alcove model

Definition. Given a dominant weight A\, we associate with it a
sequence of roots, called a A-chain:

M= (P1,---,0m)-

Fact. A A-chain corresponds to a sequence of alcoves.
Let r; .= SB; -
We consider subsets of positions in '

J=(1<...<js) C{1,....,m}.



The quantum alcove model

Definition. Given a dominant weight A\, we associate with it a
sequence of roots, called a A-chain:

M= (P1,---,0m)-

Fact. A A-chain corresponds to a sequence of alcoves.

Let r; := sg,.

We consider subsets of positions in '
J=(<...<Jjs) CA{L,...,m}.

We identify J with the chain in W

wo=1Id, ..., wii=rj...r, ..., Ws= Wend-
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ld=wy 2w —2 ... =2 wy.
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The quantum alcove model (cont.)

Definition. A subset J = {ji < jo» < ... <Js} is admissible if we
have a path in the quantum Bruhat graph

Biy B; -
ld = wy —2 wg —2 .. BJS — Ws.
A position j; is called a positive (resp. negative) folding if

Bj;
Wi_1 — W;

is an up (resp. down) step.
Let
J = {j, Wi > W,'}.

Let A(T") = A(X) be the collection of all admissible subsets.

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f1,. .., f, and fo on A()).
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The main result

Theorem. (LNSSS) Given p = (p1, p2,...) and an arbitrary Lie
type, let

A=wp +wp, +....

The (combinatorial) crystal A(\) is isomorphic to the tensor
product of KR crystals B&P.
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Proof sketch

Projected D Quantum 2 Quantum
_—

level O LS paths = LS paths <> acovemodd

Level 0 LS (Lakshmibai-Seshadri) paths: certain piecewise-linear
paths with “directions” in Wy - .

Projected level 0 LS paths: project to the finite weight lattice.
Fact. B® realized in terms of projected level 0 LS paths

(Naito-Sagaki '03-'08).

Quantum LS paths: the “directions” in W - X\ ~ W /W, are related
by paths in the parabolic quantum Bruhat graph QB(W/W,).
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Ingredients in the proof

Projected Q Quantum 2 Quantum
level O LS paths > LSpaths <> acove model

Ingredients for (1): we lift QB(W/W,) to
> Littelmann's poset of level 0 weights Wt - A = description

of covers;

» the Bruhat order on W, (parabolic version of “quantum to
affine”, cf. Peterson '97, Lam-Shimozono '10).

Ingredients for (2):

» we study various other properties of the parabolic quantum
Bruhat graph.
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Example in type As.

p:(1,2,2,1):’ ‘; A=wi +wr+wr w1 =(4,2,0).

A A-chain as a concatenation of wi-, ws-, wy-, and wy-chains:

r=0@2), 1,3)1(23), (1,3) ] (23), (1,3) [ (1,2), (1,3) ).
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Example. Let J ={1,2,3,6,7,8}.

( 1,2, 1,3)[(23), (1,3) [ (23), (1.3) [ (1L,2), (1,3) ).

Claim: J is admissible. Indeed, the corresponding path in the
quantum Bruhat graph is

The corresponding element in B®P = BL! ® B%1 @ B! @ B!
represented via column-strict fillings:

2] _[1
®®®.
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The energy function in arbitrary Lie type

Definition. Given the A-chain
F=(B1,---58m),
define the height sequence (hy, ..., hn) by
hi=#{j>i: Bj=pBi}.
Then, for J € A()\), define the statistic

height(J) := > h;.

jed—

Theorem. (LNSSS) Given J € A()), which is identified with B®P,
we have
Dg(J) = —height(J) .
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Example. Consider the running example: A = w1 + w2 +wa +wq in
type As.

We considered the A-chain I and J ={1,2,3,6,7,8} € A(l):

M= ((12),(13)](23).(13) [ (23),(1.3) [ (1,2),(1,3) ),
(h)=( 2, 4 | 2 3 | 1, 2 | 1, 1 ).

We have
height(J) = 2.

Remarks. (1) In type A, the height statistic translates into the
Lascoux—Schiitzenberger charge statistic on Young tableaux (L.).

(2) A similar charge statistic was defined in type C (L. and
Schilling), and one is being developed in type B (Briggs and L.).



