Particles jumping on a cycle, a process on permutations and words (multi-TASEP on a ring)

Svante Linusson

Kungl Tekniska Högskolan
Sweden
FPSAC, June 28, 2013

Introduction

$2 \quad 1 \quad 7$
 $6 \quad 5$
 43

Given a cyclic permutation σ.

Introduction

```
2 1 7
```

$6 \quad 5$

438
Given a cyclic permutation σ. Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

2^{2}	1	7
6		5
4		
	3	8

Given a cyclic permutation σ. Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

Given a cyclic permutation σ. Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

Given a cyclic permutation σ.
Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.
We will study the following process: At each time step chose one of the numbers uniformly at random. If it can jump it will jump.

Introduction

Given a cyclic permutation σ.
Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.
We will study the following process: At each time step chose one of the numbers uniformly at random. If it can jump it will jump.

This is a TASEP (Totally Asymetric Simple Exclussion Process).

Example $n=3$

Figure : The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Let p_{σ} be the probability of σ at stationarity.

Figure : The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.

Figure : The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Figure : The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get $p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.

Example $n=3$

Figure : The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get $p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.

Solving this gives
$p_{321}=\frac{1}{9}, p_{123}=\frac{2}{9}$.

Example $n=3$

Figure : The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get
$p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.
Solving this gives
$p_{321}=\frac{1}{9}, p_{123}=\frac{2}{9}$.

$$
\begin{aligned}
& \text { For } n=4 \text { we get } \\
& p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96} \\
& p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96} \\
& p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}
\end{aligned}
$$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $\sigma_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{\sigma_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $\sigma_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{\sigma_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$
Theorem (Ferrari-Martin '07)

$$
p_{\sigma_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \cdots \frac{1}{\prod_{i}\binom{n}{i}}
$$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $\sigma_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{\sigma_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$
Theorem (Ferrari-Martin '07)

$$
p_{\sigma_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \cdots \frac{1}{\prod_{i}\binom{n}{i}}
$$

Theorem (Aas '12, Conjectured by Lam '11)

$$
p_{\text {id }}=\frac{1}{2}, \frac{2}{9}, \frac{9}{96}, \frac{96}{2500}, \ldots \frac{\prod_{i}\binom{n-1}{i}}{\prod_{i}\binom{n}{i}}
$$

Some motivation (Lam)

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1} s_{0}$. The thick lines divide V into Weyl chambers.

Some motivation (Lam)

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1} s_{0}$. The thick lines divide V into Weyl chambers.

Theorem (Lam '11)

The probability that the reduced walk get stuck in chamber σ is p_{σ}. The walk will almost surely tend to a certain direction in that chamber.

Some motivation (Lam)

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1} s_{0}$. The thick lines divide V into Weyl chambers.

Theorem (Lam '11)

The probability that the reduced walk get stuck in chamber σ is p_{σ}. The walk will almost surely tend to a certain direction in that chamber.

Generalization to multipermutations

Fix a vector $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$.
We study the TASEP on the cycle of length $N=\sum_{i} m_{i}$ where there are m_{i} particles of class i.

Generalization to multipermutations

Fix a vector $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$.
We study the TASEP on the cycle of length $N=\sum_{i} m_{i}$ where there are m_{i} particles of class i.
Example when $\boldsymbol{m}=(2,1,2)$:

Multiline queues (Ferrari-Martin '07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.

Multiline queues (Ferrari-Martin '07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin '07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

Multiline queues (Ferrari-Martin ’07)

A multiline queue (mlq) is an $n \times N$-array which has $m_{1}+m_{2}+\cdots+m_{i}$ particles on row i.
Example when $\mathbf{m}=(2,1,2,2,2)$

This gives a map $B: M L Q_{\mathbf{m}} \rightarrow$ Multipermutations with content \mathbf{m}.

Multiline queues (Ferrari-Martin '07)

There are $Z_{\mathbf{m}}:=\prod_{i=1}^{n}\binom{N}{m_{1}+\cdots+m_{i}}$ multiline queues.

Multiline queues (Ferrari-Martin ’07)

There are $Z_{\mathbf{m}}:=\prod_{i=1}^{n}\binom{N}{m_{1}+\cdots+m_{i}}$ multiline queues.
Theorem (Ferrari-Martin '07)
There is a Markov chain $\Omega_{\mathrm{m}}^{F M}$ on the multiline queues with uniform stationary distribution and every row behaves as a multi-TASEP on the ring.

Multiline queues (Ferrari-Martin '07)

There are $Z_{\mathbf{m}}:=\prod_{i=1}^{n}\binom{N}{m_{1}+\cdots+m_{i}}$ multiline queues.
Theorem (Ferrari-Martin '07)
There is a Markov chain $\Omega_{\mathrm{m}}^{F M}$ on the multiline queues with uniform stationary distribution and every row behaves as a multi-TASEP on the ring.

Corollary

For any permutation σ we have

$$
p_{\sigma}=\frac{\#\{q: B(q)=\sigma\}}{Z_{\mathbf{m}}}
$$

$\mathbf{m}=(1,1,1)$

$\mathbf{m}=(1,1,1)$

Inhomogenous TASEP

Lam and Williams suggested:
Let particles of class i jump with probability X_{i}.
The stationary probabilities p_{σ} are then rational functions in the x_{i} 's.

Inhomogenous TASEP

Lam and Williams suggested:
Let particles of class i jump with probability x_{i}.

The stationary probabilities p_{σ} are then rational functions in the x_{i} 's.

Normalize by setting
$p_{\sigma_{0}}=x_{1}^{z_{2}+\cdots+z_{n-1}} x_{2}^{z_{3}+\cdots+z_{n-1}} \ldots x_{n-2}^{z_{n-1}}$, where $z_{j}:=m_{j+1}+\cdots+m_{n}$, i.e. the number of vacancies on row j.

Inhomogenous TASEP

$$
\text { Example: } \mathbf{m}=(2,1,2)
$$

Lam and Williams suggested:
Let particles of class i jump with probability x_{i}.
The stationary probabilities p_{σ} are then rational functions in the x_{i} 's.

Normalize by setting
$p_{\sigma_{0}}=x_{1}^{z_{2}+\cdots+z_{n-1}} x_{2}^{z_{3}+\cdots+z_{n-1}} \ldots x_{n-2}^{z_{n-1}}$, where $z_{j}:=m_{j+1}+\cdots+m_{n}$, i.e. the number of vacancies on row j.

Inhomogenous TASEP

Conjecture (Lam-Williams '12)

(1) p_{σ} is a polynomial, for all multipermutations σ.
(2) p_{σ} has positive integer coefficients, for all multipermutations σ.
(3) p_{σ} is Schubert positive for all permuations σ.

Inhomogenous TASEP

Conjecture (Lam-Williams '12)

(1) p_{σ} is a polynomial, for all multipermutations σ.
(2) p_{σ} has positive integer coefficients, for all multipermutations σ.
(3) p_{σ} is Schubert positive for all permuations σ.

The first two parts have been proved $n=3$, Ayyer \& L.

Inhomogenous TASEP

Conjecture (Lam-Williams '12)

(1) p_{σ} is a polynomial, for all multipermutations σ.
(2) p_{σ} has positive integer coefficients, for all multipermutations σ.
(3) p_{σ} is Schubert positive for all permuations σ.

The first two parts have been proved $n=3$, Ayyer \& L.
general n, by Arita \& Mallick and by L. \& Martin
Gives a monomial as stationary weight to each mlq.

Inhomogenous TASEP

Conjecture (Lam-Williams '12)

(1) p_{σ} is a polynomial, for all multipermutations σ.
(2) p_{σ} has positive integer coefficients, for all multipermutations σ.
(3) p_{σ} is Schubert positive for all permuations σ.

The first two parts have been proved $n=3$, Ayyer \& L.
general n, by Arita \& Mallick and by L. \& Martin
Gives a monomial as stationary weight to each mlq.
The third statement is open.

Inhomogenous TASEP, proof idea

Inhomogenous TASEP, proof idea

Correlations

Return to case of permutations, all $x_{i}=1 / n$.
Let $c_{i, j}=\operatorname{Prob}(\sigma=i j \ldots)$.

Correlations

Return to case of permutations, all $x_{i}=1 / n$.
Let $c_{i, j}=\operatorname{Prob}(\sigma=i j \ldots)$.
Theorem (Ayyer \& Linusson '13+)
For any $1 \leq i, j \leq n$, we have

$$
c_{i, j}= \begin{cases}\frac{i-j}{n\binom{n}{2}}, & \text { if } i>j \\ 0, & \text { if } i=j \\ \frac{1}{n^{2}}+\frac{i(n-i)}{n^{2}(n-1)}, & \text { if } i=j-1 \\ \frac{1}{n^{2}}, & \text { if } i<j-1\end{cases}
$$

Correlations

Return to case of permutations, all $x_{i}=1 / n$.
Let $c_{i, j}=\operatorname{Prob}(\sigma=i j \ldots)$.
Theorem (Ayyer \& Linusson '13+)
For any $1 \leq i, j \leq n$, we have

$$
c_{i, j}= \begin{cases}\frac{i-j}{n\binom{n}{2}}, & \text { if } i>j \\ 0, & \text { if } i=j \\ \frac{1}{n^{2}}+\frac{i(n-i)}{n^{2}(n-1)}, & \text { if } i=j-1 \\ \frac{1}{n^{2}}, & \text { if } i<j-1\end{cases}
$$

OPEN: Find conceptual proof of the independence $1 / n^{2}$.

Correlations

Return to case of permutations, all $x_{i}=1 / n$.
Let $c_{i, j}=\operatorname{Prob}(\sigma=i j \ldots)$.
Theorem (Ayyer \& Linusson '13+)
For any $1 \leq i, j \leq n$, we have

$$
c_{i, j}= \begin{cases}\frac{i-j}{n\binom{n}{2}}, & \text { if } i>j \\ 0, & \text { if } i=j \\ \frac{1}{n^{2}}+\frac{i(n-i)}{n^{2}(n-1)}, & \text { if } i=j-1 \\ \frac{1}{n^{2}}, & \text { if } i<j-1\end{cases}
$$

OPEN: Find conceptual proof of the independence $1 / n^{2}$. These correlations prove a conjecture of Lam about random n-cores.

n-cores

In an integer partition, the hook length is the number of squares to the left or below a given square.

n-cores

In an integer partition, the hook length is the number of squares to the left or below a given square.

An integer partition is called an n-core if no hooks have length n.

n-cores

In an integer partition, the hook length is the number of squares to the left or below a given square.

An integer partition is called an n-core if no hooks have length n.
It follows from the work of Lam that determining the limit shape of a random n-core is the same as determining the direction φ of the reduced random walk in \tilde{A}_{n-1}.

Theorem (Ayyer \& L., Conjectured by Lam)

$\varphi=$ the sum of all positive roots.

n-cores

A large 4-core and the limiting shape.

$(\bmod n)$ jump process

Example $n=3$.

$(\bmod n)$ jump process

Example $n=3$.

$\bigcirc \bigcirc \bigcirc$

$(\bmod n)$ jump process

Example $n=3$.

Long distance correlations

Let $d_{i, j}(k):=$ probability that first letter is i and the k :th letter is j.

Long distance correlations

Let $d_{i, j}(k):=$ probability that first letter is i and the k :th letter is j.
Note $c_{i, j}=d_{i, j}(2)$.

Long distance correlations

Let $d_{i, j}(k):=$ probability that first letter is i and the k :th letter is j.
Note $c_{i, j}=d_{i, j}(2)$.
Lemma (Ayyer \& L.)
For $1 \leq i<j \leq n$ and $i \leq j-k$ we have

$$
d_{i, j}(k)=\frac{1}{n^{2}}
$$

Long distance correlations

Let $d_{i, j}(k):=$ probability that first letter is i and the k :th letter is j.
Note $c_{i, j}=d_{i, j}(2)$.
Lemma (Ayyer \& L.)
For $1 \leq i<j \leq n$ and $i \leq j-k$ we have

$$
d_{i, j}(k)=\frac{1}{n^{2}}
$$

Wanted: Conceptual proof.

Three point correlation

Let $c_{i, j, k}=\operatorname{Prob}(\sigma=i j k \ldots)$.

Three point correlation

Let $c_{i, j, k}=\operatorname{Prob}(\sigma=i j k \ldots)$.
Conjecture (Ayyer \& Linusson)

$$
c_{i, j, k}=\frac{1}{n^{3}}, \quad \text { if } i<j-1<k-2 .
$$

I thank my collaborators Arvind Ayyer and James Martin.

I thank my collaborators Arvind Ayyer and James Martin. I thank Erik Aas, Omar Angel, Thomas Lam, Greta Panova, Anne Schilling and Lauren Williams for fruitful discussions.

I thank my collaborators Arvind Ayyer and James Martin. I thank Erik Aas, Omar Angel, Thomas Lam, Greta Panova, Anne Schilling and Lauren Williams for fruitful discussions.

Merci à tous pour votre attention!

