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Overview

Goal: Generalize algebraic graph theory. . .

definition and enumeration of spanning trees

combinatorial Laplacian

critical group

chip-firing / sandpile model

lattices of cuts and flows

. . . to higher-dimensional generalizations of graphs
(i.e., simplicial/cell complexes)

Tools: linear algebra, homological algebra, algebraic topology

2 / 24



Incidence and Laplacian Matrices

G = (V ,E ): connected, loopless graph; |V | = n; edges oriented arbitrarily

(Signed) incidence matrix ∂ = [∂ve ]v∈V , e∈E

∂ve =


1 if v = head(e)

−1 if v = tail(e)

0 otherwise

Laplacian matrix L = ∂∂∗ = [`vw ]v ,w∈V

`vw =

{
deg(v) = # incident edges if v = w

−(# edges joining v ,w) if v 6= w

Note: rank ∂ = rank L = n − 1.
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The Critical Group

Definition

The critical group K (G ) is the torsion summand of coker L (= Zn/ im L).

Alternatively, if Li is the reduced Laplacian obtained from L by deleting
the i th row and column, then K (G ) = coker Li .

Example: G = K3; L =

 2 −1 −1
−1 2 −1
−1 −1 2

; Li =

[
2 −1
−1 2

]

coker L = Z3/colspan(L) ∼= Z⊕ Z/3Z︸ ︷︷ ︸
K(G)

Matrix-Tree Theorem: |K (G )| = det Li = # of spanning trees of G
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The Chip-Firing Game (a.k.a. the Sandpile Model)

Chip-firing game on G:

Choose one vertex q as the bank.

Each vertex v 6= q starts with cv dollars euros

If cv ≥ deg(v), then v fires by transferring 1c along each incident
edge

When no non-bank vertices can fire, the configuration is stable.
Then, and only then, the bank fires.

Each starting configuration evolves to exactly one critical (= stable
and recurrent) configuration.

Punchline: The critical configurations correspond bijectively to the
elements of the critical group K (G ).
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The Sandpile Model (a.k.a. the Chip-Firing Game)

The chip-firing game/sandpile model has many wonderful properties!

Studied extensively in probability, statistical physics [Dhar,
Bak–Tang–Wiesenfeld. . . ; survey Levine–Propp, Notices AMS 2010]

Gen. func. for critical configs is a Tutte-Grothendieck invariant
[Merino]

Critical configurations are in bijection with G -parking functions and
regions of the G -Shi hyperplane arrangement [Hopkins–Perkinson]

Gröbner bases, toric ideals [Cori–Rossin–Salvy, Perkinson–Wilmes,
Dochtermann–Sanyal, Shokrieh–Mohammadi]

Graph : Riemann surface :: Critical group : Picard group
[Bacher–de la Harpe–Nagnibeda, Baker–Norine]
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Cut and Flow Spaces

Definition

The cut space and flow space of G are

Cut(G ) = im ∂∗ ⊆ RE , Flow(G ) = ker ∂ ⊆ RE .

These space are orthogonal complements, and

dim Cut(G ) = |V | − 1, dim Flow(G ) = |E | − |V |+ 1.

−1

A cut vector A flow vector

−1

0 0 1

1
−1

0

0

−1
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Bases of Cut and Flow Spaces

Proposition

Let T be a spanning tree of G.

1 For each edge e ∈ T , the graph with edges T \ e has two
components. The corresponding cut vectors form a basis for Cut(G ).

2 For each edge e 6∈ T , there is a unique cycle in T ∪ e. The signed
characteristic vectors of all such cycles form a basis for Flow(G ).

3 These are in fact Z-module bases for the cut lattice
C(G ) = Cut(G ) ∩ ZE and the flow lattice F(G ) = Flow(G ) ∩ ZE .

(General matroid theory predicts bases of the forms (1) and (2), but not
the combinatorial interpretation of their coefficients.)
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Cuts, Flows and The Critical Group

Theorem (Bacher, de la Harpe, Nagnibeda)

For every graph G , there are isomorphisms

K (G ) ∼= F ]/F ∼= C]/C ∼= ZE/(C ⊕ F).

Here L] means the dual of a lattice L ⊆ Zn:

L] = {w ∈ L ⊗ R | v · w ∈ Z ∀v ∈ L}
= Hom(L,Z) (via standard dot product)

For instance, if v = (1, 1, . . . , 1) ∈ Zn then (Zv)] = 1
nZv.
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Example: G = K3

2

G

1

3

∂ =


12 13 23

1 −1 −1 0
2 1 0 −1
3 0 1 1

 L =


1 2 3

1 2 −1 −1
2 −1 2 −1
3 −1 −1 2



Flow lattice Cut lattice

F = ker ∂ = 〈(1,−1, 1)〉 C = im ∂∗ = 〈(1, 0,−1), (0, 1, 1)〉
F ] =

〈
(13 ,−

1
3 ,

1
3)
〉

C] =
〈
(23 ,

2
3 ,−

1
3), (13 ,

2
3 ,

1
3)
〉

Here, F ]/F = C]/C = Z3/(C ⊕ F) = K (G ) = Z/3Z
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Higher Dimension

Central Problem: What happens to the theory of cuts, flows, critical
groups, sandpiles/chip-firing, . . . when we replace the graph G with
something more general?

Topologically, a graph is a 1-dimensional simplicial (multi)complex — it
consists of edges and vertices. Can we develop the theory for general
combinatorial/topological spaces?
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Cell Complexes

Cell complexes (= CW complexes) are higher-dimensional
generalizations of graphs (like simplicial complexes, but even more
general).

Examples: graphs, simplicial complexes, polytopes, polyhedral fans, . . .

Rough definition: A cell complex X consists of cells (homeomorphic
copies of Rk for various k) together with attaching maps

∂k(X ) : Ck(X )→ Ck−1(X )

where Ck(X ) = free Z-module generated by k-dimensional cells. (Note:
∂k∂k+1 = 0 for all k .) The integer ∂k(X )ρ,σ specifies the multiplicity with
which the k-cell σ is attached to the (k − 1)-cell ρ.

— Attaching maps can be topologically complicated, but the only data we
need is the cellular chain complex · · · → Ck(x)→ Ck−1(X )→ · · ·
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Cellular Spanning Trees and Laplacians

Definition

A cellular spanning tree (CST) of X d is a subcomplex Y ⊆ X such that
Y ⊇ X(d−1) and any of these two conditions hold:

H̃d(Y ,Q) = 0;

H̃d−1(Y ,Z) is finite;

|Yd | = |Xd | − β̃d(X ) + β̃k−1(X ) (where βi (X ) = dimQ H̃i (X ,Q))

The “right” count of CSTs is

τ(X ) :=
∑

CSTs Y⊆X
|H̃d−1(Y ,Z)|2

which can be obtained as a determinant of a reduced Laplacian [DKM
’09,’11, Lyons ’11, Catanzaro-Chernyak-Klein ’12]
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The Cellular Critical Group

Definition

The critical group of a d-dimensional cell complex X is

K (X ) = ker ∂d−1/ im ∂d∂
∗
d .

Fact: K (X ) is finite abelian of order τ(X ), and can also be expressed in
terms of the reduced Laplacian [DKM ’13]

Questions:

How can K (X ) be expressed in terms of cuts and flows?

What are cellular cuts and flows in the first place?

Is there a cellular chip-firing game for which elements of K (X )
correspond to critical states?

15 / 24



Cellular Cuts and Flows: Intuition

Example of flow vector: find a non-contractible d-sphere in X d and
orient all its cells consistently
Example of cut vector: poke a line through X d and pick an orientation
around the line

CutFlow

If d = 1, these pictures reduce to the usual cuts and flows in graphs.
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Cellular Cuts and Flows

Definition

Let X be a d-dimensional cell complex with n facets (max-dim cells).

Cut(X ) := im ∂∗d(X ) ⊆ Rn C(X ) := Cut(X ) ∩ Zn

Flow(X ) := ker ∂d(X ) ⊆ Rn F(X ) := Flow(X ) ∩ Zn

Theorem (DKM ’13+)

Fix a cellular spanning tree Y ⊂ X .

1 There are natural R-bases of Cut(X ) and Flow(X ) indexed by the
facets contained / not contained in Y .

2 The basis vector for each facet is supported on its fundamental
cocircuit / circuit. Coeff’ts are sizes of certain homology groups.

3 Under certain conditions on H̃d−1(Y ): Z-bases for C(X ), F(X ).
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Cellular Cuts and Flows

Question

Do the Bacher-de la Harpe-Nagnibeda isomorphisms

K (X ) ∼= F ]/F ∼= C]/C ∼= Zn/(C ⊕ F)

still hold if X is an arbitrary cell complex?

Answer: Not quite.
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Cellular Cuts and Flows

The Bacher–de la Harpe–Nagnibeda isomorphisms do not hold in general.

Example: X = RP2: cell complex with one vertex, one edge, and one
2-cell, and cellular chain complex

C2 = Z ∂2 = [2]−−−−−→ C1 = Z [∂1 = 0]−−−−−→ C0 = Z

C/C] ∼= Z/4Z because C = im ∂∗2 = 2Z and so C] = 1
2Z.

F ]/F = 0 because F = ker ∂2 = 0.

Z/(C ⊕ F) ∼= Z/2Z.

The culprit is probably torsion (note that H̃1(X ) = Z/2Z).

In fact K (G ) ∼= Z/4Z. What is special about cuts?
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The Critical Group via Cuts and Flows

Theorem (DKM ’13+)

For any cell complex X , there are short exact sequences

0 → Zn/(C ⊕ F) → K (X ) ∼= C]/C → T(H̃d−1(X )) → 0

and

0 → T(H̃d−1(X )) → Zn/(C ⊕ F) → K ∗(X ) ∼= F ]/F → 0.

T(A) means the torsion summand of A (i.e., T(A) is finite and
A = T(A)⊕ Zsomething)

“0→ A→ B → C → 0 short exact” means “C ∼= B/A”

For graphs, these exact sequences reduce to the Bacher-de la
Harpe-Nagnibeda isomorphisms (because torsion terms are trivial)
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The Cocritical Group

To define the cocritical group K ∗(X ), first construct an acyclization Ω of
X by adjoining (d + 1)-cells so as to eliminate all d-homology.

X Ω

Then, K ∗(X ) = Cd+1(Ω;Z)/ im ∂∗d+1∂d+1 = T(coker Ldu
d+1(Ω)).

Compare K (X ) = ker ∂d−1/ im ∂d∂
∗
d = T(coker Lud

d−1(Ω))

= T(coker Lud
d−1(X )).
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Open Problems

Chip-firing/sandpiles for cell complexes?

(We have some ideas. Big problems: (a) torsion and (b) no
“conservation of matter” for arbitrary cell complexes.)

Riemann-Roch theory in higher dimension?

(Baker–Norine: graph-theoretic Riemann-Roch theorem in which
K (G ) stands in for the Picard group of a Riemann surface.)

Combinatorial commutative algebra connection?

(Sandpile configurations = monomials; toppling = reduction modulo
binomial Gröbner basis, in analogy to Cori–Rossin–Salvi)

Cellular max-flow/min-cut theorem?
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Merci! Thanks!

Thank you for listening!

Merci de votre attention!
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