Matroids over a ring

Alex Fink^1 and $\textbf{Luca}\ \textbf{Moci}^2$

 1 North Carolina State \rightarrow Queen Mary, U London 2 Marie Curie Fellow of INdAM \rightarrow U Paris 7 - Diderot

FPSAC 2013

A matroid captures the linear dependencies of a list of vectors.

The axioms can be given in several equivalent ways: for example, *independent sets*, or a *rank function*.

Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

イロト イポト イヨト イヨト

Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

イロト イポト イヨト イヨト

Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

ヘロト 人間 ト くほ ト くほ トー

Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom.

When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

・ロト ・聞ト ・ヨト ・ヨト

Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

・ロト ・聞ト ・ヨト ・ヨト

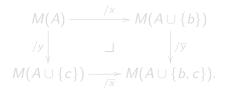
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is *richer* than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only *one* simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R = \mathbb{Z}$ and $R = \mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.

In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

・ロト ・四ト ・ヨト ・ヨト

Let *R* be a commutative ring and *E* be a finite set. A matroid over *R* on the ground set *E* is a function *M* assigning to each subset $A \subseteq E$ a finitely-generated *R*-module *M*(*A*) satisfying the following axiom: For any $A \subseteq E$ and $b, c \in E \setminus A$, there exist $x = x(b, c) \in M(A)$ and $y = y(b, c) \in M(A)$

such that there is a diagram



|山田 | 小田 | (田)

Definition

Let *R* be a commutative ring and *E* be a finite set. A matroid over *R* on the ground set *E* is a function *M* assigning to each subset $A \subseteq E$ a finitely-generated *R*-module M(A)satisfying the following axiom: For any $A \subseteq E$ and $b, c \in E \setminus A$, there exist $x = x(b, c) \in M(A)$ and $y = y(b, c) \in M(A)$ such that there is a diagram

Fundamental example: "vector configurations" in an *R*-module. Given a f.g. *R*-module *N* and a list $X = x_1, \ldots, x_n$ of elements of *N*, we have a matroid M_X associating to $A \subseteq X$ the quotient

$$M_X(A) = N \Big/ \left(\sum_{x \in A} Rx \right)$$

For each $x_i \in X$ there is a quotient map

$$M_X(A) \stackrel{/\overline{x_i}}{\longrightarrow} M_X(A \cup \{x_i\})$$

and this system of maps obviously satisfies the axiom.

We say that a matroid *M* over *R* is realizable if it actually comes from such a list.

Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an *R*-module. Given a f.g. *R*-module *N* and a list $X = x_1, \ldots, x_n$ of elements of *N*, we have a matroid M_X associating to $A \subseteq X$ the quotient

$$M_X(A) = N \Big/ \left(\sum_{x \in A} R_x \right).$$

For each $x_i \in X$ there is a quotient map

$$M_X(A) \stackrel{/\overline{x_i}}{\longrightarrow} M_X(A \cup \{x_i\})$$

and this system of maps obviously satisfies the axiom.

We say that a matroid *M* over *R* is realizable if it actually comes from such a list.

Of course not all matroids over *R* are realizable!

Realizability

Fundamental example: "vector configurations" in an *R*-module. Given a f.g. *R*-module *N* and a list $X = x_1, \ldots, x_n$ of elements of *N*, we have a matroid M_X associating to $A \subseteq X$ the quotient

$$M_X(A) = N \Big/ \left(\sum_{x \in A} R_x \right).$$

For each $x_i \in X$ there is a quotient map

$$M_X(A) \stackrel{/\overline{x_i}}{\longrightarrow} M_X(A \cup \{x_i\})$$

and this system of maps obviously satisfies the axiom.

We say that a matroid *M* over *R* is realizable if it actually comes from such a list.

Of course not all matroids over *R* are realizable!

Realizability

Fundamental example: "vector configurations" in an *R*-module. Given a f.g. *R*-module *N* and a list $X = x_1, \ldots, x_n$ of elements of *N*, we have a matroid M_X associating to $A \subseteq X$ the quotient

$$M_X(A) = N \Big/ \left(\sum_{x \in A} R_x \right).$$

For each $x_i \in X$ there is a quotient map

$$M_X(A) \stackrel{/\overline{x_i}}{\longrightarrow} M_X(A \cup \{x_i\})$$

and this system of maps obviously satisfies the axiom.

We say that a matroid M over R is realizable if it actually comes from such a list.

Of course not all matroids over R are realizable!

Recall that in a classical matroid the corank cork(A) of a set A is equal to rk(E) - rk(A), where rk(E) is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K} , then dim M(A) is the corank of A in the corresponding classical matroid.

Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K} .

Idea of the proof: we can replace M(A) by its \mathbb{K} -dimension without losing information.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that in a classical matroid the corank cork(A) of a set A is equal to rk(E) - rk(A), where rk(E) is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K} , then dim M(A) is the corank of A in the corresponding classical matroid.

Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K} .

Idea of the proof: we can replace M(A) by its \mathbb{K} -dimension without losing information.

ヘロト 人間 ト 人 ヨト 人 ヨトー

Recall that in a classical matroid the corank cork(A) of a set A is equal to rk(E) - rk(A), where rk(E) is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K} , then dim M(A) is the corank of A in the corresponding classical matroid.

Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K} .

Idea of the proof: we can replace M(A) by its \mathbb{K} -dimension without losing information.

ヘロト 人間 ト 人 ヨト 人 ヨトー

Recall that in a classical matroid the corank cork(A) of a set A is equal to rk(E) - rk(A), where rk(E) is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K} , then dim M(A) is the corank of A in the corresponding classical matroid.

Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K} .

Idea of the proof: we can replace M(A) by its \mathbb{K} -dimension without losing information.

イロン イ理 とく ヨン ト ヨン・

Recall that in a classical matroid the corank cork(A) of a set A is equal to rk(E) - rk(A), where rk(E) is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K} , then dim M(A) is the corank of A in the corresponding classical matroid.

Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K} .

Idea of the proof: we can replace M(A) by its \mathbb{K} -dimension without losing information.

イロン イ理 とく ヨン ト ヨン・

Let M and M' be matroids over R on E and E'. We define their direct sum $M \oplus M'$ on $E \amalg E'$ by

 $(M \oplus M')(A \amalg A') = M(A) \oplus M'(A').$

For $i \in E$, we define two matroids over R on the ground set $E \setminus \{i\}$: the deletion of i in M, denoted $M \setminus i$, by

 $(M \setminus i)(A) = M(A)$

and the contraction of *i* in *M*, denoted $M \setminus i$, by

 $(M/i)(A) = M(A \cup \{i\}).$

When *R* is a Dedekind domain, we can also define a dual matroid *M** having the expected properties (omitted).

If *M* is realizable, $M \setminus i$ and M/i can be realized in the usual way, while M^* can be realized by a generalization of Gale duality, $a \to a \to a$

Alex Fink and Luca Moci

Let M and M' be matroids over R on E and E'. We define their direct sum $M \oplus M'$ on $E \amalg E'$ by

$$(M \oplus M')(A \amalg A') = M(A) \oplus M'(A').$$

For $i \in E$, we define two matroids over R on the ground set $E \setminus \{i\}$: the deletion of i in M, denoted $M \setminus i$, by

$$(M \setminus i)(A) = M(A)$$

and the contraction of *i* in *M*, denoted $M \setminus i$, by

$$(M/i)(A) = M(A \cup \{i\}).$$

When *R* is a Dedekind domain, we can also define a dual matroid *M** having the expected properties (omitted).

If *M* is realizable, $M \setminus i$ and M/i can be realized in the usual way, while M^* can be realized by a generalization of Gale duality, $a \to a \to a$

Alex Fink and Luca Moci

Let M and M' be matroids over R on E and E'. We define their direct sum $M \oplus M'$ on $E \amalg E'$ by

$$(M \oplus M')(A \amalg A') = M(A) \oplus M'(A').$$

For $i \in E$, we define two matroids over R on the ground set $E \setminus \{i\}$: the deletion of i in M, denoted $M \setminus i$, by

$$(M \setminus i)(A) = M(A)$$

and the contraction of *i* in *M*, denoted $M \setminus i$, by

$$(M/i)(A) = M(A \cup \{i\}).$$

When R is a Dedekind domain, we can also define a dual matroid M^* having the expected properties (omitted).

If *M* is realizable, $M \setminus i$ and M/i can be realized in the usual way, while M^* can be realized by a generalization of Gale duality, $a \mapsto a \mapsto a$

Alex Fink and Luca Moci

Let M and M' be matroids over R on E and E'. We define their direct sum $M \oplus M'$ on $E \amalg E'$ by

$$(M \oplus M')(A \amalg A') = M(A) \oplus M'(A').$$

For $i \in E$, we define two matroids over R on the ground set $E \setminus \{i\}$: the deletion of i in M, denoted $M \setminus i$, by

$$(M \setminus i)(A) = M(A)$$

and the contraction of *i* in *M*, denoted $M \setminus i$, by

$$(M/i)(A) = M(A \cup \{i\}).$$

When R is a Dedekind domain, we can also define a dual matroid M^* having the expected properties (omitted).

If *M* is realizable, $M \setminus i$ and M/i can be realized in the usual way, while M^* can be realized by a generalization of Gale duality.

Let $R \to S$ be a map of rings. Then the tensor product $- \otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal m of R, let R_m be the localization of R at m.
 We call M ⊗_R R_m the localization of M at m.
- ② If R is a domain, let Frac(R) be the fraction field of R. Then we call $M \otimes_R Frac(R)$ the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

> < 프 > < 프 >

Let $R \to S$ be a map of rings. Then the tensor product $- \otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m} . We call $M \otimes_R R_{\mathfrak{m}}$ the localization of M at \mathfrak{m} .
- ② If R is a domain, let Frac(R) be the fraction field of R. Then we call $M \otimes_R Frac(R)$ the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

Let $R \to S$ be a map of rings. Then the tensor product $- \otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal m of R, let R_m be the localization of R at m.
 We call M ⊗_R R_m the localization of M at m.
- If R is a domain, let Frac(R) be the fraction field of R. Then we call M ⊗_R Frac(R) the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Let $R \to S$ be a map of rings. Then the tensor product $- \otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal m of R, let R_m be the localization of R at m.
 We call M ⊗_R R_m the localization of M at m.
- ② If R is a domain, let Frac(R) be the fraction field of R. Then we call $M \otimes_R Frac(R)$ the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid *M* via all these "classical" matroids.

ヘロン 人間 とくほと 人 ほとう

Let $R \to S$ be a map of rings. Then the tensor product $- \otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal m of R, let R_m be the localization of R at m.
 We call M ⊗_R R_m the localization of M at m.
- If R is a domain, let Frac(R) be the fraction field of R. Then we call M ⊗_R Frac(R) the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid *M* via all these "classical" matroids.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Let $R \to S$ be a map of rings. Then the tensor product $-\otimes_R S$ is a functor R-Mod $\to S$ -Mod. If M is a matroid over R, then

 $(M \otimes_R S)(A) \doteq M(A) \otimes_R S.$

defines a matroid over S.

Two special cases will be fundamental for us:

- For every prime ideal m of R, let R_m be the localization of R at m.
 We call M ⊗_R R_m the localization of M at m.
- If R is a domain, let Frac(R) be the fraction field of R. Then we call M ⊗_R Frac(R) the generic matroid of M.

Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}}/(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

◆□> ◆圖> ◆国> ◆国> 三国

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. *R*-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by t_n the cardinality of the *n*-truncation of such a "partition". Our first result is a combinatorial characterization of matroids over a DVR:

(i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}).

Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. *R*-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by *t_n* the cardinality of the *n*-truncation of such a "partition". Our first result is a combinatorial characterization of matroids over a DVR:

イロト イ理ト イヨト イヨト

(i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. *R*-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by t_n the cardinality of the *n*-truncation of such a "partition". Our first result is a combinatorial characterization of matroids over a DVR:

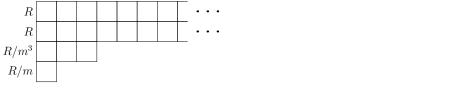
・ロト ・聞ト ・ ヨト ・ ヨト

(i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by t_n the cardinality of the *n*-truncation of such a "partition".



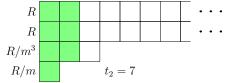
Our first result is a combinatorial characterization of matroids over a DVR:

(i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by t_n the cardinality of the *n*-truncation of such a "partition".



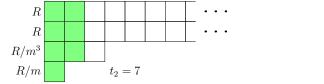
Our first result is a combinatorial characterization of matroids over a DVR:

(i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).

The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R/\mathfrak{m}^n for some integer $n \ge 1$.

So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

We denote by t_n the cardinality of the *n*-truncation of such a "partition".



Our first result is a combinatorial characterization of matroids over a DVR:

Theorem (Fink, M.)

$M: 2^E \rightarrow \{f. g. R\text{-modules}\}$ is a matroid over R if and only if:

for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe,

and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid *M*, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

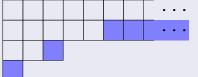
The vector $(t_n(M(A)), |A| = k)$ defines a point on the Dressian^{*} Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety^{*}. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Local theory: matroids over a DVR

Theorem (Fink, M.)

 $M: 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe,



and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the **Dressian**^{*} Dr(k, |E|)

Alex Fink and Luca Moci

Matroids over a ring

 $M : 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid *M*, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the **Dressian**^{*} Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Alex Fink and Luca Moci

 $M : 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the **Dressian**^{*} Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety^{*}. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

 $M : 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the Dressian* Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Alex Fink and Luca Moci

 $M : 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the Dressian* Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

 $M : 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \to M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_n(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $(t_n(M(A)), |A| = k)$ defines a point on the Dressian* Dr(k, |E|)

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety^{*}. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Alex Fink and Luca Moci

As a consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let *M* be a matroid over a DVR (*R*, \mathfrak{m}). Then the function $\mathcal{V}(A) \doteq \dim_{R/\mathfrak{m}} M(A)$ makes the generic matroid of *M* into a valuated matroid.

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B} , satisfying a certain axiom [Dress and Wenzel].

Then a matroid over a DVR contains richer information than the valuated matroid.

As a consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let *M* be a matroid over a DVR (*R*, \mathfrak{m}). Then the function $\mathcal{V}(A) \doteq \dim_{R/\mathfrak{m}} M(A)$ makes the generic matroid of *M* into a valuated matroid.

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B} , satisfying a certain axiom [Dress and Wenzel].

Then a matroid over a DVR contains richer information than the valuated matroid.

Let *R* be a Dedekind domain. Given an *R*-module *N*, let $N_{\text{tors}} \subseteq N$ denote the submodule of its torsion elements, and N_{proj} denote the projective module N/N_{tors} .

There is a function det associating to every R-module an element of Pic(R), the Picard group of R.

By this function characterize matroids over a Dedekind domain R:

Theorem (Fink, M.)

 $M : 2^E \rightarrow \{f. g. R-modules\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N'$ we have:

- if $\operatorname{rk}(N) \operatorname{rk}(N') = 1$ then $\det(N) = \det(N')$,
- if $\operatorname{rk}(N) \operatorname{rk}(N') = 0$ then $\det(N_{\text{proj}}) = \det(N'_{\text{proj}})$.

In particular when $Pic(R)=\{0\}$ there are no global conditions.

イロン イヨン イヨン イヨン

Let *R* be a Dedekind domain. Given an *R*-module *N*, let $N_{\text{tors}} \subseteq N$ denote the submodule of its torsion elements, and N_{proj} denote the projective module N/N_{tors} .

There is a function det associating to every R-module an element of Pic(R), the Picard group of R.

By this function characterize matroids over a Dedekind domain R:

Theorem (Fink, M.)

 $M : 2^E \rightarrow \{f. g. R-modules\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N'$ we have:

- if rk(N) rk(N') = 1 then det(N) = det(N'),
- if $\operatorname{rk}(N) \operatorname{rk}(N') = 0$ then $\det(N_{\text{proj}}) = \det(N'_{\text{proj}})$.

In particular when $Pic(R) = \{0\}$ there are no global conditions.

・ロト ・聞ト ・ヨト ・ヨト

Let *R* be a Dedekind domain. Given an *R*-module *N*, let $N_{\text{tors}} \subseteq N$ denote the submodule of its torsion elements, and N_{proj} denote the projective module N/N_{tors} .

There is a function det associating to every R-module an element of Pic(R), the Picard group of R.

By this function characterize matroids over a Dedekind domain R:

Theorem (Fink, M.)

 $M: 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \to N'$ we have:

• if rk(N) - rk(N') = 1 then det(N) = det(N'),

• if
$$\operatorname{rk}(N) - \operatorname{rk}(N') = 0$$
 then $\det(N_{\text{proj}}) = \det(N'_{\text{proj}})$.

In particular when $Pic(R)=\{0\}$ there are no global conditions.

・ロト ・聞ト ・ヨト ・ヨト

Let *R* be a Dedekind domain. Given an *R*-module *N*, let $N_{\text{tors}} \subseteq N$ denote the submodule of its torsion elements, and N_{proj} denote the projective module N/N_{tors} .

There is a function det associating to every R-module an element of Pic(R), the Picard group of R.

By this function characterize matroids over a Dedekind domain R:

Theorem (Fink, M.)

 $M: 2^E \to \{f. g. R-modules\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \to N'$ we have:

• if rk(N) - rk(N') = 1 then det(N) = det(N'),

• if
$$\operatorname{rk}(N) - \operatorname{rk}(N') = 0$$
 then $\det(N_{\text{proj}}) = \det(N'_{\text{proj}})$.

In particular when $Pic(R) = \{0\}$ there are no global conditions.

ヘロト 人間 ト くほ ト くほ トー

 $\operatorname{cork}(A) = \operatorname{rk}(M(A)_{\operatorname{proj}}) \text{ and } m(A) \doteq |M(A)_{\operatorname{tors}}|.$

As a corollary of the previous theorem, we can prove that $(E, \operatorname{cork}, m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M]. (Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are *not* truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

|山田 | 山田 | 山田 |

$$\operatorname{cork}(A) = \operatorname{rk}(M(A)_{\operatorname{proj}}) \text{ and } m(A) \doteq |M(A)_{\operatorname{tors}}|.$$

As a corollary of the previous theorem, we can prove that $(E, \operatorname{cork}, m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M].

(Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the *arithmetic Tutte polynomial* [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are *not* truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

A B F A B F

$$\operatorname{cork}(A) = \operatorname{rk}(M(A)_{\operatorname{proj}}) \text{ and } m(A) \doteq |M(A)_{\operatorname{tors}}|.$$

As a corollary of the previous theorem, we can prove that $(E, \operatorname{cork}, m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M]. (Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are *not* truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

A B M A B M

$$\operatorname{cork}(A) = \operatorname{rk}(M(A)_{\operatorname{proj}}) \text{ and } m(A) \doteq |M(A)_{\operatorname{tors}}|.$$

As a corollary of the previous theorem, we can prove that $(E, \operatorname{cork}, m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M]. (Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are *not* truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known *Tutte polynomial*. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over R, K(R-Mat), to be the abelian group generated by a symbol \mathbf{T}_M for each matroid M over R, modulo the relations

$$\mathbf{T}_M = \mathbf{T}_{M\setminus a} + \mathbf{T}_{M/a}$$

whenever *a* is not a loop nor coloop for the generic matroid. The product is given by $\mathbf{T}_M \cdot \mathbf{T}_{M'} = \mathbf{T}_{M \oplus M'}$ Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known *Tutte polynomial*. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over R, K(R-Mat), to be the abelian group generated by a symbol T_M for each matroid M over R, modulo the relations

$$\mathbf{T}_M = \mathbf{T}_{M\setminus a} + \mathbf{T}_{M/a}$$

whenever *a* is not a loop nor coloop for the generic matroid. The product is given by $\mathbf{T}_M \cdot \mathbf{T}_{M'} = \mathbf{T}_{M \oplus M'}$ Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known *Tutte polynomial*. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over R, K(R-Mat), to be the abelian group generated by a symbol T_M for each matroid M over R, modulo the relations

$$\mathbf{T}_M = \mathbf{T}_{M\setminus a} + \mathbf{T}_{M/a}$$

whenever *a* is not a loop nor coloop for the generic matroid. The product is given by $\mathbf{T}_M \cdot \mathbf{T}_{M'} = \mathbf{T}_{M \oplus M'}$ Define $\mathbb{Z}[R-Mod]$ to be the ring with a \mathbb{Z} -linear basis $\{X^N\}$ with an element X^N for each f.g. *R*-module *N* up to isomorphism, and product given by $X^N X^{N'} = X^{N \oplus N'}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring K(R-Mat) is the subring of $\mathbb{Z}[R-Mod] \otimes \mathbb{Z}[R-Mod]$ generated by X^P and Y^P as P ranges over rank 1 projective modules, and $X^N Y^N$ as N ranges over torsion modules. The class of M is

$$\mathsf{T}_{M} = \sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \setminus A)}$$

Define $\mathbb{Z}[R-Mod]$ to be the ring with a \mathbb{Z} -linear basis $\{X^N\}$ with an element X^N for each f.g. *R*-module *N* up to isomorphism, and product given by $X^N X^{N'} = X^{N \oplus N'}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring K(R-Mat) is the subring of $\mathbb{Z}[R-Mod] \otimes \mathbb{Z}[R-Mod]$ generated by X^P and Y^P as P ranges over rank 1 projective modules, and $X^N Y^N$ as N ranges over torsion modules. The class of M is

$$\mathbf{T}_M = \sum_{A \subseteq E} X^{M(A)} Y^{M^*(E \setminus A)}$$

Define $\mathbb{Z}[R-Mod]$ to be the ring with a \mathbb{Z} -linear basis $\{X^N\}$ with an element X^N for each f.g. *R*-module *N* up to isomorphism, and product given by $X^N X^{N'} = X^{N \oplus N'}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring K(R-Mat) is the subring of $\mathbb{Z}[R-Mod] \otimes \mathbb{Z}[R-Mod]$ generated by X^P and Y^P as P ranges over rank 1 projective modules, and $X^N Y^N$ as N ranges over torsion modules. The class of M is

$$\mathbf{T}_{M} = \sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \setminus A)}$$

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R\operatorname{-Mod}] \otimes \mathbb{Z}[R\operatorname{-Mod}] \simeq \mathbb{Z}[X, Y].$

Then by the substitution X = x - 1 and Y = y - 1 we can see that $\mathbf{T}_M = \sum_{A \subseteq E} X^{M(A)} Y^{M^*(E \setminus A)}$ is simply the classical Tutte polynomial, since dim M(A) is the corank of A and dim $M^*(E \setminus A)$ is its nullity.

When $R = \mathbb{Z}$, since there are nontrivial torsion modules, we get

$$\mathbf{T}_{M} = \sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \setminus A)} X^{M(A)_{\text{tors}}} Y^{M(A)_{\text{tors}}}.$$

By evaluating $X^N Y^N$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

When $R = \mathbb{Z}$, since there are nontrivial torsion modules, we get

$$\mathbf{T}_{M} = \sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \setminus A)} X^{M(A)_{\text{tors}}} Y^{M(A)_{\text{tors}}}.$$

By evaluating $X^N Y^N$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲

When $R = \mathbb{Z}$, since there are nontrivial torsion modules, we get

$$\mathsf{T}_M = \sum_{A\subseteq E} X^{M(A)} Y^{M^*(E\setminus A)} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}.$$

By evaluating $X^N Y^N$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

When $R = \mathbb{Z}$, since there are nontrivial torsion modules, we get

$$\mathsf{T}_M = \sum_{A\subseteq E} X^{M(A)} Y^{M^*(E\setminus A)} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}.$$

By evaluating $X^N Y^N$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

ヘロン 人間 とくほと くほとう

When $R = \mathbb{Z}$, since there are nontrivial torsion modules, we get

$$\mathsf{T}_M = \sum_{A\subseteq E} X^{M(A)} Y^{M^*(E\setminus A)} X^{M(A)_{\mathrm{tors}}} Y^{M(A)_{\mathrm{tors}}}.$$

By evaluating $X^N Y^N$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

$$\mathbf{Q}_M(x,y) = \sum_{A \subseteq E} \frac{|M(A)_{\text{tors}}|}{|q \cdot M(A)_{\text{tors}}|} (x-1)^{\text{rk}(E) - \text{rk}(A)} (y-1)^{|A| - \text{rk}(A)}.$$

where q = (x - 1)(y - 1).

Since (q + |G|)G = qG holds for any finite group G, $\mathbf{Q}_M(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.

This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

Notice that $\mathbf{Q}_M(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text{tors}}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z} .

イロン イ団と イヨン ト

$$\mathbf{Q}_M(x,y) = \sum_{A \subseteq E} \frac{|M(A)_{\text{tors}}|}{|q \cdot M(A)_{\text{tors}}|} (x-1)^{\text{rk}(E) - \text{rk}(A)} (y-1)^{|A| - \text{rk}(A)}.$$

where q = (x - 1)(y - 1). Since (q + |G|)G = qG holds for any finite group G, $\mathbf{Q}_M(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.

This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges. Notice that $\mathbf{Q}_M(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text{tors}}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z} .

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

$$\mathbf{Q}_M(x,y) = \sum_{A \subseteq E} \frac{|M(A)_{\text{tors}}|}{|q \cdot M(A)_{\text{tors}}|} (x-1)^{\text{rk}(E) - \text{rk}(A)} (y-1)^{|A| - \text{rk}(A)}.$$

where q = (x - 1)(y - 1). Since (q + |G|)G = qG holds for any finite group G, $\mathbf{Q}_M(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.

This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

Notice that $\mathbf{Q}_M(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text{tors}}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z} .

$$\mathbf{Q}_M(x,y) = \sum_{A \subseteq E} \frac{|M(A)_{\text{tors}}|}{|q \cdot M(A)_{\text{tors}}|} (x-1)^{\text{rk}(E) - \text{rk}(A)} (y-1)^{|A| - \text{rk}(A)}.$$

where q = (x - 1)(y - 1). Since (q + |G|)G = qG holds for any finite group G, $\mathbf{Q}_M(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.

This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.

Notice that $\mathbf{Q}_M(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text{tors}}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z} .

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

ヨト イヨト

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;

• error-correcting codes over rings.

THANK YOU!

ヨト イヨト

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;

• error-correcting codes over rings.

THANK YOU!

イヨト イヨト

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

3 K 4 3 K

- study other examples, such as *R* coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

ヨト イヨト