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Introduction

A matroid captures the linear dependencies of a list of vectors.
The axioms can be given in several equivalent ways: for example,
independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information
about a vector configuration, which is richer than the purely linear
algebraic information. For example “valuated matroids”, and “arithmetic
matroids”: matroids decorated with extra data, defined by extra axioms.
We will try to unify some of these generalizations, by taking a new
approach: a theory with only one simple, algebraic axiom.
When the ring R is a field we recover matroids, while when R = Z and
R = Z(p) we recover arithmetic matroids and valuated matroids
respectively.
In general, a matroid over a ring R axiomatizes dependencies of elements
in an R-module. So our theory generalizes matroid theory, in the same
way as commutative algebra generalizes linear algebra.
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Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A)
satisfying the following axiom:
For any A ⊆ E and b, c ∈ E \ A,
there exist x = x(b, c) ∈ M(A) and y = y(b, c) ∈ M(A)
such that there is a diagram

M(A)

y

/x //

/y
��

M(A ∪ {b})

/y
��

M(A ∪ {c})
/x
// M(A ∪ {b, c}).
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Realizability

Fundamental example: “vector configurations” in an R-module.
Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N,
we have a matroid MX associating to A ⊆ X the quotient

MX (A) = N
/(∑

x∈A
Rx

)
.

For each xi ∈ X there is a quotient map

MX (A)
/xi−→ MX (A ∪ {xi})

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!
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Classical matroids

We can, and will, assume that the module M(E ) has no nontrivial
projective summands. This technical assumption makes many results
simpler to state.
Recall that in a classical matroid the corank cork(A) of a set A is equal to
rk(E )− rk(A), where rk(E ) is the rank of the matroid.

Proposition (Fink, M.)

Let K be a field. Matroids over K are equivalent to (classical) matroids.
If M is a matroid over K, then dim M(A) is the corank of A in the
corresponding classical matroid.
Furthermore, a matroid over K is realizable if and only if, as a classical
matroid, it is realizable over K.

Idea of the proof: we can replace M(A) by its K-dimension without losing
information.
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Sum, deletion, contraction, duality

Let M and M ′ be matroids over R on E and E ′.
We define their direct sum M ⊕M ′ on E q E ′ by

(M ⊕M ′)(Aq A′) = M(A)⊕M ′(A′).

For i ∈ E , we define two matroids over R on the ground set E \ {i}:
the deletion of i in M, denoted M \ i , by

(M \ i)(A) = M(A)

and the contraction of i in M, denoted M \ i , by

(M/i)(A) = M(A ∪ {i}).

When R is a Dedekind domain, we can also define a dual matroid M∗

having the expected properties (omitted).

If M is realizable, M \ i and M/i can be realized in the usual way, while
M∗ can be realized by a generalization of Gale duality.
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Tensor product. Localizations and generic matroid

Let R → S be a map of rings. Then the tensor product —⊗R S is a
functor R-Mod→ S-Mod. If M is a matroid over R, then

(M ⊗R S)(A)
.

= M(A)⊗R S .

defines a matroid over S .
Two special cases will be fundamental for us:

1 For every prime ideal m of R, let Rm be the localization of R at m.
We call M ⊗R Rm the localization of M at m.

2 If R is a domain, let Frac(R) be the fraction field of R. Then we call
M ⊗R Frac(R) the generic matroid of M.

Notice that every matroid over Rm induces a matroid over the residue field
Rm/(m).

We can study the matroid M via all these “classical” matroids.
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Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain
(i.e., an integral domain in which every nonzero proper ideal factors into a
product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a
Dedekind domain that is not a field and has a unique maximal ideal m).
Any indecomposible f.g. module over a DVR R is isomorphic to either R
or R/mn for some integer n ≥ 1.
So a f.g. R-module are parametrized by “partitions” that may have some
infinitely long lines.
We denote by tn the cardinality of the n-truncation of such a “partition”.
Our first result is a combinatorial characterization of matroids over a DVR:
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Local theory: matroids over a DVR

Theorem (Fink, M.)

M : 2E → {f. g. R-modules} is a matroid over R if and only if:
for every 1-element minor M(A)→ M(A ∪ b) the difference of the two
“partitions” is a (Pieri-like) stripe,
and on every 2-element minor the function −tn(M(·)) is submodular, plus
equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get
a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector
(
tn(M(A)), |A| = k

)
defines a point on the Dressian∗ Dr(k , |E |)

In fact, we conjecture that in this way we get a point on the Dressian
analogue of the full flag variety∗. (∗ tropical varieties parametrizing
tropical linear spaces, and full flags of t.l.s., respectively).
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Proposition (Fink, M.)

The vector
(
tn(M(A)), |A| = k

)
defines a point on the Dressian∗ Dr(k , |E |)

In fact, we conjecture that in this way we get a point on the Dressian
analogue of the full flag variety∗. (∗ tropical varieties parametrizing
tropical linear spaces, and full flags of t.l.s., respectively).

Alex Fink and Luca Moci Matroids over a ring 9 / 17



Valuated matroids

As a consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a DVR (R,m).
Then the function V(A)

.
= dimR/m M(A) makes the generic matroid of M

into a valuated matroid.

A valuated matroid is defined as a matroid decorated with an integer
valued function V on the set of the bases B, satisfying a certain axiom
[Dress and Wenzel].
Then a matroid over a DVR contains richer information than the valuated
matroid.
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Global theory: matroids over a Dedekind domain

Let R be a Dedekind domain. Given an R-module N, let Ntors ⊆ N denote
the submodule of its torsion elements, and Nproj denote the projective
module N/Ntors.
There is a function det associating to every R-module an element of
Pic(R), the Picard group of R.
By this function characterize matroids over a Dedekind domain R:

Theorem (Fink, M.)

M : 2E → {f. g. R-modules} is a matroid over R if and only if every
localization at a prime ideal m is a matroid over Rm,
and for every 1-element minor N → N ′ we have:

if rk(N)− rk(N ′) = 1 then det(N) = det(N ′),

if rk(N)− rk(N ′) = 0 then det(Nproj) = det(N ′proj).

In particular when Pic(R) = {0} there are no global conditions.
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Arithmetic matroids

If M is a matroid over Z, we define the two functions

cork(A) = rk(M(A)proj) and m(A)
.

= |M(A)tors|.

As a corollary of the previous theorem, we can prove that (E , cork,m) is a
“quasi-arithmetic matroid”, a structure closely related to the arithmetic
matroids introduced by [D’Adderio-M].
(Arithmetic matroids also satisfy a further axiom (P), granting the
positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over Z and quasi-arithmetic matroids and are not
truly equivalent, since the information contained in the former is richer,
since there are many groups with the same cardinality.
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Definition of the Tutte-Grothendieck group

Several invariants can be associated to a classical matroid; the universal
deletion-contraction invariant is the well-known Tutte polynomial.
We will now define and compute the universal deletion-contraction
invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of
matroids over R, K (R-Mat), to be the abelian group generated by a
symbol TM for each matroid M over R, modulo the relations

TM = TM\a + TM/a

whenever a is not a loop nor coloop for the generic matroid.
The product is given by TM · TM′ = TM⊕M′
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Description of the Tutte-Grothendieck group

Define Z[R-Mod] to be the ring with a Z-linear basis {XN} with an
element XN for each f.g. R-module N up to isomorphism, and product
given by XNXN′ = XN⊕N′ .

Theorem (Fink, M.)

The Tutte-Grothendieck ring K (R-Mat) is the subring of
Z[R-Mod]⊗ Z[R-Mod] generated by XP and Y P as P ranges over rank 1
projective modules, and XNY N as N ranges over torsion modules.
The class of M is

TM =
∑
A⊆E

XM(A)Y M∗(E\A)
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Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, Pic(R) is trivial and there is no torsion, thus
Z[R-Mod]⊗ Z[R-Mod] ' Z[X ,Y ].
Then by the substitution X = x − 1 and Y = y − 1 we can see that
TM =

∑
A⊆E XM(A)Y M∗(E\A) is simply the classical Tutte polynomial,

since dim M(A) is the corank of A and dim M∗(E \ A) is its nullity.

When R = Z, since there are nontrivial torsion modules, we get

TM =
∑
A⊆E

XM(A)Y M∗(E\A)XM(A)torsY M(A)tors .

By evaluating XNY N to the cardinality of N for each torsion module N,
we get the arithmetic Tutte polynomial. This polynomial proved to have
several applications to toric arrangements, partition functions, Ehrhart
polynomial of zonotopes, graphs, CW-complexes, . . .
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The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte
invariant TM in the case R = Z is the Tutte quasi-polynomial

QM(x , y) =
∑
A⊆E

|M(A)tors|
|q ·M(A)tors|

(x − 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

where q = (x − 1)(y − 1).
Since (q + |G |)G = qG holds for any finite group G , QM(x , y) is a
quasi-polynomial in q, interpolating between the classical and the
arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to
generalized colorings and flows on graphs with labeled edges.
Notice that QM(x , y) is not an invariant of the arithmetic matroid, (as it
depends on the groups M(A)tors and not just on their cardinalities), but it
is an invariant of the matroid over Z.
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Developments and applications

Future developments:

study other examples, such as R coordinate ring of an algebraic curve
(e.g. the affine line or an elliptic curve);

provide cryptomorphic definitions (e.g. the base polytope; a
semi-standard Young tableaux description);

Possible applications:

combinatorial topology: [Bajo-Burdick-Chmutov],
[Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];

tropical geometry;

intersection theory for arrangements of subtori, toric varieties, . . . ;

error-correcting codes over rings.

THANK YOU!
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