Matroids over a ring

Alex Fink ${ }^{1}$ and Luca Moci ${ }^{2}$

${ }^{1}$ North Carolina State \rightarrow Queen Mary, U London
${ }^{2}$ Marie Curie Fellow of INdAM \rightarrow U Paris 7 - Diderot

FPSAC 2013

Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is richer than the purely linear algebraic information. For example "valuated matroids", and matroids" : matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only one simple, algebraic axiom. When the ring R is a field we recover matroids, while when $R=\mathbb{Z}$ and $R=\mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.
In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.

```
Many variants of matroids have arisen, each retaining some information
about a vector configuration, which is richer than the purely linear
algebraic information. For example "valuated matroids", and
matroids": matroids decorated with extra data, defined by extra axioms
We will try to unify some of these generalizations, by taking a new
approach: a theory with only one simple, algebraic axiom
When the ring R is a field we recover matroids, while when }R=\mathbb{Z}\mathrm{ and
R=}\mp@subsup{\mathbb{Z}}{(p)}{}\mathrm{ we recover arithmetic matroids and valuated matroids
respectively.
In general, a matroid over a ring R axiomatizes dependencies of elements
in an R}R\mathrm{ -module. So our theory generalizes matroid theory, in the same
way as commutative algebra generalizes linear algebra.
```


Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is richer than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids" : matroids decorated with extra data, defined by extra axioms.

Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is richer than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids" : matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only one simple, algebraic axiom.

Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is richer than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only one simple, algebraic axiom.
When the ring R is a field we recover matroids, while when $R=\mathbb{Z}$ and $R=\mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.
In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra

Introduction

A matroid captures the linear dependencies of a list of vectors. The axioms can be given in several equivalent ways: for example, independent sets, or a rank function.
Many variants of matroids have arisen, each retaining some information about a vector configuration, which is richer than the purely linear algebraic information. For example "valuated matroids", and "arithmetic matroids": matroids decorated with extra data, defined by extra axioms. We will try to unify some of these generalizations, by taking a new approach: a theory with only one simple, algebraic axiom.
When the ring R is a field we recover matroids, while when $R=\mathbb{Z}$ and $R=\mathbb{Z}_{(p)}$ we recover arithmetic matroids and valuated matroids respectively.
In general, a matroid over a ring R axiomatizes dependencies of elements in an R-module. So our theory generalizes matroid theory, in the same way as commutative algebra generalizes linear algebra.

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom:
For any $A \subseteq E$ and $b, c \in E \backslash A$,
there exist $x=x(b, c) \in M(A)$ and $y=y(b, c) \in M(A)$ such that there is a diagram

Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M assigning to each subset $A \subseteq E$ a finitely-generated R-module $M(A)$ satisfying the following axiom:
For any $A \subseteq E$ and $b, c \in E \backslash A$, there exist $x=x(b, c) \in M(A)$ and $y=y(b, c) \in M(A)$ such that there is a diagram

$$
\begin{gathered}
M(A) \xrightarrow{/ x} M(A \cup\{b\}) \\
/ y \downarrow \downarrow \underset{/ \bar{x}}{\longrightarrow} M(A \cup\{b, c\}) . \\
M(A \cup\{c\}) \xrightarrow{\perp} M
\end{gathered}
$$

Realizability

Fundamental example: "vector configurations" in an R-module.
Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

For each $x_{i} \in X$ there is a quotient map

$$
M_{x}(A) \xrightarrow{/ \bar{x}_{1}} M_{x}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map
$M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)$
and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map

$$
M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!

Realizability

Fundamental example: "vector configurations" in an R-module. Given a f.g. R-module N and a list $X=x_{1}, \ldots, x_{n}$ of elements of N, we have a matroid M_{X} associating to $A \subseteq X$ the quotient

$$
M_{X}(A)=N /\left(\sum_{x \in A} R x\right)
$$

For each $x_{i} \in X$ there is a quotient map

$$
M_{X}(A) \xrightarrow{/ \overline{x_{i}}} M_{X}\left(A \cup\left\{x_{i}\right\}\right)
$$

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from such a list.
Of course not all matroids over R are realizable!

Classical matroids

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands. This technical assumption makes many results simpler to state.

Recall that in a classical matroid the corank $\operatorname{cork}(A)$ of a set A is equal to $\operatorname{rk}(E)-\mathrm{rk}(A)$, where $\mathrm{rk}(E)$ is the rank of the matroid.

```
Proposition (Fink, M )
Let \mathbb{K}}\mathrm{ be a field. Matroids over }\mathbb{K}\mathrm{ are equivalent to (classical) matroids.
If M is a matroid over }\mathbb{K}\mathrm{ , then }\operatorname{dim}M(A)\mathrm{ is the corank of }A\mathrm{ in the
corresponding classical matroid.
Furthermore, a matroid over \mathbb{K}}\mathrm{ is realizable if and only if, as a classical
matroid, it is realizable over }\mathbb{K}\mathrm{ .
Idea of the proof: we can replace }M(A)\mathrm{ by its }\mathbb{K}\mathrm{ -dimension without losing
information
```


Classical matroids

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands. This technical assumption makes many results simpler to state.
Recall that in a classical matroid the corank $\operatorname{cork}(A)$ of a set A is equal to $\operatorname{rk}(E)-\operatorname{rk}(A)$, where $\operatorname{rk}(E)$ is the rank of the matroid.

```
Proposition (Fink, M.)
Let \mathbb{K}}\mathrm{ be a field. Matroids over }\mathbb{K}\mathrm{ are equivalent to (classical) matroids
If M}\mathrm{ is a matroid over }\mathbb{K}\mathrm{ , then }\operatorname{dim}M(A)\mathrm{ is the corank of }A\mathrm{ in the
corresponding classical matroid
Furthermore, a matroid over }\mathbb{K}\mathrm{ is realizable if and only if, as a classical
matroid, it is realizable over \mathbb{K}.
Idea of the proof: we can replace }M(A)\mathrm{ by its }\mathbb{K}\mathrm{ -dimension without losing
information
```


Classical matroids

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands. This technical assumption makes many results simpler to state.
Recall that in a classical matroid the corank $\operatorname{cork}(A)$ of a set A is equal to $\operatorname{rk}(E)-\operatorname{rk}(A)$, where $\operatorname{rk}(E)$ is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K}, then $\operatorname{dim} M(A)$ is the corank of A in the corresponding classical matroid.

```
Furthermore, a matroid over \mathbb{K}}\mathrm{ is realizable if and only if, as a classical
matroid, it is realizable over \mathbb{K}
Idea of the proof: we can replace \(M(A)\) by its \(\mathbb{K}\)-dimension without losing information.
```


Classical matroids

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands. This technical assumption makes many results simpler to state.
Recall that in a classical matroid the corank $\operatorname{cork}(A)$ of a set A is equal to $\operatorname{rk}(E)-\operatorname{rk}(A)$, where $\operatorname{rk}(E)$ is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K}, then $\operatorname{dim} M(A)$ is the corank of A in the corresponding classical matroid.
Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K}.

Idea of the proof: we can replace $M(A)$ by its \mathbb{K}-dimension without losing information.

Classical matroids

We can, and will, assume that the module $M(E)$ has no nontrivial projective summands. This technical assumption makes many results simpler to state.
Recall that in a classical matroid the corank $\operatorname{cork}(A)$ of a set A is equal to $\operatorname{rk}(E)-\operatorname{rk}(A)$, where $\operatorname{rk}(E)$ is the rank of the matroid.

Proposition (Fink, M.)

Let \mathbb{K} be a field. Matroids over \mathbb{K} are equivalent to (classical) matroids. If M is a matroid over \mathbb{K}, then $\operatorname{dim} M(A)$ is the corank of A in the corresponding classical matroid.
Furthermore, a matroid over \mathbb{K} is realizable if and only if, as a classical matroid, it is realizable over \mathbb{K}.

Idea of the proof: we can replace $M(A)$ by its \mathbb{K}-dimension without losing information.

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$ the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\}) .
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized by a generalization of Gale dualitity ${ }_{\alpha}$

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted)

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized generalization of Gale duality

Sum, deletion, contraction, duality

Let M and M^{\prime} be matroids over R on E and E^{\prime}.
We define their direct sum $M \oplus M^{\prime}$ on $E \amalg E^{\prime}$ by

$$
\left(M \oplus M^{\prime}\right)\left(A \amalg A^{\prime}\right)=M(A) \oplus M^{\prime}\left(A^{\prime}\right) .
$$

For $i \in E$, we define two matroids over R on the ground set $E \backslash\{i\}$: the deletion of i in M, denoted $M \backslash i$, by

$$
(M \backslash i)(A)=M(A)
$$

and the contraction of i in M, denoted $M \backslash i$, by

$$
(M / i)(A)=M(A \cup\{i\})
$$

When R is a Dedekind domain, we can also define a dual matroid M^{*} having the expected properties (omitted).

If M is realizable, $M \backslash i$ and M / i can be realized in the usual way, while M^{*} can be realized by a generalization of Gale duality.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S .
$$

defines a matroid over S

Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let R_{m} be the localization of R at m. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.

Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(3) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathrm{m}} /(\mathrm{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(3) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.

Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathrm{m}} /(\mathrm{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over $R_{\mathfrak{m}}$ induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

Tensor product. Localizations and generic matroid

Let $R \rightarrow S$ be a map of rings. Then the tensor product $-\otimes_{R} S$ is a functor R-Mod $\rightarrow S$-Mod. If M is a matroid over R, then

$$
\left(M \otimes_{R} S\right)(A) \doteq M(A) \otimes_{R} S
$$

defines a matroid over S.
Two special cases will be fundamental for us:
(1) For every prime ideal \mathfrak{m} of R, let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m}. We call $M \otimes_{R} R_{\mathfrak{m}}$ the localization of M at \mathfrak{m}.
(2) If R is a domain, let $\operatorname{Frac}(R)$ be the fraction field of R. Then we call $M \otimes_{R} \operatorname{Frac}(R)$ the generic matroid of M.
Notice that every matroid over R_{m} induces a matroid over the residue field $R_{\mathfrak{m}} /(\mathfrak{m})$.

We can study the matroid M via all these "classical" matroids.

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / m^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.
We denote by t_{n} the cardinality of the n-truncation of such a "partition' Our first result is a combinatorial characterization of matroids over a DVR:

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$ So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.
We denote by t_{n} the cardinality of the n-truncation of such a "partition" Our first result is a combinatorial characterization of matroids over a DVR

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.

Our first result is a combinatorial characterization of matroids over a DVR:

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.
We denote by t_{n} the cardinality of the n-truncation of such a "partition".

Our first result is a combinatorial characterization of matroids over a DVR:

Dedekind rings and DVR

From now on, we will always assume R to be a Dedekind domain (i.e., an integral domain in which every nonzero proper ideal factors into a product of prime ideals).
The localization of a Dedekind domain at a prime ideal is a DVR (i.e. a Dedekind domain that is not a field and has a unique maximal ideal \mathfrak{m}). Any indecomposible f.g. module over a DVR R is isomorphic to either R or R / \mathfrak{m}^{n} for some integer $n \geq 1$.
So a f.g. R-module are parametrized by "partitions" that may have some infinitely long lines.
We denote by t_{n} the cardinality of the n-truncation of such a "partition".

Our first result is a combinatorial characterization of matroids over a DVR:

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f . g . R$-modules $\}$ is a matroid over R if and only if:
for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe,
and on every 2-element minor the furction - $t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:
\square
The vector $\left(t_{n}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$

In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s s., respectively).

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe,

							.
							\ldots

and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:
\square
Proposition (Fink, M)

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:
\square
The vector $\left(t_{n}(M(A)),|A|=k\right)$ defines a point on the

In fact, we conjecture that in this way we get a point on the Dressia tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s respectively).

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:
\square
In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.I.s respectively).

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $\left(t_{n}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe, and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $\left(t_{n}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$
In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*.

Local theory: matroids over a DVR

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if: for every 1-element minor $M(A) \rightarrow M(A \cup b)$ the difference of the two "partitions" is a (Pieri-like) stripe,
and on every 2-element minor the function $-t_{n}(M(\cdot))$ is submodular, plus equality in some prescribed cases.

Furthermore, by looking at the 3-element minors of the matroid M, we get a set of relations, which are tropicalizations of Plücker relations, so that:

Proposition (Fink, M.)

The vector $\left(t_{n}(M(A)),|A|=k\right)$ defines a point on the $\operatorname{Dressian*} \operatorname{Dr}(k,|E|)$
In fact, we conjecture that in this way we get a point on the Dressian analogue of the full flag variety*. (* tropical varieties parametrizing tropical linear spaces, and full flags of t.l.s., respectively).

Valuated matroids

As a consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a $\operatorname{DVR}(R, \mathfrak{m})$.
Then the function $\mathcal{V}(A) \doteq \operatorname{dim}_{R / \mathfrak{m}} M(A)$ makes the generic matroid of M into a valuated matroid.

```
A valuated matroid is defined as a matroid decorated with an integer
valued function }\mathcal{V}\mathrm{ on the set of the bases }\mathcal{B}\mathrm{ , satisfying a certain axiom
[Dress and Wenzel]
Then a matroid over a DVR contains richer information than the valuated
matroid
```


Valuated matroids

As a consequence of the Proposition above, we get:

Corollary (Fink, M.)

Let M be a matroid over a $\operatorname{DVR}(R, \mathfrak{m})$.
Then the function $\mathcal{V}(A) \doteq \operatorname{dim}_{R / \mathfrak{m}} M(A)$ makes the generic matroid of M into a valuated matroid.

A valuated matroid is defined as a matroid decorated with an integer valued function \mathcal{V} on the set of the bases \mathcal{B}, satisfying a certain axiom [Dress and Wenzel].
Then a matroid over a DVR contains richer information than the valuated matroid.

Global theory: matroids over a Dedekind domain

Let R be a Dedekind domain. Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
There is a function det associating to every R-module an element of $\operatorname{Pic}(R)$, the Picard group of R.
By this function characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)
 $M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every
 localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$,
 and for every 1-element minor $N \rightarrow N^{\prime}$ we have:
 - if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
 - if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\text {proi }}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions.

Global theory: matroids over a Dedekind domain

Let R be a Dedekind domain. Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
There is a function det associating to every R-module an element of $\operatorname{Pic}(R)$, the Picard group of R.
By this function characterize matroids over a Dedekind domain R :

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions.

Global theory: matroids over a Dedekind domain

Let R be a Dedekind domain. Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
There is a function det associating to every R-module an element of $\operatorname{Pic}(R)$, the Picard group of R.
By this function characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N^{\prime}$ we have:

- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\operatorname{proj}}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$.

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions.

Global theory: matroids over a Dedekind domain

Let R be a Dedekind domain. Given an R-module N, let $N_{\text {tors }} \subseteq N$ denote the submodule of its torsion elements, and $N_{\text {proj }}$ denote the projective module $N / N_{\text {tors }}$.
There is a function det associating to every R-module an element of $\operatorname{Pic}(R)$, the Picard group of R.
By this function characterize matroids over a Dedekind domain R :

Theorem (Fink, M.)

$M: 2^{E} \rightarrow\{f$. g. R-modules $\}$ is a matroid over R if and only if every localization at a prime ideal \mathfrak{m} is a matroid over $R_{\mathfrak{m}}$, and for every 1-element minor $N \rightarrow N^{\prime}$ we have:

- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=1$ then $\operatorname{det}(N)=\operatorname{det}\left(N^{\prime}\right)$,
- if $\operatorname{rk}(N)-\operatorname{rk}\left(N^{\prime}\right)=0$ then $\operatorname{det}\left(N_{\text {proj }}\right)=\operatorname{det}\left(N_{\text {proj }}^{\prime}\right)$.

In particular when $\operatorname{Pic}(R)=\{0\}$ there are no global conditions.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\mathrm{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that $(E$, cork, $m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M].
(Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right| .
$$

As a corollary of the previous theorem, we can prove that $(E$, cork, $m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M].
(Arithmetic matroids also satisfy a further axiom (P), granting the
positivity of the arithmetic Tutte polynomial [Brändén-M.]).
Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that $(E, \operatorname{cork}, m)$ is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M].
(Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Arithmetic matroids

If M is a matroid over \mathbb{Z}, we define the two functions

$$
\operatorname{cork}(A)=\operatorname{rk}\left(M(A)_{\operatorname{proj}}\right) \text { and } m(A) \doteq\left|M(A)_{\mathrm{tors}}\right|
$$

As a corollary of the previous theorem, we can prove that $(E$, cork, m) is a "quasi-arithmetic matroid", a structure closely related to the arithmetic matroids introduced by [D'Adderio-M].
(Arithmetic matroids also satisfy a further axiom (P), granting the positivity of the arithmetic Tutte polynomial [Brändén-M.]).

Notice that matroids over \mathbb{Z} and quasi-arithmetic matroids and are not truly equivalent, since the information contained in the former is richer, since there are many groups with the same cardinality.

Definition of the Tutte-Grothendieck group

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

whenever a is not a loop nor coloop for the generic matroid The product is given by $\mathbf{T}_{M} \cdot \mathbf{T}_{M^{\prime}}=\mathbf{T}_{M \oplus M^{\prime}}$

Definition of the Tutte-Grothendieck group

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over $R, K(R$-Mat $)$, to be the abelian group generated by a symbol \mathbf{T}_{M} for each matroid M over R, modulo the relations

$$
\mathbf{T}_{M}=\mathbf{T}_{M \backslash a}+\mathbf{T}_{M / a}
$$

whenever a is not a loop nor coloop for the generic matroid.

Definition of the Tutte-Grothendieck group

Several invariants can be associated to a classical matroid; the universal deletion-contraction invariant is the well-known Tutte polynomial. We will now define and compute the universal deletion-contraction invariant of matroids over any Dedekind domain R.

Essentially following Brylawski, define the Tutte-Grothendieck ring of matroids over $R, K(R$-Mat), to be the abelian group generated by a symbol \mathbf{T}_{M} for each matroid M over R, modulo the relations

$$
\mathbf{T}_{M}=\mathbf{T}_{M \backslash a}+\mathbf{T}_{M / a}
$$

whenever a is not a loop nor coloop for the generic matroid.
The product is given by $\mathbf{T}_{M} \cdot \mathbf{T}_{M^{\prime}}=\mathbf{T}_{M \oplus M^{\prime}}$

Description of the Tutte-Grothendieck group

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring with a \mathbb{Z}-linear basis $\left\{X^{N}\right\}$ with an element X^{N} for each f.g. R-module N up to isomorphism, and product given by $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring $K(R$-Mat) is the subring of $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $]$ generated by X^{P} and Y^{P} as P ranges over rank 1 projective modules, and $X^{N} Y^{N}$ as N ranges over torsion modules. The class of M is

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}
$$

Description of the Tutte-Grothendieck group

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring with a \mathbb{Z}-linear basis $\left\{X^{N}\right\}$ with an element X^{N} for each f.g. R-module N up to isomorphism, and product given by $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring $K(R$-Mat) is the subring of $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $]$ generated by X^{P} and Y^{P} as P ranges over rank 1 projective modules, and $X^{N} Y^{N}$ as N ranges over torsion modules.

Description of the Tutte-Grothendieck group

Define $\mathbb{Z}\left[R\right.$-Mod] to be the ring with a \mathbb{Z}-linear basis $\left\{X^{N}\right\}$ with an element X^{N} for each f.g. R-module N up to isomorphism, and product given by $X^{N} X^{N^{\prime}}=X^{N \oplus N^{\prime}}$.

Theorem (Fink, M.)

The Tutte-Grothendieck ring $K(R$-Mat) is the subring of $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $]$ generated by X^{P} and Y^{P} as P ranges over rank 1 projective modules, and $X^{N} Y^{N}$ as N ranges over torsion modules.
The class of M is

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}
$$

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $T_{M}=\sum_{A C E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)} X^{M(A)_{\text {tors }}} Y^{M(A)_{\text {tors }}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N,
we get the arithmetic Tutte polynomial. This polynomial proved to have
several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)} X^{M(A)_{\text {tors }}} Y^{M(A)_{\text {tors }}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial.
several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes,

Classical Tutte polynomial and arithmetic Tutte polynomial

When R is a field, $\operatorname{Pic}(R)$ is trivial and there is no torsion, thus $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod $] \simeq \mathbb{Z}[X, Y]$.
Then by the substitution $X=x-1$ and $Y=y-1$ we can see that $\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}$ is simply the classical Tutte polynomial, since $\operatorname{dim} \bar{M}(A)$ is the corank of A and $\operatorname{dim} M^{*}(E \backslash A)$ is its nullity.

When $R=\mathbb{Z}$, since there are nontrivial torsion modules, we get

$$
\mathbf{T}_{M}=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)} X^{M(A)_{\text {tors }}} Y^{M(A)_{\text {tors }}}
$$

By evaluating $X^{N} Y^{N}$ to the cardinality of N for each torsion module N, we get the arithmetic Tutte polynomial. This polynomial proved to have several applications to toric arrangements, partition functions, Ehrhart polynomial of zonotopes, graphs, CW-complexes, ...

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\mathrm{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.
Notice that $\mathbf{Q}_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\mathrm{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
Since $(q+|G|) G=q G$ holds for any finite group $G, \mathbf{Q}_{M}(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges. Notice that $\mathbf{Q}_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
Since $(q+|G|) G=q G$ holds for any finite group $G, \mathbf{Q}_{M}(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.
depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over $\mathbb{Z}_{\text {}}$.

The Tutte quasi-polynomial

Another invariant that we can obtain from the Grothendieck-Tutte invariant \mathbf{T}_{M} in the case $R=\mathbb{Z}$ is the Tutte quasi-polynomial

$$
\mathbf{Q}_{M}(x, y)=\sum_{A \subseteq E} \frac{\left|M(A)_{\operatorname{tors}}\right|}{\left|q \cdot M(A)_{\mathrm{tors}}\right|}(x-1)^{\mathrm{rk}(E)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} .
$$

where $q=(x-1)(y-1)$.
Since $(q+|G|) G=q G$ holds for any finite group $G, \mathbf{Q}_{M}(x, y)$ is a quasi-polynomial in q, interpolating between the classical and the arithmetic Tutte polynomials.
This polynomial was introduced in [Brändén- M.], and has application to generalized colorings and flows on graphs with labeled edges.
Notice that $\mathbf{Q}_{M}(x, y)$ is not an invariant of the arithmetic matroid, (as it depends on the groups $M(A)_{\text {tors }}$ and not just on their cardinalities), but it is an invariant of the matroid over \mathbb{Z}.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);

Possible applications:

- combinatorial topology:
[Bajo-Burdick-Chmutov],
[Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

THANK YOU!

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

THANK YOU!

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

THANK YOU!

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties,
- error-correcting codes over rings.

THANK YOU!

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

Developments and applications

Future developments:

- study other examples, such as R coordinate ring of an algebraic curve (e.g. the affine line or an elliptic curve);
- provide cryptomorphic definitions (e.g. the base polytope; a semi-standard Young tableaux description);
Possible applications:
- combinatorial topology: [Bajo-Burdick-Chmutov], [Duval-Klivans-Martin], [Hughes-Swartz], [Cavazzani- M.];
- tropical geometry;
- intersection theory for arrangements of subtori, toric varieties, ...;
- error-correcting codes over rings.

THANK YOU!

