Fully Commutative Elements and Lattice Walks

Philippe Nadeau (CNRS / Université Lyon 1)
Joint work with Riccardo Biagioli and Frédéric Jouhet

FPSAC Paris, June 24th 2013

Fully commutative elements

- (W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.

Fully commutative elements

- (W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.

- Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$.

The minimal words are the reduced decompositions of w.

Fully commutative elements

- (W, S) Coxeter group W given by Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.

- Length $\ell(w)=$ minimal l such that $w=s_{1} s_{2} \ldots s_{l}$.

The minimal words are the reduced decompositions of w.

Fundamental property : Given any two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

Fully commutative elements

An element w is fully commutative if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

Commutation class: equivalence class of words under the commutation relations $s t \equiv t s$ when $m_{s t}=2$.
So w is fully commutative if its reduced decompositions form only one commutation class.

Fully commutative elements

An element w is fully commutative if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

Commutation class: equivalence class of words under the commutation relations $s t \equiv t s$ when $m_{s t}=2$.
So w is fully commutative if its reduced decompositions form only one commutation class.

Proposition [Stembridge '96] A commutation class of reduced words corresponds to a FC element if and only no element in it contains a factor $\underbrace{s t s \cdots}_{m_{s t}}$ for a $m_{s t} \geq 3$.

Previous work

- The seminal papers are [Stembridge '96,'98]:

1. First properties;
2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.

Previous work

- The seminal papers are [Stembridge '96,'98]:

1. First properties;
2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.

- [Fan '95] studies FC elements in the special case where $m_{s t} \leq 3$ (the simply laced case).
- [Graham '95] shows that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W.
- Subsequent works [Green,Shi,Cellini,Papi] relate FC elements (and some related elements) to Kazhdan-Lusztig cells.
- [Hanusa-Jones '09] enumerates FC elements for the affine type \widetilde{A}_{n} with respect to length.

Results

We consider FC elements in all affine Coxeter groups W, and study their enumeration with respect to length:

$$
W^{F C}(q):=\sum_{w \text { is } \mathrm{FC}} q^{\ell(w)}=\sum_{\ell \geq 0} W_{\ell}^{F C} q^{\ell}
$$

Results

We consider FC elements in all affine Coxeter groups W, and study their enumeration with respect to length:

$$
W^{F C}(q):=\sum_{w \text { is } \mathrm{FC}} q^{\ell(w)}=\sum_{\ell \geq 0} W_{\ell}^{F C} q^{\ell}
$$

Main Results [Biagioli-Jouhet-N. '12]
(i) Characterization of FC elements for any affine W;
(ii) Computation of $W^{F C}(q)$;
(iii) If W irreducible, $\left(W_{\ell}^{F C}\right)_{\ell \geq 0}$ is ultimately periodic.

Affine Type	\widetilde{A}_{n-1}	\widetilde{C}_{n}	\widetilde{B}_{n+1}	\widetilde{D}_{n+2}	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{G}_{2}	$\widetilde{F}_{4}, \widetilde{E}_{8}$
PERIODICITY	n	$n+1$	$(n+1)(2 n+1)$	$n+1$	4	9	5	1

Proof is case by case: I will focus on type \widetilde{A} today.

1. FC elements and Heaps

Heaps

Given (W, S), consider the Coxeter graph Γ with vertices S and edges $\{s, t\}$ iff $m_{s, t} \geq 3$.

No edge between s and t
$\Leftrightarrow s$ and t commute.

Heaps

Given (W, S), consider the Coxeter graph Γ with vertices S and edges $\{s, t\}$ iff $m_{s, t} \geq 3$.

No edge between s and t
$\Leftrightarrow s$ and t commute.
Definition: A Γ-heap (H, \leq, ϵ) is a poset (H, \leq) together with a labeling function $\epsilon: H \rightarrow S$ such that:

1. For each edge $\{s, t\} \in \Gamma$, the poset $H_{\mid\{s, t\}}$ is a chain.
2. The poset (H, \leq) is the transitive closure of these chains.

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."

$$
s_{1} s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}
$$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."

$$
\text { (51) } s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}
$$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."
(31) $5 s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."
(31) SO3 $s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."
(15乌3 $)^{5} s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."
(15乌3@乌 $s_{3} s_{1} s_{2} s_{1}$

\Leftarrow Take the labels of each linear extension of H

Heaps $=$ Commutation classes

Theorem [Viennot '86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.
\Rightarrow "Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones."

$$
s_{1} s_{0} s_{3} s_{2} s_{0} s_{3} s_{1} s_{2} s_{1}
$$

\Leftarrow Take the labels of each linear extension of H

FC heaps

Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{s t s \cdots}_{m_{s t}}$
\rightarrow let us call FC heaps the corresponding heaps.

FC heaps

Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{s t \omega_{s}}_{m_{s t}}$
\rightarrow let us call FC heaps the corresponding heaps.
Proposition [Stembridge '95] FC heaps are characterized by the following two restrictions:
(a) No covering relation

I_{s}^{s}

(b) No convex chain of the form

FC heaps

Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{s t s \cdots}_{m_{s t}}$
\rightarrow let us call FC heaps the corresponding heaps.
Proposition [Stembridge '95] FC heaps are characterized by the following two restrictions:
(a) No covering relation

(b) No convex chain of the form

Summary

FC element w Length $\ell(w)$
$\longleftrightarrow \quad$ Heap H satisfying (a) and
Number of elements $|H|$

1. FC elements in type \widetilde{A}

Affine permutations

Affine permutations

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Representation as the group of permutations σ of \mathbb{Z} such that:
(i) $\forall i \in \mathbb{Z} \sigma(i+n)=\sigma(i)+n$, and
(ii) $\sum_{i=1}^{n} \sigma(i)=\sum_{i=1}^{n} i$.
$\ldots, 13,-12,|-14,-1,17,-8,|\underset{\sigma(1) \sigma(2) \sigma(3) \sigma(4)}{-10,3,21,-4, \mid-6,7,25,0,}|-2,11,29,4, \ldots$

Affine permutations

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
& s_{i} s_{j}=s_{j} s_{i}, \quad|j-i|>1
\end{aligned}
$$

Representation as the group of permutations σ of \mathbb{Z} such that:
(i) $\forall i \in \mathbb{Z} \sigma(i+n)=\sigma(i)+n$, and
(ii) $\sum_{i=1}^{n} \sigma(i)=\sum_{i=1}^{n} i$.
$\ldots, 13,-12,|-14,-1,17,-8,|\underset{\sigma(1) \sigma(2) \sigma(3) \sigma(4)}{-\mathbf{1 0}, \mathbf{3}, \mathbf{2 1},-4,}|-6,7,25,0|-2,11,29,4,, \ldots$
Theorem [Green '01] Fully commutative elements of type \widetilde{A}_{n-1} correspond to 321-avoiding permutations.
This generalizes [Billey, Jockush,Stanley '93] for type A_{n-1}, i.e. the symmetric group S_{n}.

Periodicity

Theorem [Hanusa-Jones '09] The sequence $\left(\widetilde{A}_{n-1, l}^{F C}\right)_{l \geq 0}$ is ultimately periodic of period n.

$$
\begin{aligned}
& \widetilde{A}_{2}^{F C}(q)=1+3 q+\mathbf{6} \mathbf{q}^{\mathbf{2}}+\mathbf{6} \mathbf{q}^{\mathbf{3}}+\mathbf{6} \mathbf{q}^{\mathbf{4}}+\cdots \\
& \widetilde{A}_{3}^{F C}(q)=1+4 q+10 q^{2}+\mathbf{1 6} \mathbf{q}^{\mathbf{3}}+\mathbf{1 8} \mathbf{q}^{\mathbf{4}}+\mathbf{1 6} \mathbf{q}^{\mathbf{5}}+\mathbf{1 8} \mathbf{q}^{\mathbf{6}}+\cdots \\
& \widetilde{A}_{4}^{F C}(q)=1+5 q+15 q^{2}+30 q^{3}+45 q^{4} \\
& \quad+\mathbf{5 0} \mathbf{q}^{\mathbf{5}}+\mathbf{5 0} \mathbf{q}^{\mathbf{6}}+\mathbf{5 0} \mathbf{q}^{\mathbf{7}}+\mathbf{5 0} \mathbf{q}^{\mathbf{8}}+\mathbf{5 0} \mathbf{q}^{\mathbf{9}}+\cdots \\
& \widetilde{A}_{5}^{F C}(q)=1+6 q+21 q^{2}+50 q^{3}+90 q^{4}+126 q^{5}+146 q^{6} \\
& \quad+\mathbf{1 5 0} \mathbf{q}^{\mathbf{7}}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{8}}+\mathbf{1 5 2} \mathbf{q}^{\mathbf{9}}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{1 0}}+\mathbf{1 5 0} \mathbf{q}^{\mathbf{1 1}}+\mathbf{1 5 8} \mathbf{q}^{\mathbf{1 2}} \\
& \quad+\mathbf{1 5 0} \mathbf{q}^{\mathbf{3}}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{1 4}}+\mathbf{1 5 2} \mathbf{q}^{\mathbf{1 5}}+\mathbf{1 5 6} \mathbf{q}^{\mathbf{1 6}}+\mathbf{1 5 0} \mathbf{q}^{\mathbf{1 7}}+\mathbf{1 5 8} \mathbf{q}^{\mathbf{1 8}} \\
& \quad+\cdots
\end{aligned}
$$

Proof uses affine permutations.

Periodicity

Theorem [Hanusa-Jones '09] The sequence $\left(\widetilde{A}_{n-1, l}^{F C}\right)_{l \geq 0}$ is ultimately periodic of period n.

- The authors also:
- Show that periodicity starts no later than $l=2\lceil n / 2\rceil\lfloor n / 2\rfloor$;
- Compute all series $\widetilde{A}_{n-1}^{F C}(q)$.

Periodicity

Theorem [Hanusa-Jones '09] The sequence $\left(\widetilde{A}_{n-1, l}^{F C}\right)_{l \geq 0}$ is ultimately periodic of period n.

- The authors also:
- Show that periodicity starts no later than $l=2\lceil n / 2\rceil\lfloor n / 2\rfloor$;
- Compute all series $\widetilde{A}_{n-1}^{F C}(q)$.
- We revisit the same problem using FC heaps.
- Proof that periodicity starts precisely at
$l=1+\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor($ conjectured by $[\mathrm{H}-\mathrm{J}])$;
- In the process, we will get simpler rules to compute the generating functions $\widetilde{A}_{n-1}^{F C}(q)$.

FC heaps in type \widetilde{A}

\rightarrow FC heaps must avoid

FC heaps in type \widetilde{A}

\rightarrow FC heaps must avoid

Proposition FC heaps are characterized by:
For all $i, H_{\mid\left\{s_{i}, s_{i+1}\right\}}$ is a chain with alternating labels

FC Heap

$$
\begin{array}{lll}
s_{0} & s_{1} & s_{2}
\end{array}
$$

From heaps to paths

No labels needed at height 0 .

Bijection

Let \mathcal{O}_{n}^{*} be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h>0$ are labeled L or R.

Bijection

Let \mathcal{O}_{n}^{*} be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h>0$ are labeled L or R.

Theorem[BJN '12] This is a bijection between

1. FC elements of \widetilde{A}_{n-1} and
2. \mathcal{O}_{n}^{*}

Bijection

Let \mathcal{O}_{n}^{*} be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h>0$ are labeled L or R.

Theorem[BJN '12] This is a bijection between

1. FC elements of \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$.

The non-trivial part of the proof is to show surjectivity.

Bijection

Let \mathcal{O}_{n}^{*} be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h>0$ are labeled L or R.

Theorem[BJN '12] This is a bijection between

1. FC elements of \widetilde{A}_{n-1} and
2. $\mathcal{O}_{n}^{*} \backslash\{$ paths at constant height $h>0$ with all steps having the same label L or $R\}$.

The non-trivial part of the proof is to show surjectivity.

- Remark that the length of the word is sent to the area under the path.

Corollary $\widetilde{A}_{n-1}^{F C}(q)=\mathcal{O}_{n}^{*}(q)-\frac{2 q^{n}}{1-q^{n}}$

Enumerative results

- For l large enough, the sequence $\left(\mathcal{O}_{n, l}^{*}\right)_{l}$ becomes periodic with period n (proof: just shift the paths up by 1 unit).

Enumerative results

- For l large enough, the sequence $\left(\mathcal{O}_{n, l}^{*}\right)_{l}$ becomes periodic with period n (proof: just shift the paths up by 1 unit).
"Large enough" ? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h=0$

$$
\rightarrow l \leq l_{0}=\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor .
$$

\rightarrow Periodicity starts exactly at $l_{0}+1$

Enumerative results

- For l large enough, the sequence $\left(\mathcal{O}_{n, l}^{*}\right)_{l}$ becomes periodic with period n (proof: just shift the paths up by 1 unit).
"Large enough" ? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h=0$
$\rightarrow l \leq l_{0}=\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor$.
\rightarrow Periodicity starts exactly at $l_{0}+1$

- Finally, $\widetilde{A}_{n-1}^{F C}(q)=\frac{q^{n}\left(X_{n}(q)-2\right)}{1-q^{n}}+X_{n}^{*}(q)$

Enumerative results

- For l large enough, the sequence $\left(\mathcal{O}_{n, l}^{*}\right)_{l}$ becomes periodic with period n (proof: just shift the paths up by 1 unit).
"Large enough" ? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h=0$
$\rightarrow l \leq l_{0}=\lceil(n-1) / 2\rceil\lfloor(n+1) / 2\rfloor$.
\rightarrow Periodicity starts exactly at $l_{0}+1$

- Finally, $\widetilde{A}_{n-1}^{F C}(q)=\frac{q^{n}\left(X_{n}(q)-2\right)}{1-q^{n}}+X_{n}^{*}(q)$

$$
\sum_{n \geq 0} X_{n}(q) x^{n}=Y(x)\left(1+q x^{2} \frac{\partial(x Y)}{\partial x}(x q)\right) \quad Y^{*}(x)=1+x Y^{*}(x)+q x\left(Y^{*}(x)-1\right) Y^{*}(q x)
$$

$$
\sum_{n \geq 0} X_{n}^{*}(q) x^{n}=Y^{*}(x)\left(1+q x^{2} \frac{\partial(x Y)}{\partial x}(x q)\right) \quad Y(x)=\frac{Y^{*}(x)}{1-x Y^{*}(x)}
$$

3. Other Types

Other affine types

$\stackrel{\widetilde{G}_{2}}{\circ}$

Other affine types

Theorem [BJN '12] For each irreducible affine group W, the sequence $\left(W_{l}^{F C}\right)_{l \geq 0}$ is ultimately periodic, with period recorded in the following table.

Affine Type	\widetilde{A}_{n-1}	\widetilde{C}_{n}	\widetilde{B}_{n+1}	\widetilde{D}_{n+2}	\widetilde{E}_{6}	\widetilde{E}_{7}	\widetilde{G}_{2}	$\widetilde{F}_{4}, \widetilde{E}_{8}$
Periodicity	n	$n+1$	$(n+1)(2 n+1)$	$n+1$	4	9	5	1

Type \widetilde{C}

$$
\begin{aligned}
\widetilde{C}_{4}^{F C}(q)= & 1+5 q+14 q^{2}+29 q^{3}+47 q^{4}+64 q^{5}+76 q^{6}+81 q^{7} \\
& +80 q^{8}+75 q^{9}+68 q^{10}+63 q^{11}+61 q^{12} \\
& +\mathbf{5 9} \mathbf{q}^{\mathbf{1 3}}+\mathbf{5 9} \mathbf{q}^{\mathbf{1 4}}+\mathbf{6 0} \mathbf{q}^{\mathbf{1 5}}+\mathbf{5 9} \mathbf{q}^{\mathbf{1 6}}+\mathbf{5 9} \mathbf{q}^{\mathbf{1 7}} \\
& +\mathbf{5 9} \mathbf{q}^{\mathbf{1 8}}+\mathbf{5 9} \mathbf{q}^{\mathbf{1 9}}+\mathbf{6 0} \mathbf{q}^{\mathbf{2 0}}+\mathbf{5 9} \mathbf{q}^{\mathbf{2 1}}+\mathbf{5 9} \mathbf{q}^{\mathbf{2 2}} \\
& +\mathbf{5 9} \mathbf{q}^{\mathbf{2 3}}+\mathbf{5 9} \mathbf{q}^{\mathbf{2 4}}+\mathbf{6 0} \mathbf{q}^{\mathbf{2 5}}+\mathbf{5 9} \mathbf{q}^{\mathbf{2 6}}+\mathbf{5 9} \mathbf{q}^{\mathbf{2 7}} \\
& +\cdots
\end{aligned}
$$

We obtain here also certain heaps corresponding to paths, but there are in addition infinitely many exceptional FC heaps.

Type \widetilde{C}

Two families of paths survive for large enough length:

(2) Finite factors of

Type \widetilde{B}

$\widetilde{B}_{3}^{F C}(q)=1+4 q+9 q^{2}+15 q^{3}+19 q^{4}+21 q^{5}+21 q^{6}+18 q^{7}+$ $17 q^{8}+19 q^{9}+18 q^{10}+17 q^{11}+19 q^{12}+17 q^{13}+17 q^{14}+20 q^{15}+$ $17 q^{16}+17 q^{17}+19 q^{18}+17 q^{19}+18 q^{20}+19 q^{21}+17 q^{22}+$ $17 q^{23}+19 q^{24}+18 q^{25}+17 q^{26}+19 q^{27}+17 q^{28}+17 q^{29}+$ $20 q^{30}+17 q^{31}+17 q^{32}+19 q^{33}+17 q^{34}+18 q^{35}+19 q^{36}+17 q^{37}+$ $17 q^{38}+19 q^{39}+18 q^{40}+17 q^{41}+19 q^{42}+17 q^{43}+17 q^{44}+20 q^{45}+$ $17 q^{46}+17 q^{47}+19 q^{48}+17 q^{49}+18 q^{50}+19 q^{51}+17 q^{52}+17 q^{53}+$ $19 q^{54}+18 q^{55}+17 q^{56}+19 q^{57}+17 q^{58}+17 q^{59}+20 q^{60}+17 q^{61}+$ $17 q^{62}+19 q^{63}+17 q^{64}+18 q^{65}+19 q^{66}+17 q^{67}+17 q^{68}+19 q^{69}+$ $18 q^{70}+17 q^{71}+19 q^{72}+17 q^{73}+17 q^{74}+20 q^{75}+17 q^{76}+\cdots$

Period 15 corresponding to $(n+1)(2 n+1)$ for $n=2$.

Exceptional types

$\widetilde{E}_{7} 0 _0 \square$
$\widetilde{G}_{2} \stackrel{6}{6}$

Related Work

- Enumeration of finite Coxeter groups wrt to length.
- FC involutions correspond to "self-dual FC heaps". Our methods can be easily applied, and similar results hold (periodicity, generating functions)

Related Work

- Enumeration of finite Coxeter groups wrt to length.
- FC involutions correspond to "self-dual FC heaps". Our methods can be easily applied, and similar results hold (periodicity, generating functions)
- Theorem [Jouhet, N. '13]

For all affine groups W, we can determine the minimal period.

Related Work

- Enumeration of finite Coxeter groups wrt to length.
- FC involutions correspond to "self-dual FC heaps".

Our methods can be easily applied, and similar results hold (periodicity, generating functions)

- Theorem [Jouhet, N. '13]

For all affine groups W, we can determine the minimal period.

- Theorem in progress [$\mathrm{N} .{ }^{\text {. }} 13$]
(i) For any Coxeter system (W, S), the series $W^{F C}(q)$ is a rational function.
(ii) The sequence $\left(W_{l}^{F C}\right)_{l \geq 0}$ is ultimately periodic if and only if W is affine, $F C$-finite or is one of two exceptions.

Further questions

- Other statistics to consider, e.g. descent numbers.
- Formulas for our generating functions ? (and not just functional equations/recurrences).
- Type-free proofs and formulas?
- Applications to Temperley-Lieb algebras ?

Further questions

- Other statistics to consider, e.g. descent numbers.
- Formulas for our generating functions ? (and not just functional equations/recurrences).
- Type-free proofs and formulas ?
- Applications to Temperley-Lieb algebras ?

THANK YOU

Type \widetilde{C}_{2}

Type \widetilde{C}

Other families

