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• (W,S) Coxeter group W given by Coxeter matrix (mst)s,t∈S .
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sts · · ·︸ ︷︷ ︸
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= tst · · ·︸ ︷︷ ︸
mst
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Fully commutative elements

• (W,S) Coxeter group W given by Coxeter matrix (mst)s,t∈S .

Relations:


s2 = 1

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mst

Braid relations

• Length `(w)= minimal l such that w = s1s2 . . . sl.

The minimal words are the reduced decompositions of w.

Fundamental property : Given any two reduced
decompositions of w, there is a sequence of braid relations
which can be applied to transform one into the other.



Fully commutative elements

An element w is fully commutative if given two reduced
decompositions of w, there is a sequence of commutation
relations which can be applied to transform one into the other.

So w is fully commutative if its reduced decompositions form
only one commutation class.

Commutation class: equivalence class of words under the
commutation relations st ≡ ts when mst = 2.



Fully commutative elements

An element w is fully commutative if given two reduced
decompositions of w, there is a sequence of commutation
relations which can be applied to transform one into the other.

So w is fully commutative if its reduced decompositions form
only one commutation class.

Proposition [Stembridge ’96] A commutation class of reduced
words corresponds to a FC element if and only no element in it
contains a factor sts · · ·︸ ︷︷ ︸

mst

for a mst ≥ 3.

Commutation class: equivalence class of words under the
commutation relations st ≡ ts when mst = 2.
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1. First properties;
2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.



Previous work

• The seminal papers are [Stembridge ’96,’98]:
1. First properties;
2. Classification of W with a finite number of FC elements;
3. Enumeration of these elements in each of these cases.

• [Fan ’95] studies FC elements in the special case where
mst ≤ 3 (the simply laced case).

• Subsequent works [Green,Shi,Cellini,Papi] relate FC elements
(and some related elements) to Kazhdan-Lusztig cells.

• [Graham ’95] shows that FC elements in any Coxeter group
W naturally index a basis of the (generalized) Temperley-Lieb
algebra of W .

• [Hanusa-Jones ’09] enumerates FC elements for the affine

type Ãn with respect to length.



Results

We consider FC elements in all affine Coxeter groups W , and
study their enumeration with respect to length:

WFC(q) :=
∑

w is FC

q`(w) =
∑
`≥0

WFC
` q`



Results

We consider FC elements in all affine Coxeter groups W , and
study their enumeration with respect to length:

WFC(q) :=
∑

w is FC

q`(w) =
∑
`≥0

WFC
` q`

Main Results [Biagioli-Jouhet-N. ’12]
(i) Characterization of FC elements for any affine W ;
(ii) Computation of WFC(q);
(iii) If W irreducible, (WFC

` )`≥0 is ultimately periodic.

Affine Type Ãn−1 C̃n B̃n+1 D̃n+2 Ẽ6 Ẽ7 G̃2 F̃4, Ẽ8

Periodicity n n+ 1 (n+ 1)(2n+ 1) n+ 1 4 9 5 1

Proof is case by case: I will focus on type Ã today.
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Heaps

Given (W,S), consider the Coxeter graph Γ with vertices S
and edges {s, t} iff ms,t ≥ 3.

4
No edge between s and t
⇔ s and t commute.

s2

s3

5
s1s0 s1



Heaps

Definition: A Γ-heap (H,≤, ε) is a poset (H,≤) together
with a labeling function ε : H → S such that:
1. For each edge {s, t} ∈ Γ, the poset H|{s,t} is a chain.
2. The poset (H,≤) is the transitive closure of these chains.

Given (W,S), consider the Coxeter graph Γ with vertices S
and edges {s, t} iff ms,t ≥ 3.

4
No edge between s and t
⇔ s and t commute.

s2

s3

5

s0

s1s0

s0

s1

s1

s1

s1

s2

s2

s3

s3

s2

s3

s1s0 s1
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⇒ “Spell any word of the class, drop the letters, add edges
when the letter does not commute with previous ones.”
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Heaps = Commutation classes

Theorem [Viennot ’86] Bijection between:
(i) Commutation classes in W .
(ii) Γ-heaps.

⇐ Take the labels of each linear extension of H
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Proposition [Stembridge ’95] FC heaps are characterized by
the following two restrictions:
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FC heaps

Proposition [Stembridge ’95] FC heaps are characterized by
the following two restrictions:

FC element w Heap H satisfying (a) and (b)

Length `(w) Number of elements |H|

Summary

s
s

s
s
s

t
t

mst

(a) No covering relation (b) No convex chain of the form

Recall that FC elements correspond to commutation classes of
reduced words avoiding long braid words sts · · ·︸ ︷︷ ︸

mst

→ let us call FC heaps the corresponding heaps.
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Affine permutations

s1 sn−1

Ãn−1

s2

s0 sisi+1si = si+1sisi+1

sisj = sjsi, |j − i| > 1



Affine permutations

s1 sn−1

Ãn−1

s2

s0

Representation as the group of permutations σ of Z such that:
(i) ∀i ∈ Z σ(i+ n) = σ(i) + n , and
(ii)

∑n
i=1 σ(i) =

∑n
i=1 i.

. . . , 13,−12,−14,−1, 17,−8, − 10,3,21,−4,−6, 7, 25, 0,−2, 11, 29, 4, . . .
σ(1)σ(2)σ(3)σ(4)

sisi+1si = si+1sisi+1

sisj = sjsi, |j − i| > 1



Affine permutations

s1 sn−1

Ãn−1

s2

s0

Representation as the group of permutations σ of Z such that:
(i) ∀i ∈ Z σ(i+ n) = σ(i) + n , and
(ii)

∑n
i=1 σ(i) =

∑n
i=1 i.

Theorem [Green ’01] Fully commutative elements of type

Ãn−1 correspond to 321-avoiding permutations.

. . . , 13,−12,−14,−1, 17,−8, − 10,3,21,−4,−6, 7, 25, 0,−2, 11, 29, 4, . . .
σ(1)σ(2)σ(3)σ(4)

sisi+1si = si+1sisi+1

sisj = sjsi, |j − i| > 1

This generalizes [Billey,Jockush,Stanley ’93] for type An−1, i.e.
the symmetric group Sn.



Periodicity

ÃFC
2 (q) = 1 + 3q + 6q2 + 6q3 + 6q4 + · · ·

ÃFC
3 (q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·

ÃFC
4 (q) = 1 + 5q + 15q2 + 30q3 + 45q4

+50q5 + 50q6 + 50q7 + 50q8 + 50q9 + · · ·

ÃFC
5 (q) = 1 + 6q + 21q2 + 50q3 + 90q4 + 126q5 + 146q6

+150q7 + 156q8 + 152q9 + 156q10 + 150q11 + 158q12

+150q13 + 156q14 + 152q15 + 156q16 + 150q17 + 158q18

+ · · ·

Proof uses affine permutations.

Theorem [Hanusa-Jones ’09] The sequence (ÃFC
n−1,l)l≥0 is

ultimately periodic of period n.
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• The authors also:
- Show that periodicity starts no later than l = 2dn/2ebn/2c;
- Compute all series ÃFC

n−1(q).



Periodicity

Theorem [Hanusa-Jones ’09] The sequence (ÃFC
n−1,l)l≥0 is

ultimately periodic of period n.

• The authors also:
- Show that periodicity starts no later than l = 2dn/2ebn/2c;
- Compute all series ÃFC

n−1(q).

• We revisit the same problem using FC heaps.

- In the process, we will get simpler rules to compute the
generating functions ÃFC

n−1(q).

- Proof that periodicity starts precisely at
l = 1 + d(n− 1)/2eb(n+ 1)/2c (conjectured by [H-J]);



FC heaps in type Ã

→ FC heaps must avoid

s1 sn−1s2

s0

si si+1 si+2

∅

si si+1 si+2

∅
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FC heaps in type Ã

→ FC heaps must avoid

s1 sn−1s2

s0

s1 s2

FC Heap

s0 s0

si si+1 si+2

∅

si si+1 si+2

∅

si

Proposition FC heaps are characterized by:
For all i, H|{si,si+1} is a chain with alternating labels



From heaps to paths

s1 s2

sn−1

FC Heap

Path
R

R

0 n

L

s0 s0

No labels needed at height 0.



Bijection

Let O∗n be the set of length n positive paths with starting and
ending point at the same height. Horizontal steps at height
h > 0 are labeled L or R.
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Bijection

Let O∗n be the set of length n positive paths with starting and
ending point at the same height. Horizontal steps at height
h > 0 are labeled L or R.

Theorem[BJN ’12] This is a bijection between

1. FC elements of Ãn−1 and
2. O∗n \{paths at constant height h > 0 with all steps having

the same label L or R}.

Corollary ÃFC
n−1(q) = O∗n(q)− 2qn

1− qn

• Remark that the length of the word is sent to the area
under the path.

The non-trivial part of the proof is to show surjectivity.
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• For l large enough, the sequence (O∗n,l)l becomes periodic
with period n (proof: just shift the paths up by 1 unit).
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→ Periodicity starts exactly at l0 + 1 0

(n odd)
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Enumerative results

• For l large enough, the sequence (O∗n,l)l becomes periodic
with period n (proof: just shift the paths up by 1 unit).

“Large enough” ? Shifting is not bijective if
there exists a path of area l with a horizontal
step at height h = 0
→ l ≤ l0 = d(n− 1)/2eb(n+ 1)/2c.
→ Periodicity starts exactly at l0 + 1

∑
n≥0

Xn(q)xn = Y (x)

(
1 + qx2

∂(xY )

∂x
(xq)

)
Y ∗(x) = 1 + xY ∗(x) + qx(Y ∗(x)− 1)Y ∗(qx)

Y (x) =
Y ∗(x)

1− xY ∗(x)

• Finally, ÃFC
n−1(q) =

qn(Xn(q)− 2)

1− qn
+X∗n(q)

∑
n≥0

X∗n(q)xn = Y ∗(x)

(
1 + qx2

∂(xY )

∂x
(xq)

)

0

(n odd)

n

l0



3. Other types



Other affine types

4
s1 sn−1

t1

t2 u

B̃n+1

s1

t1

t2

u1

u2
sn−1

D̃n+2

4 4
t s1 usn−1

C̃n

6

Ẽ6

Ẽ7

G̃2



Other affine types

Affine Type Ãn−1 C̃n B̃n+1 D̃n+2 Ẽ6 Ẽ7 G̃2 F̃4, Ẽ8

Periodicity n n+ 1 (n+ 1)(2n+ 1) n+ 1 4 9 5 1

Theorem [BJN ’12] For each irreducible affine group W , the
sequence (WFC

l )l≥0 is ultimately periodic, with period
recorded in the following table.

4
s1 sn−1

t1

t2 u

B̃n+1

s1

t1

t2

u1

u2
sn−1

D̃n+2

4 4
t s1 usn−1

C̃n

6

Ẽ6

Ẽ7

G̃2



Type C̃

C̃FC
4 (q) =1 + 5q + 14q2 + 29q3 + 47q4 + 64q5 + 76q6 + 81q7

+ 80q8 + 75q9 + 68q10 + 63q11 + 61q12

+59q13 + 59q14 + 60q15 + 59q16 + 59q17

+59q18 + 59q19 + 60q20 + 59q21 + 59q22

+59q23 + 59q24 + 60q25 + 59q26 + 59q27

+ · · ·

We obtain here also certain heaps corresponding to paths,
but there are in addition infinitely many exceptional FC heaps.

4 4
t s1 usn−1

C̃n



Type C̃

t s1 s2 s3 u

4 4

Two families of paths survive for large enough length:

L

1 2 Finite factors of

t s1 s2 s3 u

4 4

Path



Type B̃

B̃FC
3 (q) = 1 + 4q+ 9q2 + 15q3 + 19q4 + 21q5 + 21q6 + 18q7 +

17q8 + 19q9 + 18q10 + 17q11 + 19q12 + 17q13 + 17q14 + 20q15 +
17q16 + 17q17 + 19q18 + 17q19 + 18q20 + 19q21 + 17q22 +
17q23 + 19q24 + 18q25 + 17q26 + 19q27 + 17q28 + 17q29 +
20q30+17q31+17q32+19q33+17q34+18q35+19q36+17q37+
17q38+19q39+18q40+17q41+19q42+17q43+17q44+20q45+
17q46+17q47+19q48+17q49+18q50+19q51+17q52+17q53+
19q54+18q55+17q56+19q57+17q58+17q59+20q60+17q61+
17q62+19q63+17q64+18q65+19q66+17q67+17q68+19q69+
18q70 + 17q71 + 19q72 + 17q73 + 17q74 + 20q75 + 17q76 + · · ·

Period 15 corresponding to (n+ 1)(2n+ 1) for n = 2.

4 B̃3



Exceptional types

6Ẽ6 Ẽ7 G̃2



Related Work

• FC involutions correspond to “self-dual FC heaps”.
Our methods can be easily applied, and similar results hold
(periodicity, generating functions)

• Enumeration of finite Coxeter groups wrt to length.



Related Work

• FC involutions correspond to “self-dual FC heaps”.
Our methods can be easily applied, and similar results hold
(periodicity, generating functions)

• Theorem [Jouhet, N. ’13]
For all affine groups W , we can determine the minimal period.

• Enumeration of finite Coxeter groups wrt to length.



Related Work

• FC involutions correspond to “self-dual FC heaps”.
Our methods can be easily applied, and similar results hold
(periodicity, generating functions)

• Theorem in progress [N. ’13]
(i) For any Coxeter system (W,S), the series WFC(q) is a
rational function.
(ii) The sequence (WFC

l )l≥0 is ultimately periodic if and only
if W is affine, FC-finite or is one of two exceptions.

• Theorem [Jouhet, N. ’13]
For all affine groups W , we can determine the minimal period.

• Enumeration of finite Coxeter groups wrt to length.



Further questions

• Other statistics to consider, e.g. descent numbers.

• Formulas for our generating functions ? (and not just
functional equations/recurrences).

• Type-free proofs and formulas ?

• Applications to Temperley-Lieb algebras ?



Further questions

• Other statistics to consider, e.g. descent numbers.

• Formulas for our generating functions ? (and not just
functional equations/recurrences).

• Type-free proofs and formulas ?

THANK YOU

• Applications to Temperley-Lieb algebras ?





Type C̃2



Type C̃

3

4

Other families
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