Fully Commutative Elements and Lattice Walks

Philippe Nadeau (CNRS / Université Lyon 1)
Joint work with Riccardo Biagioli and Frédéric Jouhet

FPSAC Paris, June 24th 2013
Fully commutative elements

- \((W, S)\) Coxeter group \(W\) given by Coxeter matrix \((m_{st})_{s,t \in S}\).

Relations:
\[
\begin{align*}
 s^2 &= 1 \\
 s t s \cdots &= t s t \cdots
\end{align*}
\]

\(\underbrace{m_{st}}_{m_{st}} \quad \underbrace{m_{st}}_{m_{st}}\) Braid relations
Fully commutative elements

- \((W, S)\) Coxeter group \(W\) given by Coxeter matrix \((m_{st})_{s,t \in S}\).

Relations:
\[
\begin{align*}
 s^2 &= 1 \\
 s \cdot t \cdot s \cdot \cdots &= t \cdot s \cdot t \cdot \cdots
\end{align*}
\]

- **Length** \(\ell(w)\) = minimal \(l\) such that \(w = s_1 s_2 \ldots s_l\).

The minimal words are the reduced decompositions of \(w\).
Fully commutative elements

- \((W, S)\) Coxeter group \(W\) given by Coxeter matrix \((m_{st})_{s,t \in S}\).

Relations:
\[
\begin{align*}
 s^2 &= 1 \\
 sts \cdots &= tst \cdots
\end{align*}
\]

- **Length** \(\ell(w)\) = minimal \(l\) such that \(w = s_1 s_2 \ldots s_l\).

The minimal words are the reduced decompositions of \(w\).

Fundamental property : Given any two reduced decompositions of \(w\), there is a sequence of braid relations which can be applied to transform one into the other.
An element w is **fully commutative** if given two reduced decompositions of w, there is a sequence of **commutation relations** which can be applied to transform one into the other.

Commutation class: equivalence class of words under the commutation relations $st \equiv ts$ when $m_{st} = 2$.

So w is fully commutative if its reduced decompositions form only one commutation class.
Fully commutative elements

An element \(w \) is **fully commutative** if given two reduced decompositions of \(w \), there is a sequence of **commutation relations** which can be applied to transform one into the other.

Commutation class: equivalence class of words under the commutation relations \(st \equiv ts \) when \(m_{st} = 2 \).

So \(w \) is fully commutative if its reduced decompositions form only one commutation class.

Proposition [Stembridge ’96] A commutation class of reduced words corresponds to a FC element if and only no element in it contains a factor \(\underbrace{sts \cdots}_{m_{st}} \) for a \(m_{st} \geq 3 \).
Previous work

• The seminal papers are [Stembridge ’96,’98]:
 1. First properties;
 2. Classification of W with a finite number of FC elements;
 3. Enumeration of these elements in each of these cases.
Previous work

- The seminal papers are [Stembridge ’96,’98]:
 1. First properties;
 2. Classification of W with a finite number of FC elements;
 3. Enumeration of these elements in each of these cases.

- [Fan ’95] studies FC elements in the special case where $m_{st} \leq 3$ (the simply laced case).

- [Graham ’95] shows that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W.

- Subsequent works [Green,Shi,Cellini,Papi] relate FC elements (and some related elements) to Kazhdan-Lusztig cells.

- [Hanusa-Jones ’09] enumerates FC elements for the affine type \widetilde{A}_n with respect to length.
Results

We consider FC elements in all affine Coxeter groups W, and study their enumeration with respect to length:

$$W^{FC}(q) := \sum_{w \text{ is FC}} q^{\ell(w)} = \sum_{\ell \geq 0} W_{\ell}^{FC} q^\ell$$
Results

We consider FC elements in all **affine Coxeter groups** W, and study their enumeration with respect to length:

\[
W^{FC}(q) := \sum_{w \text{ is FC}} q^{\ell(w)} = \sum_{\ell \geq 0} W^{FC}_\ell q^\ell
\]

Main Results [Biagioli-Jouhet-N. '12]

(i) **Characterization** of FC elements for any affine W;
(ii) **Computation of** $W^{FC}(q)$;
(iii) If W irreducible, $(W^{FC}_\ell)_{\ell \geq 0}$ is **ultimately periodic**.

<table>
<thead>
<tr>
<th>AFFINE TYPE</th>
<th>\tilde{A}_{n-1}</th>
<th>\tilde{C}_n</th>
<th>\tilde{B}_{n+1}</th>
<th>\tilde{D}_{n+2}</th>
<th>\tilde{E}_6</th>
<th>\tilde{E}_7</th>
<th>\tilde{G}_2</th>
<th>\tilde{F}_4, \tilde{E}_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIODICITY</td>
<td>n</td>
<td>$n + 1$</td>
<td>$(n + 1)(2n + 1)$</td>
<td>$n + 1$</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Proof is case by case: I will focus on type \tilde{A} today.
1. **FC elements and Heaps**
Heaps

Given \((W, S)\), consider the Coxeter graph \(\Gamma\) with vertices \(S\) and edges \(\{s, t\}\) iff \(m_{s,t} \geq 3\).

No edge between \(s\) and \(t\) \(\iff\) \(s\) and \(t\) commute.
Heaps

Given \((W, S)\), consider the Coxeter graph \(\Gamma\) with vertices \(S\) and edges \(\{s, t\}\) iff \(m_{s,t} \geq 3\).

\[
\begin{array}{c}
s_0 & s_1 & s_2 \\
4 & s_2 & 5 \\
& s_3 \\
\end{array}
\]

No edge between \(s\) and \(t\) \(\iff\) \(s\) and \(t\) commute.

Definition: A \(\Gamma\)-heap \((H, \leq, \epsilon)\) is a poset \((H, \leq)\) together with a labeling function \(\epsilon : H \rightarrow S\) such that:
1. For each edge \(\{s, t\} \in \Gamma\), the poset \(H|\{s,t\}\) is a chain.
2. The poset \((H, \leq)\) is the transitive closure of these chains.
Heaps $=$ Commutation classes

Theorem [Viennot ’86] Bijection between:

(i) Commutation classes in W.

(ii) Γ-heaps.
Heaps = Commutation classes

Theorem [Viennot ’86] Bijection between:

(i) Commutation classes in W.
(ii) Γ-heaps.

⇒ “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

← Take the labels of each linear extension of H
Theorem [Viennot ’86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.

⇒ “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

$\circ s_1 s_0 s_3 s_2 s_0 s_3 s_1 s_2 s_1$

\bullet

s_1

← Take the labels of each linear extension of H
Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:

(i) Commutation classes in W.

(ii) Γ-heaps.

\Rightarrow “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

\Leftarrow Take the labels of each linear extension of H.
Heaps = Commutation classes

Theorem [Viennot ’86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.

⇒ “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

$S_1S_0S_3S_2S_0S_3S_1S_2S_1$

\leftarrow Take the labels of each linear extension of H
Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:

(i) Commutation classes in W.

(ii) Γ-heaps.

⇒ “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

\Leftrightarrow Take the labels of each linear extension of H
Heaps = Commutation classes

Theorem [Viennot ’86] Bijection between:
(i) Commutation classes in W.
(ii) Γ-heaps.

\Rightarrow “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

\Leftarrow Take the labels of each linear extension of H
Heaps = Commutation classes

Theorem [Viennot '86] Bijection between:

(i) Commutation classes in W.
(ii) Γ-heaps.

\Rightarrow “Spell any word of the class, drop the letters, add edges when the letter does not commute with previous ones.”

\iff Take the labels of each linear extension of H.
Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{sts\cdots}_{m_{st}}$.

→ let us call FC heaps the corresponding heaps.
Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{s t s \cdots}_{m_{st}}$.

→ let us call **FC heaps** the corresponding heaps.

Proposition [Stembridge ’95] FC heaps are characterized by the following two restrictions:

(a) No covering relation

(b) No **convex** chain of the form
FC heaps

Recall that FC elements correspond to commutation classes of reduced words avoiding long braid words $\underbrace{sts\cdots}_{m_{st}}$

\rightarrow let us call **FC heaps** the corresponding heaps.

Proposition [Stembridge '95] FC heaps are characterized by the following two restrictions:

(a) No covering relation

(b) No convex chain of the form

![Diagram](image)

Summary

<table>
<thead>
<tr>
<th>FC element w</th>
<th>Heap H satisfying (a) and (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length $\ell(w)$</td>
<td>Number of elements $</td>
</tr>
</tbody>
</table>
1. FC elements in type \tilde{A}
Affine permutations

\[\tilde{A}_{n-1} \]

\[s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \]

\[s_i s_j = s_j s_i, \quad |j - i| > 1 \]
Affine permutations

\[\tilde{A}_{n-1} \]

\[s_0 \]

\[s_1 \quad s_2 \quad \ldots \quad s_{n-1} \]

\[s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \]

\[s_i s_j = s_j s_i, \quad |j - i| > 1 \]

Representation as the group of permutations \(\sigma \) of \(\mathbb{Z} \) such that:

(i) \(\forall i \in \mathbb{Z} \) \(\sigma(i + n) = \sigma(i) + n \), and

(ii) \(\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i \).

\[\ldots, 13, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \ldots \]

\[\sigma(1) \sigma(2) \sigma(3) \sigma(4) \]
Affine permutations

\[\tilde{A}_{n-1} \]

\[s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \]

\[s_i s_j = s_j s_i, \quad |j - i| > 1 \]

Representation as the group of permutations \(\sigma \) of \(\mathbb{Z} \) such that:
(i) \(\forall i \in \mathbb{Z} \) \(\sigma(i + n) = \sigma(i) + n \), and
(ii) \(\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i \).

\[\ldots, 13, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \ldots \]

Theorem [Green '01] Fully commutative elements of type \(\tilde{A}_{n-1} \) correspond to 321-avoiding permutations.

This generalizes [Billey, Jockush, Stanley '93] for type \(A_{n-1} \), i.e. the symmetric group \(S_n \).
Periodicity

Theorem [Hanusa-Jones ’09] The sequence \(\tilde{A}_{n-1,l}^{FC} \) is ultimately periodic of period \(n \).

\[
\begin{align*}
\tilde{A}_2^{FC}(q) & = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + \cdots \\
\tilde{A}_3^{FC}(q) & = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots \\
\tilde{A}_4^{FC}(q) & = 1 + 5q + 15q^2 + 30q^3 + 45q^4 \\
& + 50q^5 + 50q^6 + 50q^7 + 50q^8 + 50q^9 + \cdots \\
\tilde{A}_5^{FC}(q) & = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 \\
& + 150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} \\
& + 150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} \\
& + \cdots
\end{align*}
\]

Proof uses affine permutations.
Periodicity

Theorem [Hanusa-Jones ’09] The sequence $(\tilde{A}_{n-1,l}^{FC})_{l \geq 0}$ is ultimately periodic of period n.

- The authors also:
 - Show that periodicity starts no later than $l = 2\lceil n/2 \rceil \lfloor n/2 \rfloor$;
 - Compute all series $\tilde{A}_{n-1}^{FC}(q)$.
Periodicity

Theorem [Hanusa-Jones ’09] The sequence $(\tilde{A}_{n-1,l}^{FC})_{l \geq 0}$ is ultimately periodic of period n.

- The authors also:
 - Show that periodicity starts no later than $l = 2\lceil n/2 \rceil \lfloor n/2 \rfloor$;
 - Compute all series $\tilde{A}_{n-1}^{FC}(q)$.

- We revisit the same problem using FC heaps.
 - Proof that periodicity starts precisely at $l = 1 + \lceil (n - 1)/2 \rceil \lfloor (n + 1)/2 \rfloor$ (conjectured by [H-J]);
 - In the process, we will get simpler rules to compute the generating functions $\tilde{A}_{n-1}^{FC}(q)$.
FC heaps in type \tilde{A}

\rightarrow FC heaps must avoid

- s_i
- $s_i s_{i+1} s_{i+2}$
- $s_i s_{i+1} s_{i+2}$
FC heaps in type \tilde{A}

\[S_0 \]
\[S_1 \quad S_2 \quad S_{n-1} \]

→ FC heaps must avoid

\[\begin{align*}
 & s_i \\
 & s_i \quad s_{i+1} \quad s_{i+2} \\
 & s_i \quad s_{i+1} \quad s_{i+2}
\end{align*} \]

Proposition FC heaps are characterized by:
For all i, $H_{\{s_i, s_{i+1}\}}$ is a chain with alternating labels

FC Heap

\[S_0 \quad S_1 \quad S_2 \]

\[S_0 \]
No labels needed at height 0.
Bijection

Let O_n^* be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h > 0$ are labeled L or R.
Let O_n^* be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h > 0$ are labeled L or R.

Theorem [BJN '12] This is a bijection between
1. FC elements of \tilde{A}_{n-1} and
2. O_n^*
Bijection

Let \mathcal{O}_n^* be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h > 0$ are labeled L or R.

Theorem[BJN ’12] This is a bijection between
1. FC elements of \tilde{A}_{n-1} and
2. $\mathcal{O}_n^* \setminus \{\text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R\}$.

The non-trivial part of the proof is to show surjectivity.
Bijection

Let O^*_n be the set of length n positive paths with starting and ending point at the same height. Horizontal steps at height $h > 0$ are labeled L or R.

Theorem [BJN ’12] This is a bijection between
1. FC elements of \tilde{A}_{n-1} and
2. $O^*_n \setminus \{\text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R\}$.

The non-trivial part of the proof is to show surjectivity.

- Remark that the **length** of the word is sent to the **area** under the path.

Corollary $\tilde{A}^{FC}_{n-1}(q) = O^*_n(q) - \frac{2q^n}{1 - q^n}$
Enumerative results

• For l large enough, the sequence $(O_{n,l}^*)_l$ becomes periodic with period n (proof: just shift the paths up by 1 unit).
Enumerative results

- For l large enough, the sequence $(\mathcal{O}_{n,l}^*)_l$ becomes periodic with period n (proof: just shift the paths up by 1 unit).

“Large enough”? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h = 0$

$\rightarrow l \leq l_0 = \lceil (n - 1)/2 \rceil \lfloor (n + 1)/2 \rfloor$.

\rightarrow Periodicity starts exactly at $l_0 + 1$
Enumerative results

- For l large enough, the sequence $(\mathcal{O}_{n,l}^\ast)_{l}$ becomes periodic with period n (proof: just shift the paths up by 1 unit).

“Large enough”? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h = 0$

$\Rightarrow l \leq l_0 = \lceil (n - 1)/2 \rceil\lfloor (n + 1)/2 \rfloor$.

\Rightarrow Periodicity starts exactly at $l_0 + 1$

- Finally, $\tilde{A}_{n-1}^{FC}(q) = \frac{q^n(X_n(q) - 2)}{1 - q^n} + X_n^\ast(q)$
Enumerative results

• For l large enough, the sequence $(O_{n,l}^*)_l$ becomes periodic with period n (proof: just shift the paths up by 1 unit).

“Large enough”? Shifting is not bijective if there exists a path of area l with a horizontal step at height $h = 0$

$\rightarrow l \leq l_0 = \lceil (n - 1)/2 \rceil \lfloor (n + 1)/2 \rfloor$.

\rightarrow Periodicity starts exactly at $l_0 + 1$

• Finally, $\tilde{A}_{n-1}^{FC}(q) = \frac{q^n(X_n(q) - 2)}{1 - q^n} + X_n^*(q)$

$$\sum_{n \geq 0} X_n(q)x^n = Y(x) \left(1 + qx^2 \frac{\partial(xY)}{\partial x}(xq)\right)$$

$$\sum_{n \geq 0} X_n^*(q)x^n = Y^*(x) \left(1 + qx^2 \frac{\partial(xY)}{\partial x}(xq)\right)$$

$Y^*(x) = 1 + xY^*(x) + qx(Y^*(x) - 1)Y^*(qx)$

$Y(x) = \frac{Y^*(x)}{1 - xY^*(x)}$
3. Other types
Other affine types

\[\tilde{C}_n \]

\[\tilde{D}_{n+2} \]

\[\tilde{B}_{n+1} \]

\[\tilde{E}_6 \]

\[\tilde{E}_7 \]

\[\tilde{G}_2 \]
Theorem [BJN '12] For each irreducible affine group W, the sequence $(W_l^{FC})_{l \geq 0}$ is ultimately periodic, with period recorded in the following table.

<table>
<thead>
<tr>
<th>Affine Type</th>
<th>\tilde{A}_{n-1}</th>
<th>\tilde{C}_n</th>
<th>\tilde{B}_{n+1}</th>
<th>\tilde{D}_{n+2}</th>
<th>\tilde{E}_6</th>
<th>\tilde{E}_7</th>
<th>\tilde{G}_2</th>
<th>\tilde{F}_4, \tilde{E}_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodicity</td>
<td>n</td>
<td>$n + 1$</td>
<td>$(n + 1)(2n + 1)$</td>
<td>$n + 1$</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Type \tilde{C}

We obtain here also certain heaps corresponding to paths, but there are in addition infinitely many exceptional FC heaps.

$$\tilde{C}_4^{FC}(q) = 1 + 5q + 14q^2 + 29q^3 + 47q^4 + 64q^5 + 76q^6 + 81q^7 + 80q^8 + 75q^9 + 68q^{10} + 63q^{11} + 61q^{12} + 59q^{13} + 59q^{14} + 60q^{15} + 59q^{16} + 59q^{17} + 59q^{18} + 59q^{19} + 60q^{20} + 59q^{21} + 59q^{22} + 59q^{23} + 59q^{24} + 60q^{25} + 59q^{26} + 59q^{27} + \cdots$$
Type \widetilde{C}

Two families of paths survive for large enough length:

1. Finite factors of

2. Path
Type \tilde{B}

$\tilde{B}_3^{FC}(q) = 1 + 4q + 9q^2 + 15q^3 + 19q^4 + 21q^5 + 21q^6 + 18q^7 + 17q^8 + 19q^9 + 18q^{10} + 17q^{11} + 19q^{12} + 17q^{13} + 17q^{14} + 20q^{15} + 17q^{16} + 17q^{17} + 19q^{18} + 17q^{19} + 18q^{20} + 19q^{21} + 17q^{22} + 17q^{23} + 19q^{24} + 18q^{25} + 17q^{26} + 19q^{27} + 17q^{28} + 17q^{29} + 20q^{30} + 17q^{31} + 17q^{32} + 19q^{33} + 17q^{34} + 18q^{35} + 19q^{36} + 17q^{37} + 17q^{38} + 19q^{39} + 18q^{40} + 17q^{41} + 19q^{42} + 17q^{43} + 17q^{44} + 20q^{45} + 17q^{46} + 17q^{47} + 19q^{48} + 17q^{49} + 18q^{50} + 19q^{51} + 17q^{52} + 17q^{53} + 19q^{54} + 18q^{55} + 17q^{56} + 19q^{57} + 17q^{58} + 17q^{59} + 20q^{60} + 17q^{61} + 17q^{62} + 19q^{63} + 17q^{64} + 18q^{65} + 19q^{66} + 17q^{67} + 17q^{68} + 19q^{69} + 18q^{70} + 17q^{71} + 19q^{72} + 17q^{73} + 17q^{74} + 20q^{75} + 17q^{76} + \cdots$

Period 15 corresponding to $(n + 1)(2n + 1)$ for $n = 2$.
Exceptional types

\[\tilde{E}_6\quad \tilde{E}_7\quad \tilde{G}_2\]
Related Work

• Enumeration of finite Coxeter groups wrt to length.

• FC involutions correspond to “self-dual FC heaps”. Our methods can be easily applied, and similar results hold (periodicity, generating functions)
Related Work

- Enumeration of finite Coxeter groups wrt to length.
- FC involutions correspond to “self-dual FC heaps”. Our methods can be easily applied, and similar results hold (periodicity, generating functions)

Theorem [Jouhet, N. ’13]
For all affine groups W, we can determine the **minimal period**.
Related Work

- Enumeration of finite Coxeter groups wrt to length.
- FC involutions correspond to “self-dual FC heaps”. Our methods can be easily applied, and similar results hold (periodicity, generating functions)

Theorem [Jouhet, N. ’13]
For all affine groups W, we can determine the **minimal period**.

Theorem in progress [N. ’13]
(i) For any Coxeter system (W, S), the series $W^{FC}(q)$ is a **rational function**.
(ii) The sequence $(W_l^{FC})_{l \geq 0}$ is ultimately periodic if and only if W is affine, FC-finite or is one of two exceptions.
Further questions

• Other statistics to consider, e.g. descent numbers.
• Formulas for our generating functions? (and not just functional equations/recurrences).
• Type-free proofs and formulas?
• Applications to Temperley-Lieb algebras?
Further questions

- Other statistics to consider, e.g. descent numbers.
- Formulas for our generating functions? (and not just functional equations/recurrences).
- Type-free proofs and formulas?
- Applications to Temperley-Lieb algebras?

THANK YOU
Type \tilde{C}_2
Type $\tilde{\mathcal{C}}$

Other families