ON r-stacked

TRIANGULATED MANIFOLDS

Satoshi Murai (Yamaguchi University)

and

Eran Nevo (Ben Gurion University of the Negev)

Stacked polytopes

$\Delta=\partial P, P$ simplicial d-polytope.

- Recursive definition. \Leftrightarrow
- $\Delta=\partial \Delta^{\prime},\left\|\Delta^{\prime}\right\|=P, \Delta_{\leq d-2}=\Delta_{\leq d-2}^{\prime} \Rightarrow$
- f -vector $f(\Delta)=\operatorname{explicit}$ func $\left(\mathrm{d}, \mathrm{f}_{0}\right)$.

Denote: $\mathcal{P}_{s t}(d, n) \subseteq \mathcal{P}(d, n)$ families of boundary complexes of stacked / all d-polytope on n vertices.
LBT (Barnette '71)
(1) $\Delta \in \mathcal{P}(d, n) \Rightarrow f(\Delta) \geq \operatorname{func}\left(\mathrm{d}, \mathrm{f}_{0}\right)$.
(2) Equality implies $\Delta \in \mathcal{P}_{s t}(d, n)$.

Rem. Extended by Kalai to Δ any homology sphere.
$(r-1)$-stacked polytopes

- $\Delta=\partial P$ is $(r-1)$-stacked if exists
$\Delta=\partial \Delta^{\prime},\left\|\Delta^{\prime}\right\|=P, \Delta_{\leq d-r}=\Delta_{\leq d-r}^{\prime}, \Rightarrow$
- $f(\Delta)=\operatorname{explicit}$ func $\left(\mathrm{d}, \mathrm{f}_{0}, \ldots, \mathrm{f}_{\mathrm{r}-1}\right)$,
nicely expressed in terms of h-vectors:
f-vector:
$f_{i}(\Delta)=$ number of i-dimensional faces of Δ
$f(\Delta)=\left(f_{-1}(\Delta), f_{0}(\Delta), \cdots, f_{d-1}(\Delta)\right)$
h-vector:
$\sum_{i=0}^{d} h_{i} x^{d-i}=\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}$
$h(\Delta)=\left(h_{0}(\Delta), \cdots, h_{d}(\Delta)\right)$
Example:
$\Delta=\partial($ triangle $) \Rightarrow \mathrm{f}(\Delta)=(1,3,3), \mathrm{h}(\Delta)=(1,1,1)$

Dehn-Sommerville relations:
$\Delta=\partial P$, or Δ any homology $(d-1)$-sphere \Rightarrow
$h_{i}(\Delta)=h_{d-i}(\Delta)$ for any $0 \leq i \leq d$.
GLBC: (McMullen-Walkup,71)
$\Delta=\partial P, P$ simplicial d-polytope, then $h(\Delta)$ satisfies
(1) $1=h_{0} \leq h_{1} \leq \cdots \leq h_{\left\lfloor\frac{d}{2}\right\rfloor}$
(2) TFAE:
(i) $h_{r-1}=h_{r}$ for some $1 \leq r \leq\left\lfloor\frac{d}{2}\right\rfloor$
(ii) Δ is $(r-1)$-stacked.

Proofs. (1) Stanley '79 using weak Lefschetz property (WLP),
(ii \Rightarrow i) McMullen-Walkup '71 combinatorially,
($\mathrm{i} \Rightarrow \mathrm{ii}$) Murai-N. '12 geom.,topo., and mostly algeb.
\mathbb{Q}-homology manifolds

- M is d-dim \mathbb{Q}-homology manifold WITH boundary if M is pure and $\forall \emptyset \neq F \in M, \widetilde{H}_{\bullet}\left(l k_{M}(F) ; \mathbb{Q}\right) \cong$ either $\widetilde{H}_{\bullet}\left(S^{d-|F|} ; \mathbb{Q}\right)$ or $\widetilde{H} \bullet\left(B^{d-|F|} ; \mathbb{Q}\right)=0$; and
$\partial M:=\left\{F \in M: \widetilde{H}_{\bullet}\left(l k_{M}(F) ; \mathbb{Q}\right)=0\right\}$ is a $(d-1)$-dim
\mathbb{Q}-homology manifold W / O boundary, i.e. ∂M is pure and $\forall \emptyset \neq F^{\prime} \in M, \widetilde{H}_{\bullet}\left(l k_{M}\left(F^{\prime}\right) ; \mathbb{Q}\right) \cong \widetilde{H}_{\bullet}\left(S^{d-1-\left|F^{\prime}\right|} ; \mathbb{Q}\right)$.
Rem. Triangulated manifolds are \mathbb{Q}-homology manifolds.
- d-dim manifold M WITH boundary is r-stacked if it has NO interior faces of $\operatorname{dim}<d-r$.
- Δ manifold W/O boundary is r-stacked if
$\Delta=\partial M$ for some r-stacked manifold M.
r-stackedness depends only on (f, β)-vectors h^{\prime}-vector:
Let Δ be $(d-1)$-dim simplicial complex,
$h_{i}^{\prime}(\Delta)=h_{i}(\Delta)-\binom{d}{i} \sum_{k=1}^{i-1}(-1)^{i-k} \beta_{k-1}(\Delta)$ for $0 \leq i \leq d$ $h^{\prime \prime}$-vector:
$h_{i}^{\prime \prime}(\Delta)=h_{i}^{\prime}(\Delta)-\binom{d}{i} \beta_{i-1}(\Delta)=$
$h_{i}(\Delta)-\binom{d}{i} \sum_{k=1}^{i}(-1)^{i-k} \beta_{k-1}(\Delta)$ for $0 \leq i \leq d-1$, and
$h_{d}^{\prime \prime}(\Delta)=h_{i}^{\prime}(\Delta)=\beta_{d-1}(\Delta)$.
Algebraic meaning - via Stanley-Reisner ring:
- Face ring of Δ on n vertices (over \mathbb{Q}) is
$\mathbb{Q}[\Delta]=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] /\left(x^{F}: F \in 2^{[n]}-\Delta\right)$.
Example: $\mathbb{Q}[\partial($ triangle $)]=\mathbb{Q}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right] /\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}\right)$.
- If Δ is $(d-1)$-manifold then $\mathbb{Q}[\Delta]$ is Buchsbaum ring.

Theorem: For $\Theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$ an I.s.o.p. of $\mathbb{Q}[\Delta]$:
(1) Schenzel '81: $\operatorname{hilb}(\mathbb{Q}[\Delta] /(\Theta))=h^{\prime}(\Delta)$,
(2) Novik-Swartz '09: exists ideal $N \subseteq \operatorname{Soc}(\mathbb{Q}[\Delta] /(\Theta))$ with $\operatorname{hilb}((\mathbb{Q}[\Delta] /(\Theta)) / \mathrm{N})=\mathrm{h}^{\prime \prime}(\Delta)$.
Rem. In particular $h^{\prime \prime}(\Delta) \geq 0$.
\tilde{g}-vector:
$\tilde{g}_{i}(\Delta)=h_{i}^{\prime \prime}(\Delta)-h_{i-1}^{\prime \prime}(\Delta)-\binom{d}{i-1} \beta_{i-1}(\Delta)=$
$h_{i}(\Delta)-h_{i-1}(\Delta)-\binom{d+1}{i} \sum_{k=1}^{i}(-1)^{i-k} \beta_{k-1}(\Delta)$
for $0 \leq i \leq d$, and
$\tilde{g}(\Delta)=\left(\tilde{g}_{0}, \tilde{g}_{1}, \ldots, \tilde{g}_{\left\lfloor\frac{d}{2}\right\rfloor}\right)$.
The \tilde{g}-vector gives enumerative criterion for r-stackedness:

Main Theorem (enumerative criteria): Murai-N. '12
(1) For any $(d-1)$-dim homology manifold WITH boundary Δ and $1 \leq r \leq d$:
Δ is $(r-1)$-stacked $\Leftrightarrow h_{r}^{\prime \prime}(\Delta)=0$.
(2) If $\Delta=\partial M$ for d-dim $(r-1)$-stacked homology manifold WITH boundary M and $1 \leq r \leq \frac{d}{2} \Rightarrow \tilde{g}_{r}(\Delta)=0$.
(3) Let Δ be a connected \mathbb{Q}-orientable $(d-1)$-homology manifold W/O boundary and $1 \leq r<\frac{d}{2}$. Assume all vertex links have WLP (e.g. when all vertex links are polytopal). Then:
$\tilde{g}_{r}(\Delta)=0 \Rightarrow \Delta$ is $(r-1)$-stacked.
Open problem:
Does (3) hold for $r=\frac{d}{2}$? Even the case $d=4$ is open!

Conjecture (GLBC for manifolds):
Let Δ be a connected triangulated $(d-1)$-manifold W/O boundary.Then:
(1) Kalai '88: $\tilde{g}(\Delta) \geq 0$.
(2) Bagchi-Datta '12: If $\tilde{g}_{r}(\Delta)=0$ for some $r<\frac{d}{2}$ then Δ is locally $(r-1)$-stacked.
Def. Δ is locally r-stacked if any vertex link is r-stacked.
Theorem (local-global): Bagchi-Datta '12, Murai-N. '12
Let Δ be a $(d-1)$-dim homology manifold W/O boundary and $1 \leq r<\frac{d}{2}$. Then:
Δ is $(r-1)$-stacked $\Leftrightarrow \Delta$ is locally $(r-1)$-stacked.
Remarks: $\bullet \Rightarrow$ is clear, for any r.
$\bullet \Leftarrow$ is false for $r=\frac{d}{2}$, e.g. $\Delta=\partial \sigma^{r} * \partial \sigma^{r} \cong S^{2 r-1}$.

Theorem (stackedness restricts topology): Murai-N. '12, also follows from Bagchi-Datta '12
(1) $\Delta(r-1)$-stacked manifold WITH boundary $\Rightarrow \beta_{k}(\Delta)=0$ for all $k \geq r$.
(2) $\Delta(r-1)$-stacked $(d-1)$-manifold W / O boundary,
$1 \leq r<\left\lfloor\frac{d}{2}\right\rfloor \Rightarrow \beta_{k}(\Delta)=0$ for all $r \leq k \leq d-r-1$.
Question:
Are there more topological restrictions?
E.g. handle decompositions?

Theorem (uniqueness): Bagchi-Datta '12, Murai-N. '12
$\Delta(r-1)$-stacked $(d-1)$-manifold W/O boundary, $1 \leq r \leq\left\lfloor\frac{d}{2}\right\rfloor$ $\Rightarrow \exists!(r-1)$-stacked d-manifold Δ^{\prime} with $\partial \Delta^{\prime}=\Delta$.
In fact, $\Delta^{\prime}=\Delta(r):=\left\{F \subseteq \Delta_{0}:\binom{F}{r+1} \subseteq \Delta\right\}$.
Rem.

- False for $r=\frac{d+1}{2}$.
- False for $\Delta(r-1)$, though true if $\Delta=\partial P$.

Theorem (upper bounds on \tilde{g}): (Murai-N.)

Let Δ be a connected orientable homology $(d-1)$-manifold W / O boundary. Assume all vertex links have WLP.
Then, \exists I.s.o.p. Θ, a linear form ω, and an ideal J in $R=\mathbb{Q}[\Delta] /(\Theta+(\omega))$ s.t. $\operatorname{dim}_{\mathbb{Q}}(R / J)_{i}=\tilde{g}_{i}(\Delta)$, for all $i \leq \frac{d}{2}$. In particular, $\tilde{g}(\Delta)$ is an M-sequence.
Rem. Conj. conclusion holds \forall connected manifolds W/O ∂.
Conj. $\operatorname{dim}_{\mathbb{Q}}(\operatorname{Soc}(R))_{r} \geq\binom{ d+1}{r} \beta_{r-1}(\Delta)$ for all $r \leq \frac{d}{2}$.
Rem. \bullet true for $\Delta(r-1)$-stacked.

- Conj. \Rightarrow Thm.: let $R^{\prime}=\mathbb{Q}[\Delta] /(\Theta)$, then
$\operatorname{dim}_{\mathbb{Q}}(\operatorname{Soc}(R))_{r}=\operatorname{dim}_{\mathbb{Q}} R_{r}^{\prime}-\operatorname{dim}_{\mathbb{Q}}\left(R^{\prime} / \operatorname{Soc}\left(R^{\prime}\right)\right)_{r-1}=$
$h_{r}^{\prime}-h_{r-1}^{\prime \prime}=\tilde{g}_{r}+\binom{d+1}{r} \beta_{r-1}(\Delta)$,
so can choose $J \subseteq \operatorname{Soc}(R)$.

Thank you!

