ON *r*-STACKED TRIANGULATED MANIFOLDS

Satoshi Murai (Yamaguchi University)

and

Eran Nevo (Ben Gurion University of the Negev)

Stacked polytopes

 $\Delta = \partial P$, P simplicial d-polytope.

• Recursive definition. \Leftrightarrow

•
$$\Delta = \partial \Delta'$$
, $||\Delta'|| = P$, $\Delta_{\leq d-2} = \Delta'_{\leq d-2}$.

• f-vector $f(\Delta) = \text{explicit func}(\mathbf{d}, \mathbf{f}_0)$.

Denote: $\mathcal{P}_{st}(d, n) \subseteq \mathcal{P}(d, n)$ families of boundary complexes of stacked / all *d*-polytope on *n* vertices.

LBT (Barnette '71)

(1)
$$\Delta \in \mathcal{P}(d, n) \Rightarrow f(\Delta) \ge \text{func}(d, f_0).$$

(2) Equality implies $\Delta \in \mathcal{P}_{st}(d, n)$.

Rem. Extended by Kalai to Δ any homology sphere.

$$\begin{array}{l} (r-1) \text{-stacked polytopes} \\ \bullet \ \Delta = \partial P \text{ is } (r-1) \text{-stacked if exists} \\ \Delta = \partial \Delta', ||\Delta'|| = P, \ \Delta_{\leq d-r} = \Delta'_{\leq d-r}, \Rightarrow \\ \bullet \ f(\Delta) = \text{explicit func}(\mathrm{d}, \mathrm{f}_0, ..., \mathrm{f}_{\mathrm{r}-1}), \end{array}$$

nicely expressed in terms of h-vectors:

f-vector:

 $f_i(\Delta) =$ number of *i*-dimensional faces of Δ $f(\Delta) = (f_{-1}(\Delta), f_0(\Delta), \cdots, f_{d-1}(\Delta))$ *h*-vector:

$$\sum_{i=0}^{d} h_i x^{d-i} = \sum_{i=0}^{d} f_{i-1} (x-1)^{d-i}$$

$$h(\Delta) = (h_0(\Delta), \cdots, h_d(\Delta))$$

Example:

$$\Delta = \partial(\text{triangle}) \Rightarrow f(\Delta) = (1, 3, 3), \ h(\Delta) = (1, 1, 1)$$

Dehn-Sommerville relations:

$$\Delta = \partial P, \text{ or } \Delta \text{ any homology } (d - 1) \text{-sphere} \Rightarrow$$

$$h_i(\Delta) = h_{d-i}(\Delta) \text{ for any } 0 \leq i \leq d.$$
GLBC: (McMullen-Walkup,71)

$$\Delta = \partial P, P \text{ simplicial } d \text{-polytope, then } h(\Delta) \text{ satisfies}$$
(1) $1 = h_0 \leq h_1 \leq \cdots \leq h_{\lfloor \frac{d}{2} \rfloor}$
(2) TFAE:
(i) $h_{r-1} = h_r \text{ for some } 1 \leq r \leq \lfloor \frac{d}{2} \rfloor$
(ii) $\Delta \text{ is } (r - 1) \text{ stacked}$

(II) Δ IS (r-1)-stacked.

Proofs. (1) Stanley '79 using weak Lefschetz property (WLP),

(ii \Rightarrow i) McMullen-Walkup '71 combinatorially,

 $(i \Rightarrow ii)$ Murai-N. '12 geom.,topo., and mostly algeb.

\mathbb{Q} -homology manifolds

- M is d-dim \mathbb{Q} -homology manifold WITH boundary if M is pure and $\forall \emptyset \neq F \in M$, $\widetilde{H}_{\bullet}(lk_M(F); \mathbb{Q}) \cong$ either $\widetilde{H}_{\bullet}(S^{d-|F|}; \mathbb{Q})$ or $\widetilde{H}_{\bullet}(B^{d-|F|}; \mathbb{Q}) = 0$; and $\partial M := \{F \in M : \widetilde{H}_{\bullet}(lk_M(F); \mathbb{Q}) = 0\}$ is a (d-1)-dim \mathbb{Q} -homology manifold W/O boundary, i.e. ∂M is pure and $\forall \emptyset \neq F' \in M$, $\widetilde{H}_{\bullet}(lk_M(F'); \mathbb{Q}) \cong \widetilde{H}_{\bullet}(S^{d-1-|F'|}; \mathbb{Q})$. Rem. Triangulated manifolds are \mathbb{Q} -homology manifolds. • d-dim manifold M WITH boundary is r-stacked if it has NO interior faces of dim < d - r.
- \bullet Δ manifold W/O boundary is r-stacked if
- $\Delta = \partial M$ for some r-stacked manifold M.

r-stackedness depends only on $(f,\beta)\text{-vectors}$ h'-vector:

Let Δ be (d-1)-dim simplicial complex, $h'_i(\Delta) = h_i(\Delta) - {d \choose i} \sum_{k=1}^{i-1} (-1)^{i-k} \beta_{k-1}(\Delta)$ for $0 \le i \le d$ h''-vector:

$$\begin{split} h_i''(\Delta) &= h_i'(\Delta) - {d \choose i} \beta_{i-1}(\Delta) = \\ h_i(\Delta) - {d \choose i} \sum_{k=1}^i (-1)^{i-k} \beta_{k-1}(\Delta) \text{ for } 0 \leq i \leq d-1 \text{, and} \\ h_d''(\Delta) &= h_i'(\Delta) = \beta_{d-1}(\Delta). \end{split}$$

Algebraic meaning - via Stanley-Reisner ring:

- Face ring of Δ on n vertices (over \mathbb{Q}) is $\mathbb{Q}[\Delta] = \mathbb{Q}[x_1, \dots, x_n]/(x^F : F \in 2^{[n]} - \Delta).$ Example: $\mathbb{Q}[\partial(\text{triangle})] = \mathbb{Q}[x_1, x_2, x_3]/(x_1x_2x_3).$
- If Δ is (d-1)-manifold then $\mathbb{Q}[\Delta]$ is *Buchsbaum ring*.

Theorem: For $\Theta = (\theta_1, \dots, \theta_d)$ an I.s.o.p. of $\mathbb{Q}[\Delta]$: (1) Schenzel '81: $\operatorname{hilb}(\mathbb{Q}[\Delta]/(\Theta)) = \operatorname{h}'(\Delta)$, (2) Novik-Swartz '09: exists ideal $N \subseteq \operatorname{Soc}(\mathbb{Q}[\Delta]/(\Theta))$ with $\operatorname{hilb}((\mathbb{Q}[\Delta]/(\Theta))/N) = \operatorname{h}''(\Delta)$. Rem. In particular $h''(\Delta) \ge 0$.

 \tilde{g} -vector:

$$\begin{split} \tilde{g}_{i}(\Delta) &= h_{i}''(\Delta) - h_{i-1}''(\Delta) - {d \choose i-1}\beta_{i-1}(\Delta) = \\ h_{i}(\Delta) - h_{i-1}(\Delta) - {d+1 \choose i}\sum_{k=1}^{i}(-1)^{i-k}\beta_{k-1}(\Delta) \\ \text{for } 0 \leq i \leq d \text{, and} \\ \tilde{g}(\Delta) &= (\tilde{g}_{0}, \tilde{g}_{1}, \dots, \tilde{g}_{\lfloor \frac{d}{2} \rfloor}). \end{split}$$

The \tilde{g} -vector gives enumerative criterion for r-stackedness:

Main Theorem (enumerative criteria): Murai-N. '12

(1) For any (d-1)-dim homology manifold WITH boundary Δ and $1 \leq r \leq d$:

 $\Delta \text{ is } (r-1)\text{-stacked} \Leftrightarrow h_r''(\Delta) = 0.$

(2) If $\Delta = \partial M$ for d-dim (r-1)-stacked homology manifold WITH boundary M and $1 \leq r \leq \frac{d}{2} \Rightarrow \tilde{g}_r(\Delta) = 0$.

(3) Let Δ be a connected \mathbb{Q} -orientable (d-1)-homology manifold W/O boundary and $1 \leq r < \frac{d}{2}$. Assume all vertex links have WLP (e.g. when all vertex links are polytopal). Then: $\tilde{g}_r(\Delta) = 0 \Rightarrow \Delta$ is (r-1)-stacked.

Open problem:

Does (3) hold for $r = \frac{d}{2}$? Even the case d = 4 is open!

Conjecture (GLBC for manifolds):

Let Δ be a connected triangulated $(d-1)\mbox{-manifold W/O}$ boundary.Then:

(1) Kalai '88: $\tilde{g}(\Delta) \geq 0.$

(2) Bagchi-Datta '12: If $\tilde{g}_r(\Delta) = 0$ for some $r < \frac{d}{2}$ then Δ is *locally* (r-1)*-stacked*.

Def. Δ is *locally r-stacked* if any vertex link is *r*-stacked.

Theorem (local–global): Bagchi-Datta '12, Murai-N. '12

Let Δ be a (d-1)-dim homology manifold W/O boundary and $1 \leq r < \frac{d}{2}$. Then:

 $\Delta \text{ is } (r-1) \text{-stacked} \Leftrightarrow \Delta \text{ is locally } (r-1) \text{-stacked}.$

Remarks: $\bullet \Rightarrow$ is clear, for any r.

•
$$\Leftarrow$$
 is false for $r = \frac{d}{2}$, e.g. $\Delta = \partial \sigma^r * \partial \sigma^r \cong S^{2r-1}$.

Theorem (stackedness restricts topology): Murai-N. '12, also follows from Bagchi-Datta '12

(1) $\Delta (r-1)$ -stacked manifold WITH boundary $\Rightarrow \beta_k(\Delta) = 0$ for all $k \geq r$.

(2)
$$\Delta (r-1)$$
-stacked $(d-1)$ -manifold W/O boundary,
 $1 \leq r < \lfloor \frac{d}{2} \rfloor \Rightarrow \beta_k(\Delta) = 0$ for all $r \leq k \leq d-r-1$.

Question:

Are there more topological restrictions?

E.g. handle decompositions?

Theorem (uniqueness): Bagchi-Datta '12, Murai-N. '12 $\Delta (r-1)$ -stacked (d-1)-manifold W/O boundary, $1 \le r \le \lfloor \frac{d}{2} \rfloor$ $\Rightarrow \exists ! (r-1)$ -stacked *d*-manifold Δ' with $\partial \Delta' = \Delta$. In fact, $\Delta' = \Delta(r) := \{F \subseteq \Delta_0 : \binom{F}{r+1} \subseteq \Delta\}.$ Rem.

- False for $r = \frac{d+1}{2}$.
- False for $\Delta(r-1)$, though true if $\Delta = \partial P$.

Theorem (upper bounds on \tilde{g}): (Murai-N.)

Let Δ be a connected orientable homology (d-1) -manifold W/O boundary. Assume all vertex links have WLP.

Then, \exists I.s.o.p. Θ , a linear form ω , and an ideal J in $R = \mathbb{Q}[\Delta]/(\Theta + (\omega))$ s.t. $\dim_{\mathbb{Q}}(R/J)_i = \tilde{g}_i(\Delta)$, for all $i \leq \frac{d}{2}$. In particular, $\tilde{g}(\Delta)$ is an M-sequence.

Rem. Conj. conclusion holds \forall connected manifolds W/O ∂ . Conj. $\dim_{\mathbb{Q}}(Soc(R))_r \geq {d+1 \choose r}\beta_{r-1}(\Delta)$ for all $r \leq \frac{d}{2}$. Rem. • true for $\Delta (r-1)$ -stacked.

• Conj.
$$\Rightarrow$$
 Thm.: let $R' = \mathbb{Q}[\Delta]/(\Theta)$, then

$$\dim_{\mathbb{Q}}(Soc(R))_r = \dim_{\mathbb{Q}} R'_r - \dim_{\mathbb{Q}}(R'/Soc(R'))_{r-1} = h'_r - h''_{r-1} = \tilde{g}_r + {d+1 \choose r}\beta_{r-1}(\Delta),$$
so can choose $J \subseteq Soc(R)$.

THANK YOU !