Greta Panova (UCLA)

Normalized Schu functions S_X

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result:

ASM

GUE in ASMs

Asymptotics of symmetric functions with applications to statistical mechanics and representation theory

Greta Panova (UCLA)

based on same-name paper ${\rm ArX}{\rm IV}{:}1301.0634$ joined with Vadim Gorin

FPSAC 2013, Paris

-

イロト 不得 トイヨト イヨト

Greta Panova (UCLA)

Normalized Schur functions S_λ

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Overview

Lozenge tilings:

Dense loop model:

Matrices

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup

Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Definitions and setup

In our context: Symmetric functions, Lie groups characters.

(mainly) Schur functions: $s_{\lambda}(x_1, \ldots, x_N)$ – characters of V_{λ} .

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup

Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Definitions and setup

In our context: Symmetric functions, Lie groups characters. **Irreducible (rational) representations** V_{λ} of GL(N) (or U(N)) are indexed by **dominant weights** (signatures/Young diagrams/integer partitions) λ :

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N,$

where $\lambda_i \in \mathbb{Z}$, e.g. $\lambda = (4,3,1)$,

(mainly) Schur functions: $s_{\lambda}(x_1, \ldots, x_N)$ – characters of V_{λ} .

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup

Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Definitions and setup

In our context: Symmetric functions, Lie groups characters. **Irreducible (rational) representations** V_{λ} of GL(N) (or U(N)) are indexed by **dominant weights** (signatures/Young diagrams/integer partitions) λ :

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N,$

where $\lambda_i \in \mathbb{Z}$, e.g. $\lambda = (4,3,1)$,

(mainly) Schur functions: $s_{\lambda}(x_1, ..., x_N)$ – characters of V_{λ} . Weyl's determinantal formula:

$$s_\lambda(x_1,\ldots,x_N) = rac{\det \left[x_i^{\lambda_j+N-j}
ight]_{ij=1}^N}{\prod_{i < j} (x_i - x_j)}$$

Semi-Standard Young tableaux(\Leftrightarrow Gelfand-Tsetlin patterns) of shape λ :

$$s_{(2,2)}(x_1, x_2, x_3) = s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2.$$

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup

```
Asymptotics of S_{\lambda(N)}(x_1, \ldots, x_k)
```

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Definitions and setup

Object of study and main tool in the applications: Normalized Schur functions:

$$S_{\lambda(N)}(x_1,\ldots,x_k) = \frac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_{N})}$$

Fix k, let $N \to \infty$ and let

$$\frac{\lambda(N)_i}{N} \to f\left(\frac{i}{N}\right)$$

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

GUE in ASM

Integral formula, k = 1 asymptotics

Theorem (G-P)

For any signature $\lambda\in \mathbb{GT}_N$ and any $x\in \mathbb{C}$ other than 0 or 1 we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi i} \oint_C \frac{x^z}{\prod_{i=1}^N (z - (\lambda_i + N - i))} dz$$

where the contour C includes all the poles of the integrand.

(Similar statements hold for a larger class of functions, e.g symplectic characters, Jacobi...also *q*-analogues; formula appears also in [Colomo,Pronko,Zinn-Justin])

Let $\frac{\lambda(N)_i}{N} \to f\left(\frac{i}{N}\right)$ under certain convergence conditions...

using the method of steepest descent we obtain various asymptotic formula:

Theorem (G–P)

Under [certain strong convergence conditions of] $\frac{\lambda(N)}{N}$ towards the limit shape f, as $N \to \infty$:

$$S_{\lambda(N)}(e^{y}; N, 1) = G(w_{0}, f) \frac{\exp(N(yw_{0} - \mathcal{F}(w_{0}; f)))}{e^{N}(e^{y} - 1)^{N-1}} (1 + o(1)),$$

where $\mathcal{F}(w; f) = \int_0^1 \ln(w - f(t) - 1 + t) dt$, w_0 is the root of $\frac{\partial}{\partial w} \mathcal{F}(w; f) = y$ (inverse Hilbert transform) and G is a certain explicit function.

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ○ ○ ○

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

GUE in AS

Integral formula, k = 1 asymptotics

Theorem (G-P)

For any signature $\lambda\in \mathbb{GT}_N$ and any $x\in \mathbb{C}$ other than 0 or 1 we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi i} \oint_C \frac{x^z}{\prod_{i=1}^N (z - (\lambda_i + N - i))} dz$$

where the contour C includes all the poles of the integrand.

(Similar statements hold for a larger class of functions, e.g symplectic characters, Jacobi...also *q*-analogues; formula appears also in [Colomo,Pronko,Zinn-Justin])

Let $\frac{\lambda(N)_i}{N} \to f\left(\frac{i}{N}\right)$ under certain convergence conditions...

using the method of steepest descent we obtain various asymptotic formula:

Theorem (G-P)

Under [some other convergence conditions of] $\frac{\lambda(N)}{N}$ towards the limit shape f, as $N\to\infty$

$$S_{\lambda(N)}(e^{h/\sqrt{N}};N,1) = \exp\left(\sqrt{N}E(f)h + \frac{1}{2}S(f)h^2 + o(1)\right),$$

where
$$E(f) = \int_0^1 f(t)dt$$
, $S(f) = \int_0^1 f(t)^2 dt - E(f)^2 + \int_0^1 f(t)(1-2t)dt$.

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

From k = 1 asymptotics to general k, multiplicativity

Theorem (G–P)

For any signature $\lambda \in \mathbb{GT}_N$ and any $k \leq N$ we have

$$S_{\lambda}(x_{1},...,x_{k};N) = \frac{s_{\lambda}(x_{1},...,x_{k},\overbrace{1,...,1}^{N-k})}{s_{\lambda}(\underbrace{1,...,1}_{N})} = \prod_{i=1}^{k} \frac{(N-i)!}{(N-1)!(x_{i}-1)^{N-k}} \times \frac{\det \left[D_{i,1}^{j-1}\right]_{i,j=1}^{k}}{\Delta(x_{1},...,x_{k})} \prod_{j=1}^{k} S_{\lambda}(x_{j};N,1)(x_{j}-1)^{N-1}.$$

where $D_{i,1} = x_i \frac{\partial}{\partial x_i}$ and Δ - Vandermonde determinant.

Similar theorems for symplectic characters, Jacobi; also *q*-analogues (replacing derivatives by *q*-shifts).

Note: appears in [de Gier, Nienhuis, Ponsaing] for symplectic characters.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

From k = 1 asymptotics to general k, multiplicativity

Theorem (G–P)

For any signature $\lambda \in \mathbb{GT}_N$ and any $k \leq N$ we have

$$S_{\lambda}(x_{1},...,x_{k};N) = \frac{s_{\lambda}(x_{1},...,x_{k},\overline{1,...,1})}{s_{\lambda}(\underbrace{1,...,1}_{N})} = \prod_{i=1}^{k} \frac{(N-i)!}{(N-1)!(x_{i}-1)^{N-k}} \times \frac{\det \left[D_{i,1}^{j-1}\right]_{i,j=1}^{k}}{\Delta(x_{1},...,x_{k})} \prod_{j=1}^{k} S_{\lambda}(x_{j};N,1)(x_{j}-1)^{N-1}.$$

where $D_{i,1} = x_i \frac{\partial}{\partial x_i}$ and Δ - Vandermonde determinant.

Corollary (G–P)

Suppose that the sequence $\lambda(N)$ is such that

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x;N,1)\right)}{N}=\Psi(x)$$

uniformly on compact subsets of a region $M \subset \mathbb{C}$ (e.g. Theorem 2). Then

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x_1,\ldots,x_k;N,1)\right)}{N}=\Psi(x_1)+\cdots+\Psi(x_k)$$

for any k uniformly on compact subsets of M^k .

I.e., informally, under various regimes of convergence for $\lambda(N)$ we have

$$S_{\lambda(N)}(x_1,\ldots,x_k) \simeq S_{\lambda(N)}(x_1)\cdots S_{\lambda(N)}(x_k)$$

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary

GUE GUE in tilings, results

ASM

GUE in ASMs

Lozenge tilings

Tilings of a domain Ω (on a triangular lattice) with elementary rhombi of 3 types ("lozenges").

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Question: Fix Ω in the plane and let *grid size* \rightarrow 0, what are the properties of *uniformly random* tilings of Ω ?

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings

 $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result:

ASM

GUE in ASMs

A well-known example: boxed plane partitions

(Cohn-Larsen-Propp, 1998) Tiling is asymptotically *frozen* outside inscribed ellipse

(Kenyon–Okounkov, 2005) For general polygonal domain tiling is asymptotically frozen outside inscribed algebraic curve.

(日) (同) (日) (日)

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

```
Setup
Asymptotics of
S_{\lambda(N)}(x_1, \ldots, x_k)
```

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

Behavior near the boundary, interlacing particles

Question: What is the joint probability distribution of the positions of the horizontal lozenges near the boundary as $N \to \infty$ (scale $= \frac{1}{N}$)? **Conjecture** ([Okounkov–Reshetikhin, 2006] with an explanation what the answer should be):

The joint distribution converges to a *GUE*-corners (aka *GUE*-minors [Johansson-Nordenstam]) process.

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary

GUE

GUE in tilings, results

ASM

GUE in ASMs

Gaussian Unitary Ensemble (GUE)

Gaussian Unitary Ensemble of rank N is the distribution on the set of $N \times N$ Hermitian matrices with density

$$\rho(X) \sim \exp\left(-\operatorname{Trace}(X^2)/2\right).$$

Alternatively,

 $\operatorname{Re} X_{ij}, \operatorname{Im} X_{ij}$ are i.i.d. with $\rho \sim \mathcal{N}(0, 1/2)$ for $i \neq j$ and X_{ii} are i.i.d. with $\rho \sim \mathcal{N}(0, 1)$

The density of the eigenvalues of X, denoted x_1^N, \ldots, x_N^N , is (Weyl, 20-30s)

$$\rho(x_1^N,\ldots,x_N^N) \sim \prod_{i < j} (x_i^N - x_j^N)^2 \prod_{i=1}^N e^{-(x_i^N)^2/2}$$

-

・ロト ・ 一下・ ・ ヨト ・ ヨト

GUE-corners

Asymptotics of symmetric functions with applications to statistical mechanics and representation theory

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary

GUE

GUE in tilings, results

ASM

GUE in ASMs

1	a_{11}	a ₁₂	a ₁₃	a_{14}	
	a 21	a ₂₂	a ₂₃	a 24	
	a 31	a 32	a33	a 34	
	a ₄₁	a 42	a 43	a 44	Ϊ

Let x_i^k be *i*th eigenvalue of top-left $k \times k$ corner of GUE. Interlacing condition: $x_{i-1}^j \leq x_{i-1}^{j-1} \leq x_i^j$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The joint distribution of x_i^j is known as *GUE–corners (also, GUE–minors) process,* denoted \mathbb{GUE}_k for the top k corners.

Given x_1^N, \ldots, x_N^N , the distribution of x_i^j , j < N is *uniform* on the polytope defined by interlacing conditions (Baryshnikov, 2001)

-

Greta Panova (UCLA)

Normalized Schu functions S_λ

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM GUE in ASM

GUE in tilings: known cases

Theorem. [Johansson–Nordenstam, 2006; Nordenstam, 2009] For a hexagonal domain the fluctuations near the point where the inscribed ellipse touches the boundary are of order \sqrt{N} and after rescaling the point process formed by the positions of one type of lozenges ("horizontal" for the vertical boundary) converges to GUE–minors process.

Method: Computation based on Lindström-Gessel-Viennot formula for the number of non-intersecting paths + certain determinant evaluations.

Other results: Okounkov–Reshetikhin, 2006, using determinantal point processes (in particular, the Schur process). Petrov, 2012, finite polygonal domains.

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

GUE in tilings: our results

GUE-minors convergence conjecture for a wide class of domains. Domain $\Omega_{N,\lambda(N)}$, parameterized by width N and the positions

$$\lambda(N)_1 + N - 1 > \lambda(N)_2 + N - 2 > \cdots > \lambda(N)_N$$

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

GUE in tilings: our results

Domain $\Omega_{N,\lambda(N)}$, parameterized by width N and the positions

$$\lambda(N)_1 + N - 1 > \lambda(N)_2 + N - 2 > \cdots > \lambda(N)_N$$

of its N horizontal lozenges at the right boundary.

Theorem (G–P)

Let $\lambda(N) = (\lambda_1(N) \ge ... \ge \lambda_N(N))$, N = 1, 2, ... be a sequence of signatures. Suppose that there exist a non-constant piecewise-differentiable weakly decreasing function f(t) such that

$$\sum_{i=1}^{N} \left| \frac{\lambda_i(N)}{N} - f(i/N) \right| = o(\sqrt{N})$$

as $N \to \infty$ and also $\sup_{i,N} |\lambda_i(N)/N| < \infty$. Let $\Upsilon(N)^k = \{x_i^j\}$ be the collection of the positions of the horizontal lozenges on lines j = 1, ..., k. Then for every k as $N \to \infty$ we have

 $\frac{\Upsilon^k_{\lambda(N)} - NE(f)}{\sqrt{NS(f)}} \to \mathbb{GUE}_k \text{ (GUE-corners process of rank k)}$

in the sense of weak convergence, where

$$E(f) = \int_0^1 f(t)dt, \quad S(f) = \int_0^1 f(t)^2 dt - E(f)^2 + \int_0^1 f(t)(1-2t)dt.$$

Greta Panova (UCLA)

Normalized Schu functions S_λ

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \to \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in tilings: our method, bijections

Tilings of domain $\Omega_{\lambda(N)}$ \Leftrightarrow Gelfand-Tsetlin schemes with bottom row $\lambda(N)$

T=	1	1	2	5
	3	4	4	
	5	5	5	

Positions of the horizontal lozenges on line *j*:

 x^j -shape of subtableaux of T comprised of the entries $1, \ldots, j$.

(日)、

э

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \to \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in tilings: our method, bijections

Tilings of domain $\Omega_{\lambda(N)}$ \Leftrightarrow Gelfand-Tsetlin schemes with bottom row $\lambda(N)$ 2 03

Positions of the horizontal lozenges on line *j*:

 x^j -shape of subtableaux of T comprised of the entries $1, \ldots, j$.

(日)、

э

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

```
Setup
Asymptotics of
S_{\lambda(N)}(x_1, \ldots, x_k)
```

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

GUE in ASMs

GUE in tilings: our method, moment generating functions

Proposition

In a uniformly random tiling of Ω_{λ} the distribution of the positions of the horizontal lozenges on the kth line $x^{k}(\lambda)$ is given by:

$$\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{s_{\eta}(1^{k})s_{\lambda/\eta}(1^{N-k})}{s_{\lambda}(1^{N})},$$

where $s_{\lambda/\eta}$ is the skew Schur polynomial. Proof: combinatorial definition of Schur functions as sums over SSYTs.

Proposition

Let ν^k be the positions of the horizontal lozenges on the kth vertical line in a uniformly random tiling of Ω_{λ} (where λ has length N).

$$\mathbb{E}\left(\frac{s_{\nu^{k}}(y_{1},\ldots,y_{k})}{s_{\nu^{k}}(\underbrace{1,\ldots,1}_{k})}\right)=\frac{s_{\lambda}(y_{1},\ldots,y_{k},\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda}(\underbrace{1,\ldots,1}_{N})}=S_{\lambda}(y_{1},\ldots,y_{k}).$$

-

イロト 不得 トイヨト イヨト

Greta Panova (UCLA)

 $N \rightarrow \infty$, behavior GUE in tilings, results

GUE in tilings: MGF and asymptotics

Proposition $\mathbb{E}B_k(x; \mathbb{GUE}_k) = \exp\left(\frac{1}{2}(x_1^2 + \cdots + x_k^2)\right),$ ¬ k

where
$$B_k(x; y) = \frac{\det \left[\exp(x_i y_j)\right]_{i,j=1}^{n}}{\prod_{i < j} (x_i - x_j) \prod_{i < j} (y_i - y_j)} \prod_{i < j} (j - i)$$
, also
 $= \frac{s_{y-\delta_k}(x_1, \dots, x_k)}{s_{y-\delta_k}(\underbrace{1, \dots, 1}_k)}$ when y — strict partition.

-

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

GUE in tilings: MGF and asymptotics

Proposition $\mathbb{E}B_k(x; \mathbb{GUE}_k) = \exp\left(\frac{1}{2}(x_1^2 + \dots + x_k^2)\right),$

- 1.

Proposition (G–P)

For any k reals h_1, \ldots, h_k we have:

$$\lim_{N \to \infty} \frac{s_{\lambda(N)} \left(e^{\frac{h_1}{\sqrt{NS(f)}}, \dots, e^{\frac{h_k}{\sqrt{NS(f)}}}, 1^{N-k} \right)}{s_{\lambda(N)}(1^N)} \exp\left(-\frac{E(f)}{\sqrt{NS(f)}} (h_1 + \dots + h_k) \right)$$
$$= \exp\left(\frac{1}{2} (h_1^2 + \dots + h_k^2) \right).$$

・ロ・・雪・・雨・・雨・・日・

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

GUE in tilings: MGF and asymptotics

Proposition $\mathbb{E}B_k(x; \mathbb{GUE}_k) = \exp\left(\frac{1}{2}(x_1^2 + \dots + x_k^2)\right),$

where
$$B_k(x; y) = \frac{\det\left[\exp(x_i y_j)\right]_{i,j=1}^{\kappa}}{\prod_{i < j} (x_i - x_j) \prod_{i < j} (y_i - y_j)} \prod_{i < j} (j - i)$$
, also
 $= \frac{s_{y-\delta_k}(x_1, \dots, x_k)}{s_{y-\delta_k}(1, \dots, 1)}$ when y — strict partition.

Proposition (G-P)

For any k reals h_1, \ldots, h_k we have:

$$\lim_{N \to \infty} \frac{s_{\lambda(N)} \left(e^{\frac{h_1}{\sqrt{NS(f)}}, \dots, e^{\frac{h_k}{\sqrt{NS(f)}}}, 1^{N-k} \right)}{s_{\lambda(N)}(1^N)} \exp\left(-\frac{E(f)}{\sqrt{NS(f)}} (h_1 + \dots + h_k) \right)$$
$$= \exp\left(\frac{1}{2} (h_1^2 + \dots + h_k^2) \right).$$

Theorem. $\frac{\Gamma_{\lambda(N)}^{*} - N\mathcal{E}(T)}{\sqrt{NS(f)}} \to \mathbb{GUE}_{k} \text{ (GUE-corners process of rank } k\text{).} \square$

イロト 不得 トイヨト イヨト

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

GUE in ASM

Free boundary

Limit shapes: [Di Francesco, Reshetikhin, 2009] Let

 $T_f(N, M) := \cup_{\lambda \ | \ \ell(\lambda) = N, \lambda_1 \leq M} tilings of \Omega_{\lambda},$

i.e. the set of all tilings in an $N \times M \times N$ trapezoid with unrestricted positions of right horizontal lozenges.

 $\Leftrightarrow \text{Vertically symmetric tilings of the } N \times M \times N \times N \times M \times N \text{ hexagon.}$

ヘロア ヘビア ヘビア ヘビア

Theorem (P, –)

Let $\Upsilon_{N,M}^k$ denote the positions of the horizontal lozenges $\{x_j^i\}$ on the *i*th vertical line of a uniformly random tiling from $T_f(N, M)$. Then, as $N \to \infty$ and $\frac{M}{N} \to a$, where $0 < a < \infty$,

$$\frac{\Upsilon^k_{N,M}-M/2}{\sqrt{N(a^2+2a)/8}}\to \mathbb{GUE}_k.$$

-

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

6 Vertex model / ASM Six vertex types: h b С а а с 0 0 0 $^{-1}$ 0 Alternating Sign Matrix: A 6 vertex model configuration: 0 0 1 0 $\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}$ 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

э

(日)、

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result:

ASM

GUE in ASMs

Definitions and background on ASMs

Definition: An Alternating Sign Matrix of size n is an $n \times n$ matrix of 0s, 1s, -1s, such that the sum in each row or column is 1 and 1s and -1s alternate in each row or column. A monotone triangle is a Gelfand-Tsetlin pattern, s.t. the inequalities on each row are strict.

6 Vertex model \leftrightarrow ASM \leftrightarrow monotone triangles.

Uniform measure on ASMs \leftrightarrow all vertices in 6V model have equal weight ("ice").

5

	70	0	0	1	0	
	0	1	0	$^{-1}$	1)	
ASM:	0	0	1	0	0	
	1	0	0	0	0	
	\0	0	0	1	0/	

positions of $1s \prod$ in sum of first k rows

Monotone triangle:

Question: What does a uniformly random ASM look like as $n \rightarrow \infty$? What is the *distribution* of *the positions of the* 1*s and* -1*s near the boundary* of the ASM in the limit \Leftrightarrow Distribution of *the numbers in the top k rows* of the monotone triangle?

Known results: Limit behavior: [Behrend], [Colomo, Pronko, [[Zinn-Justin]], Di Francesco]. Free fermions point (weight 2 at 1,-1) ↔ domino tilings, Aztec diamond. Exact generating functions for certain statistics (e.g. positions of 1s on boundary, etc).

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

ASMs/6Vertex: new results

 $\Psi_3 = 3$

Μ

k:

ASM A:
$$\Psi_k(A) := \sum_{j=1:n, A_{kj}=1} j - \sum_{j=1:n, A_{kj}=-1} j$$

onotone triangle $M = [m_j^i]_{j \le i}$: $\Psi_k(M) = \sum_{j=1}^k m_j^k - \sum_{j=1}^{k-1} m_j^{k-1}$
 $\begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ 1 2 3 5
 $\Psi_2 = 2 + 5 - 4 = 3$ $\Psi_2 = (2 + 5) - (4) = 3$

= 3
$$\Psi_2 = (2+5) - (4) = 3$$

 $\Psi_3 = (2+3+5) - (2+5)$

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

ASMs/6Vertex: new results

ASM A:
$$\Psi_k(A) := \sum_{j=1:n, A_{kj}=1} j - \sum_{j=1:n, A_{kj}=-1} j$$

Monotone triangle $M = [m_j^i]_{j \le i}$: $\Psi_k(M) = \sum_{j=1}^k m_j^k - \sum_{j=1}^{k-1} m_j^{k-1}$

 $\Psi_k(n)$ – the random variable $\Psi_k(A)$ as A is chosen uniformly random from ASMs of size n.

Theorem (G–P) $\frac{\Psi_k(n)-n/2}{\sqrt{n}}$, k = 1, 2, ... converge as $n \to \infty$ to the collection of i.i.d. Gaussian random variables, $N(0, \sqrt{3/8})$.

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

ASMs/6Vertex: new results

ASM A:
$$\Psi_k(A) := \sum_{j=1:n, A_{kj}=1} j - \sum_{j=1:n, A_{kj}=-1} j$$

Monotone triangle $M = [m_j^i]_{j \le i}$: $\Psi_k(M) = \sum_{j=1}^k m_j^k - \sum_{j=1}^{k-1} m_j^{k-1}$

 $\Psi_k(n)$ – the random variable $\Psi_k(A)$ as A is chosen uniformly random from ASMs of size n.

Theorem (G–P)

 $\frac{\Psi_k(n)-n/2}{\sqrt{n}}$, k = 1, 2, ... converge as $n \to \infty$ to the collection of *i.i.d.* Gaussian random variables, $N(0, \sqrt{3/8})$.

Using this Theorem on $\Psi_k(n)$ and the Gibbs property:

Theorem (G, 2013; Conjecture in [G-P])

Fix any k. As $n \to \infty$ the probability that the number of (-1)s in the first k rows of uniformly random ASM of size n is maximal tends to 1, and, thus, 1s in first k rows are interlacing. After centering and rescaling the distribution of the positions of 1s tends to GUE-corners process, i.e. top k rows of the monotone triangle M converge to the GUE-corners process:

$$\sqrt{\frac{8}{3n}}\left([M]_{i=1:k}-\frac{n}{2}\right)\to \mathbb{GUE}_k.$$

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in randon lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

6Vertex/ASMs: proofs

Vertex at position (i, j) and its weight (corresponding to the type):

$$a: q^{-1}u_i^2 - qv_j^2, \quad b: q^{-1}v_j^2 - qu_i^2, \quad c: (q^{-1} - q)u_iv_j$$

where v_1, \ldots, v_N , u_1, \ldots, u_N are parameters, $q = \exp(\pi i/3)$ Weight $W(\vartheta)$ of a configuration θ = product of weights of its vertices. Set $\lambda(N) := (N - 1, N - 1, N - 2, N - 2, \ldots, 1, 1, 0, 0) \in \mathbb{GT}_{2N}$.

Proposition (Okada; Stroganov)

Let I_N be the set of all 6Vertex configurations on an $N \times N$ grid.

$$\sum_{\vartheta \in \beth_N} W(\vartheta) = (-1)^{N(N-1)/2} (q^{-1}-q)^N \prod_{i=1}^N (v_i u_i)^{-1} s_{\lambda(N)}(u_1^2, \ldots, u_N^2, v_1^2, \ldots, v_N^2).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

6Vertex/ASMs: proofs

Vertex at position (i, j) and its weight (corresponding to the type):

$$a: q^{-1}u_i^2 - qv_j^2, \quad b: q^{-1}v_j^2 - qu_i^2, \quad c: (q^{-1} - q)u_iv_j$$

where v_1, \ldots, v_N , u_1, \ldots, u_N are parameters, $q = \exp(\pi i/3)$ Weight $W(\vartheta)$ of a configuration θ = product of weights of its vertices. Set $\lambda(N) := (N - 1, N - 1, N - 2, N - 2, \ldots, 1, 1, 0, 0) \in \mathbb{GT}_{2N}$.

Proposition

Let \hat{x}_i be the number of vertices of type x on row *i*, then for any collection of rows i_1, \ldots, i_m we have

$$\begin{split} & \mathbb{E}_{N} \prod_{\ell=1}^{m} \left[\left(\frac{q^{-1} - qv_{\ell}^{2}}{q^{-1} - q} \right)^{\widehat{s}_{\ell_{\ell}}} \left(\frac{q^{-1}v_{\ell}^{2} - q}{q^{-1} - q} \right)^{\widehat{b}_{\ell_{\ell}}} (v_{\ell})^{\widehat{c}_{j_{\ell}}} \right] \\ & = \left(\prod_{\ell=1}^{n} v_{\ell}^{-1} \right) \frac{s_{\lambda(N)}(v_{1}, \dots, v_{m}, 1^{2N-m})}{s_{\lambda(N)}(1^{2N})} = \left(\prod_{\ell=1}^{n} v_{\ell}^{-1} \right) S_{\lambda(N)}(v_{1}, \dots, v_{m}) \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

6Vertex/ASMs: proofs

Vertex at position (i, j) and its weight (corresponding to the type):

$$a: q^{-1}u_i^2 - qv_j^2, \quad b: q^{-1}v_j^2 - qu_i^2, \quad c: (q^{-1} - q)u_iv_j$$

where v_1, \ldots, v_N , u_1, \ldots, u_N are parameters, $q = \exp(\pi i/3)$ Weight $W(\vartheta)$ of a configuration θ = product of weights of its vertices. Set $\lambda(N) := (N - 1, N - 1, N - 2, N - 2, \ldots, 1, 1, 0, 0) \in \mathbb{GT}_{2N}$.

Proposition

Let \widehat{x}_i be the number of vertices of type x on row i, then for any collection of rows i_1,\ldots,i_m we have

$$\begin{split} & \mathbb{E}_{N} \prod_{\ell=1}^{m} \left[\left(\frac{q^{-1} - qv_{\ell}^{2}}{q^{-1} - q} \right)^{\widehat{s}_{i_{\ell}}} \left(\frac{q^{-1}v_{\ell}^{2} - q}{q^{-1} - q} \right)^{\widehat{b}_{i_{\ell}}} (v_{\ell})^{\widehat{c}_{j_{\ell}}} \right] \\ & = \left(\prod_{\ell=1}^{n} v_{\ell}^{-1} \right) \frac{s_{\lambda(N)}(v_{1}, \dots, v_{m}, 1^{2N-m})}{s_{\lambda(N)}(1^{2N})} = \left(\prod_{\ell=1}^{n} v_{\ell}^{-1} \right) S_{\lambda(N)}(v_{1}, \dots, v_{m}) \end{split}$$

Proof of Theorem: Use Proposition to derive the *moment generating function* as a Schur function. Choose parameters wisely to extract the main statistic and apply the asymptotics:

$$S_{\lambda(N)}(e^{y_1/\sqrt{n}},\ldots,e^{y_k/\sqrt{n}}) = \prod_{i=1}^k \exp\left[\sqrt{n}y_i + \frac{5}{12}y_i^2 + o(1)\right]$$

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

ERCI

▲ロト ▲圖ト ▲温ト ▲温ト

22

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result:

ASM

GUE in ASMs

Extreme Characters of $U(\infty)$

U(N) – the group of $N \times N$ unitary matrices. $U(\infty) = \bigcup_{N=1}^{\infty} U(N)$. A (normalized) *character* of a group G is a continuous function $\chi(g)$, $g \in G$ s.t.:

1. $\chi(aba^{-1}) = \chi(b)$ for any $a, b \in G$,

2. χ is positive definite, i.e. the matrix $\left[\chi(g_ig_j^{-1})\right]_{i,j=1}^k$ is Hermitian non-negative definite, for any $\{g_1, \ldots, g_k\}$,

3. $\chi(e) = 1$.

An *extreme character* is an extreme point of the convex set of all characters. The normalized characters of U(N) are the functions

$$\frac{s_{\lambda}(u_1,\ldots,u_N)}{s_{\lambda}(1,\ldots,1)}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

Extreme Characters of $U(\infty)$

U(N) – the group of $N \times N$ unitary matrices. $U(\infty) = \bigcup_{N=1}^{\infty} U(N)$.

Theorem (Voiculescu-Edrei classification)

The extreme characters of $U(\infty)$ are parameterized by the points ω of the infinite-dimensional domain

$$\Omega \subset \mathbb{R}^{4\infty+2} = \mathbb{R}^\infty imes \mathbb{R}^\infty imes \mathbb{R}^\infty imes \mathbb{R}^\infty imes \mathbb{R},$$

where Ω is the set of sextuples

$$\boldsymbol{\omega} = (\alpha^+, \alpha^-, \beta^+, \beta^-; \delta^+, \delta^-)$$

such that

$$\begin{split} \alpha^{\pm} &= (\alpha_1^{\pm} \ge \alpha_2^{\pm} \ge \cdots \ge 0) \in \mathbb{R}^{\infty}, \quad \beta^{\pm} = (\beta_1^{\pm} \ge \beta_2^{\pm} \ge \cdots \ge 0) \in \mathbb{R}^{\infty}, \\ &\sum_{i=1}^{\infty} (\alpha_i^{\pm} + \beta_i^{\pm}) \le \delta^{\pm}, \quad \beta_1^+ + \beta_1^- \le 1. \end{split}$$

The corresponding extreme character is given by the formula

$$\chi^{(\omega)}(U) = \prod_{u \in \text{Spec}(U)} e^{\gamma^+(u-1)+\gamma^-(u^{-1}-1)} \prod_{i=1}^{\infty} \frac{1+\beta_i^+(u-1)}{1-\alpha_i^+(u-1)} \frac{1+\beta_i^-(u^{-1}-1)}{1-\alpha_i^-(u^{-1}-1)}.$$

Greta Panova (UCLA)

Normalized Schu functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

Extreme characters of $U(\infty)$

Proposition (Kerov-Vershik)

Every extreme normalized character χ of $U(\infty)$ is a uniform limit of extreme characters of U(N). In other words, for every χ there exists a sequence $\lambda(N) \in \mathbb{GT}_N$ such that for every k

$$\chi(u_1,\ldots,u_k,1,\ldots)=\lim_{N\to\infty}S_\lambda(u_1,\ldots,u_k;N,1)$$

uniformly on the torus $(S_1)^k$.

Based on this fact we show which sequences approximate characters of $U(\infty)$:

For any λ set $p_i = \lambda_i - i + 1/2$, $q_i = \lambda'_i - i + 1/2$, $i = 1, \dots, d$.

$$\chi^{(\omega)}(u_1, u_2, \ldots) = \prod_j e^{\gamma^+(u_j-1)+\gamma^-(u_j^{-1}-1)} \prod_{i=1}^{\infty} \frac{1+\beta_i^+(u_j-1)}{1-\alpha_i^+(u_j-1)} \frac{1+\beta_i^-(u_j^{-1}-1)}{1-\alpha_i^-(u_j^{-1}-1)}.$$

Theorem (VK, OO, BO, P, Gorin-Panova) Let $\omega = (\alpha^{\pm}, \beta^{\pm}; \delta^{\pm})$ and suppose that the sequence $\lambda(N) \in \mathbb{GT}_N$ is s.t. $p_i^+(N)/N \to \alpha_i^+, \quad p_i^-(N)/N \to \alpha_i^-, \quad q_i^+(N)/N \to \beta_i^+, \quad q_i^-(N)/N \to \beta_i^+,$ $|\lambda^+|/N \to \delta^+, \quad |\lambda^-|/N \to \delta^-.$

Then for every k

 $\chi(u_1, \dots, u_k, 1, \dots) = \lim_{N \to \infty} S_{\lambda(N)}(u_1, \dots, u_k; N, 1) = \chi^{\omega}(u_1, \dots, u_k, 1, \dots) \text{(as defined above)}$ uniformly on torus $(S_1)^k$.

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \dots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

The dense loop model

Given a finite grid (in this case, vertical strip of width L), each square is one of two kinds below, on the boundary – one of the triangles

The mean total current between two points x and y $F^{x,y}$ – the average number of paths connecting both boundaries and passing between x and y. Similar observables in the critical percolation model [Smirnov, 2009].

Greta Panova (UCLA)

Normalized Schul functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \rightarrow \infty$, behavior near boundary GUE GUE in tilings, result

ASM

GUE in ASMs

Dense loop model: the mean current

Let
$$\lambda^{L} = (\lfloor \frac{L-1}{2} \rfloor, \lfloor \frac{L-2}{2} \rfloor, \dots, 1, 0, 0)$$

Define:

$$u_{L}(\zeta_{1},\zeta_{2};z_{1},\ldots,z_{L}) = (-1)^{L_{1}} \frac{\sqrt{3}}{2} \ln \left[\frac{\chi_{\lambda^{L+1}}(\zeta_{1}^{2},z_{1}^{2},\ldots,z_{L}^{2})\chi_{\lambda^{L+1}}(\zeta_{2}^{2},z_{1}^{2},\ldots,z_{L}^{2})}{\chi_{\lambda^{L}}(z_{1}^{2},\ldots,z_{L}^{2})\chi_{\lambda^{L+2}}(\zeta_{1}^{2},\zeta_{2}^{2},z_{1}^{2},\ldots,z_{L}^{2})} \right]$$

where χ_{ν} is the character for the irreducible representation of highest weight ν of the symplectic group $Sp(\mathbb{C})$.

$$X_L^{(j)} = z_j \frac{\partial}{\partial z_j} u_L(\zeta_1, \zeta_2; z_1, \dots, z_L)$$

$$Y_L = w \frac{\partial}{\partial w} u_{L+2}(\zeta_1, \zeta_2; z_1, \dots, z_L, vq^{-1}, w)|_{v=w},$$

Proposition (De Gier, Nienhuis, Ponsaing)

Under certain assumptions the mean total current between two horizontally adjacent points is

$$X_L^{(j)} = F^{(j,i),(j+1,i)}$$

and \boldsymbol{Y} is the mean total current between two vertically adjacent points in the strip of width L:

$$Y_L^{(j)} = F^{(j,i),(j,i+1)}$$

イロト 不得 トイヨト イヨト

-

Greta Panova (UCLA)

Normalized Schur functions S_{λ}

Setup Asymptotics of $S_{\lambda(N)}(x_1, \ldots, x_k)$

GUE in random lozenge tilings

Lozenge tilings $N \to \infty$, behavior near boundary GUE GUE in tilings, results

ASM

GUE in ASMs

Dense loop model: asymptotics of the mean current

Theorem As $L \to \infty$ we have

$$X_{L}^{(j)}\Big|_{z_{j}=z; \, z_{j}=1, \ i\neq j} = \frac{i\sqrt{3}}{4L}(z^{3}-z^{-3}) + o\left(\frac{1}{L}\right)$$

and

$$Y_L\Big|_{z_i=1, i=1,...,L} = \frac{i\sqrt{3}}{4L}(w^3 - w^{-3}) + o\left(\frac{1}{L}\right)$$

Remark 1. When z = 1, $X_L^{(j)}$ is identical zero and so is our asymptotics. **Remark 2.** The fully homogeneous case corresponds to $w = \exp^{-i\pi/6}$, $q = e^{2\pi i/3}$. In this case

$$Y_L = \frac{\sqrt{3}}{2L} + o\left(\frac{1}{L}\right).$$

Proof: same type of asymptotic methods and results hold for symplectic characters + some tricks with the multivariate formula.

-

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト