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Reduced words

A reduced word for w ∈ Sn is a minimal length sequence
a = a1 · · · a` such that w = ta1 · · · ta` where ti = (i i + 1).

Write Red(w) = {reduced words of w}.

Example

Red(2143) = {31, 13} since 2143 = (3 4)(1 2) = (1 2)(3 4).

Given a ∈ Red(w) define the set
C (a) = {1 ≤ i1 ≤ · · · ≤ i`(w) : if aj < aj+1 then ij < ij+1}; here
`(w) = # of inversions of w .

Example

C (31) = {1 ≤ i1≤i2} C (13) = {1 ≤ i1<i2}



Stanley symmetric functions

Definition (Stanley ’84)

The Stanley symmetric function of a permutation w is the degree
`(w) symmetric (!) function

Fw =
∑

a∈Red(w)

∑
i∈C(a)

xi1 · · · xi`(w)
,

where C (a) = {1 ≤ i1 ≤ · · · ≤ i`(w) : if aj < aj+1 then ij < ij+1}.

Example

w = 2143, Red(w) = {31, 13}.
C (31) = {1 ≤ i1≤i2} C (13) = {1 ≤ i1<i2}

So F2143 =
∑

i1≤i2 xi1xi2 +
∑

i1<i2
xi1xi2 = s2 + s11.



Stanley symmetric functions

I Enumeration of reduced words: if Fw =
∑

λ aλsλ then
|Red(w)| =

∑
λ aλ#{standard tableaux of shape λ}.

I Schubert calculus: Fw = limm→∞S1m×w where
1m × w = 12 · · ·m(w1 + m) · · · (wn + m)
(Lascoux-Schützenberger).

I S` representation theory: the Fw appear as Frobenius
characteristics of some natural generalizations of Specht
modules.



Patterns and Fw

Theorem (Edelman-Greene ’87)

Fw is Schur-positive.

M(w) = multiset of partitions such that
∑

λ∈M(w) sλ = Fw .

Theorem (Billey-Pawlowski)

If v is contained as a pattern in w, there is an injection
ι : M(v) ↪→ M(w) such that λ ⊆ ι(λ) for λ ∈ M(v). Moreover, ι
maps multiple copies of λ ∈ M(v) to multiple copies of one
partition in M(w).

Example

Since M(2143) = {(1, 1), (2)}, if w contains 2143 then |M(w)| ≥ 2:
Fw isn’t a single Schur function.



Patterns and Fw

Example

If v = w1 · · · ŵj · · ·wn (flattened to a member of Sn−1) and

a = #{p < j : wp > wj}
b = #{p > j : wp < wj},

can take ι : M(v) ↪→ M(w) to be λ 7→ (λ+ (1a)) ∪ (b).

Take w = 4317256.

Fw = s332 + s422 + s431 + s521
j = 1, a = 0, b = 3 : Fv = s32 + s41
j = 2, a = 1, b = 2 : Fv = s32 + s41
j = 5, a = 3, b = 0 : Fv = s221 + s311 + s32 + s41



k-vexillary and multiplicity-free permutations

Say w is k-vexillary if Fw has at most k Schur function terms. Say
w is multiplicity-free if every Schur term of Fw has multiplicity 1.

Corollary

Suppose v is contained in w. If w is k-vexillary, so is v . If w is
multiplicity-free, so is v .

Theorem (Billey-Pawlowski)

For any k the property of being k-vexillary is characterized by
avoiding a finite set of patterns. One can take the patterns to have
at most 4k letters.

Conjecture

The property of being multiplicity-free is characterized by avoiding a
set of 454 patterns of at most 11 letters (checked through S12).



k-vexillary permutations

I w is 1-vexillary iff it avoids 2143 (Stanley ’84,
Lascoux-Schützenberger ’82).

I w is 2-vexillary iff it avoids 35 patterns in S5 ∪ S6 ∪ S7 ∪ S8:

21543 231564 315264 5271436 26487153 54726183 64821537

32154 241365 426153 5276143 26581437 54762183 64872153

214365 241635 2547163 5472163 26587143 61832547 65821437

214635 312645 4265173 25476183 51736284 61837254 65827143

215364 314265 5173264 26481537 51763284 61873254 65872143

I w is 3-vexillary iff it avoids a list of 91 patterns in S6 ∪ S7 ∪ S8.

I w is 4-vexillary iff it avoids a list of 2346 patterns in
S6 ∪ · · · ∪ S12 (thanks to Michael Albert for this verification).



Generalized Specht modules

Definition
A diagram is a finite subset of N× N. Its elements are cells.

Example

D =
◦ ◦ ·
◦ · ·
· ◦ ◦

= {(1, 1), (1, 2), (2, 1), (3, 2), (3, 3)}

Definition (James-Peel ’79)

The Specht module of a diagram D with ` cells is the (complex)
S`-module

SD = C[S`]cD ,

with cD ∈ C[S`] the Young symmetrizer of a bijective filling of D.



Generalized Specht modules

Example

I When D is the Ferrers diagram of a partition λ, SD is the
usual irreducible Specht module Sλ.

I When D is a skew shape λ/µ, SD is the skew representation
Sλ/µ.

I If D, D ′ differ by a permutation of rows and columns, then
SD ' SD′

.

In general no combinatorial algorithm for decomposing SD into
irreducibles is known. (Special cases: Littlewood-Richardson rule,
Reiner-Shimozono, Liu).

The Schur function sD of D is the Frobenius characteristic of SD : if
SD '

⊕
λ aλSλ then sD =

∑
λ aλsλ.



Permutation diagrams

Definition
The diagram D(w) of a permutation w ∈ Sn is the set of cells in
[n]× [n] not lying (weakly) below or right of any (i ,w(i)) (marked
with × below).

Example

D(32154) =

◦ ◦ × · ·
◦ × · · ·
× · · · ·
· · · ◦ ×
· · · × ·

'
◦ ◦ ·
◦ · ·
· · ◦

= (2, 1) · (1)

Theorem (Reiner-Shimozono ’94)

For any permutation w, Fw = sD(w).

Example

F32154 = s(2,1)·(1) = s21s1 = s31 + s22 + s211.



James-Peel moves

Given a diagram D, define Ra→bD as the diagram obtained by
moving cells from row a to row b if possible (if the corresponding
position is empty). Likewise define Cc→dD on columns.

These operators are James-Peel moves.

Example

D =
◦ ◦ · ·
◦ · ◦ · R2→1D =

◦ ◦ ◦ ·
◦ · · ·

C3→2D =
◦ ◦ · ·
◦ ◦ · ·



Subdiagram Pieri rule

Theorem (Billey-Pawlowski)

Suppose D ∩ ([n]× [n]) = (n − 1, n − 2, . . . , 1) · (1). Define
Di = Rn→iCn→n−i+1D for i = 1, . . . , n. Then
SD1 ⊕ · · · ⊕ SDn ↪→ SD .

(The case n = 1 is a theorem of James and Peel.)

Example

D =

◦ ◦ · ◦
◦ · · ·
· · ◦ ◦
· ◦ · ·

D2 = R3→2C3→2D =

◦ ◦ · ◦
◦ ◦ · ◦
· · · ·
· ◦ · ·

D1 = R3→1D =

◦ ◦ ◦ ◦
◦ · · ·
· · · ◦
· ◦ · ·

D3 = C3→1D =

◦ ◦ · ◦
◦ · · ·
◦ · · ◦
· ◦ · ·

(so e.g. looking at D2, S331 ↪→ SD)



Proof sketch of main theorem

M(w) = multiset of partitions such that
∑

λ∈M(w) sλ = Fw .

Theorem: If v is contained in w as a pattern, there’s an injection
ι : M(v) ↪→ M(w) with λ ⊆ ι(λ).

Proof sketch.

I Lascoux-Schützenberger transition formula and
Fv = limm→∞S1m×v ⇒ recurrence Fv =

∑
u Fu (L-S tree)

I Translated to permutation diagrams, this recurrence is the
subdiagram Pieri rule starting from D(v)!

I v contained in w ⇒ D(v) ⊆ D(w): apply subdiagram Pieri
rule to D(w) instead of D(v).



Further work

I Stanley symmetric functions in other types, affine Stanley
symmetric functions (cf. Yoo-Yun’s affine permutation
diagrams, balanced labellings)

I Better characterization of patterns characterizing k-vexillary
permutations?

I By Edelman-Greene, an injection M(v) ↪→ M(w) gives an
injection Red(v) ↪→ Red(w) respecting Coxeter-Knuth classes.
Can this be made explicit?

I Analogues for (stable) Grothendieck polynomials? (Lascoux)



Fin

Thank you for listening!


