A combinatorial method to find sharp lower bounds on flip distances

Lionel Pournin

EFREI and LIAFA

June 28, 2013

Theorem (arXiv:1207.6296)

The d-dimensional associahedron has diameter $2 d-4$ when d is greater than 9 .

Summary

0. What are flip distances?
1. The problem

- The diameters of flip-graphs,
- The diameters of associahedra.

2. Main ideas of the proof

- Two maximally distant triangulations,
- Edge contractions in a polygon,
- A recursive lower bound.

3. Related questions

0. What are flip distances?

Definition

A triangulation of a convex polygon π is a maximal set of edges that:
i. share their vertices with π,
ii. are pairwise non-crossing.

0. What are flip distances?

Definition

A triangulation of a convex polygon π is a maximal set of edges that:
i. share their vertices with π,
ii. are pairwise non-crossing.

A flip consists in exchanging the diagonals of a quadrilateral within a triangulation.

0. What are flip distances?

The flip distance of two triangulations is the minimal number of flips needed to transform one into the other.

0. What are flip distances?

The flip distance of two triangulations is the minimal number of flips needed to transform one into the other.

0. What are flip distances?

> The flip distance of two triangulations is the minimal number of flips needed to transform one into the other.

In other words, flip distances are distances measured within flip-graphs:

Definition

The flip-graph of a convex polygon π is the graph whose vertices are the triangulations of π, and whose edges correspond to flips.

0. What are flip distances?

0. What are flip distances?

0. What are flip distances?

The flip-graph of a convex polygon with n vertices is the graph of the d-dimensional associahedron, where $n=d+3$.

1. The problem

What is the diameter Δ_{n} of the flip-graph of a convex polygon with n vertices?

While working to the dynamic optimality conjecture, Daniel Sleator, Robert Tarjan, and William Thurston have shown that:

Theorem (1988)

i. $\Delta_{n} \leq 2 n-10$ when n is greater than 12 ,
ii. $\Delta_{n}=2 n-10$ when n is large enough.

Two problems remained open:

- Is there a combinatorial proof (of ii.)?
- Does large enough means greater than 12 ?

2. Main ideas

Two maximally distant triangulations

Consider a polygon with n vertices labeled from 0 to $n-1$ clockwise.

We search for two triangulations W_{n}^{-}and W_{n}^{+}of this polygon so that:

$$
W_{n}^{-} \text {and } W_{n}^{+} \text {have flip distance } 2 n-10 \text { when } n>12
$$

There are two main difficulties:

- Finding triangulations W_{n}^{-}and W_{n}^{+},
- Proving that their flip distance is indeed $2 n-10$ when $n>12$.

2. Main ideas

Two maximally distant triangulations

Call: - A_{n} the pair $\left\{W_{n}^{-}, W_{n}^{+}\right\}$,

- $\delta\left(A_{n}\right)$ the flip distance of W_{n}^{-}and W_{n}^{+}.

Claim

$$
\delta\left(A_{n}\right) \geq \min \left(\delta\left(A_{n-1}\right)+2, \delta\left(A_{n-2}\right)+4, \delta\left(A_{n-5}\right)+10, \delta\left(A_{n-6}\right)+12\right) .
$$

2. Main ideas

Edge contractions in a polygon
Consider a path ψ of length k between two triangulations:

Contracting the edge at the top results in a path of length $k-j$:

where j is equal to the number of flips that modify the triangle incident to the contracted edge along path ψ.

2. Main ideas

Edge contractions in a polygon

Let U^{\prime} and V^{\prime} be the triangulations obtained by contracting a boundary edge ε of a convex polygon in two triangulations U and V of this polygon.

Theorem

If ψ is a path of length k between U and V, then there exists a path of length $k-j$ between U^{\prime} and V^{\prime}, where j is the number of flips along path ψ that modify the triangle incident to ε.

If in addition, ψ is a minimal path, then:
i. $k=\delta(\{U, V\})$,
ii. $\delta\left(\left\{U^{\prime}, V^{\prime}\right\}\right) \leq k-j$.

One obtains the following inequality on flip distances as a consequence:

$$
\delta(\{U, V\}) \geq \delta\left(\left\{U^{\prime}, V^{\prime}\right\}\right)+j
$$

2. Main ideas

A recursive lower bound

2. Main ideas

A recursive lower bound

If there exists a minimal path from W_{n}^{-}to W_{n}^{+}that modifies (at least) twice the triangle containing $\{n-2, n-1\}$, then:

$$
\delta\left(A_{n}\right) \geq \delta\left(A_{n-1}\right)+2
$$

2. Main ideas

A recursive lower bound

If there exists a minimal path from W_{n}^{-}to W_{n}^{+}that modifies (at least) twice the triangle containing $\{n-2, n-1\}$, then:

$$
\delta\left(A_{n}\right) \geq \delta\left(A_{n-1}\right)+2
$$

2. Main ideas

A recursive lower bound

An arc of weight w from a pair P to a pair Q corresponds to the inequality $\delta(P) \geq \delta(Q)+w$ obtained under some condition (omitted here).

The conditions associated to the arcs with origin A_{n} exhaust all possibilities.

2. Main ideas

A recursive lower bound

$$
\text { As } \delta\left(A_{n}\right) \geq 2 n-10 \text { when } 7 \leq n \leq 12
$$

Corollary

When n is greater than 12, the distance of W_{n}^{-}and W_{n}^{+}is $2 n-10$.

Theorem

When n is greater than 12, the following inequality holds:

$$
\delta\left(A_{n}\right) \geq \min \left(\delta\left(A_{n-1}\right)+2, \delta\left(A_{n-2}\right)+4, \delta\left(A_{n-5}\right)+10, \delta\left(A_{n-6}\right)+12\right) .
$$

3. Related questions

What about the (maximal) flip distance of:

- multi-triangulations?
- centrally-symmetric triangulations?
- triangulations of an arbitrary surface?
- triangulations of arbitrary point configurations?

