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The q-disease

One surprisingly fruitful observation is that many objects arising

in enumerative and algebraic combinatorics have “q-analogues”;

e.g., replacing

n! 7→
∏

1≤i≤n
(1− qi)/(1− q)

in binomial coefficients gives q-binomial coefficients, polynomials

in q (counting subspaces of Fnq ).

This works for Schur functions (irreducible characters of the uni-

tary group); result (with additional parameter t) is Macdonald

polynomials. [General principle: Lie groups → quantum groups]

1



q-Pochhammer symbol

Analogue of (reciprocal of) Gamma function:

(x; q) :=
∏

0≤j
(1− qjx)

(|q| < 1 for convergence; often (x; q)∞ in the literature)

Convention: (a, b, . . . , z; q) := (a; q)(b; q) · · · (z; q).

“q-hypergeometric” ≡ expressible as sums of ratios of q-Pochhammer

symbols, e.g. ∑
k

zk(qka1, q
ka2, . . . , q

kan; q)

(qkb1, qkb2, . . . , qkbm; q)

(See Gasper and Rahman, “Basic hypergeometric series”)
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The elliptic disease

General idea of q-analogues: replace rational functions in k by
rational functions in qk. Can think of this in terms of algebraic
groups: replace rational functions on additive group by rational
functions on multiplicative group.

Question (Baxter, Frenkel-Turaev, others): Why not work on an
arbitrary (1-dimensional) algebraic group?

Only remaining possibility is an elliptic curve: replace rational
functions of qk by rational functions of [k]q for q a point on the
curve.

Aim of current talk: explain how this works for (certain) Mac-
donald polynomials.
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p-elliptic functions

Nicest way to represent elliptic curve for present purposes is

as quotient C∗/〈p〉, |p| < 1. A rational function on C∗/〈p〉 is

just a p-periodic meromorphic function on C \ {0}. (Relation

to usual notion of doubly periodic meromorphic function is via

composition with exp(2π
√
−1x))

Can construct these using theta functions:

θp(x) := (x, p/x; p),

θp(p/x) = θ(x) θp(1/x) = −xθ(1/x)

θp(px) = −x−1θ(x)

Elliptic functions come from products cancelling error in period-

icity. Note θ0(x) = 1− x.
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Degenerations (an aside)

Ordinary and q-special functions can often degenerate by taking

parameters to 0. Elliptic special functions only exist at the “top”

level; any degeneration must also degenerate the curve. On

the other hand, degenerating the curve can give very different-

looking q-identities.

E.g., many of the q-special function identities in Gasper and

Rahman’s book are degenerations of the fact that a certain “el-

liptic” integral has a W (E7) symmetry. Includes various 4-term

identities of series, integral representations, etc. (See work of

van de Bult and the speaker classifying such identities.)
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An elliptic MacMahon identity
(another aside)

An example elliptic identity (Borodin/Gorin/Rains):∑
Π

∏
(i,j,k)∈Π

q3θp(qj+k−2iu1/q, qi+k−2ju2/q, qi+j−2ku3/q)

θp(qj+k−2iu1q, qi+k−2ju2q, qi+j−2ku3q)

=
∏

1≤i≤a
1≤j≤b
1≤k≤c

qθp(qi+j+k−1, qj+k−i−1u1, qi+k−j−1u2, qi+j−k−1u3)

θp(qi+j+k−2, qj+k−iu1, qi+k−ju2, qi+j−ku3)

Here Π ranges over plane partitions (stacks of unit cubes packed
in a corner) in an a× b× c box, and u1u2u3 = 1.

u1, u2 ∼ p1/3, p→ 0 gives usual MacMahon identity.

For suitable parameters, this is a probability distribution.
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(Credit: D. Betea, generalizing exact sampling algorithm of Borodin/Gorin)
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Macdonald polynomials

Given q, t with |q|, |t| < 1, Macdonald polynomial Pλ(x1, . . . , xn; q, t)
is defined by (note Z 3 λ1 ≥ λ2 ≥ · · ·λn ≥ 0 is a partition):

1. Pλ is invariant under permutations of variables.

2. Pλ has leading monomial
∏
i x
λi
i .

3. Pλ is an orthogonal polynomial:∫
Pλ(. . . , xi, . . . )Pµ(. . . , x−1

i , . . . )∆dT ∝ δλµ,

with

∆ =
∏

1≤i<j≤n

(xi/xj, xj/xi; q)

(txi/xj, txj/xi; q)
,

dT =
∏
i

dxi
2π
√
−1xi

.
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Note that if q = t, ∆dT is the eigenvalue measure for the unitary

group, so Pλ is a Schur function.

First big surprise: They exist. “Leading monomial” is not terribly

well-defined for multivariate polynomials, and the most natural

notion (dominance ordering, from Lie theory) relates to a partial

order. Gram-Schmidt on a partial order only gives orthogonality

for vectors with comparable indices, but Macdonald polynomials

are orthogonal anyway.
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Macdonald “conjectures”

1. “Norm”: The nonzero inner products factor nicely, as ratios

of products of terms (1− qatb), a, b ∈ Z.

2. “Evaluation”: The value of Pλ at 1, t, . . . , tn−1 also factors

nicely.

3. “Symmetry”: For any other partition µ with ≤ n parts,

Pλ(. . . , qµitn−i, . . . )

Pλ(. . . , tn−i, . . . )
=
Pµ(. . . , qλitn−i, . . . )

Pµ(. . . , tn−i, . . . )
.
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Koornwinder polynomials

Macdonald extended the definition to an arbitrary root system,
proved existence and formulated analogues of Norm, Evalua-
tion, and Symmetry conjectures (proved by Cherednik). For B/C
root systems (hyperoctahedral/signed permutation symmetry),
Koornwinder found a further generalization, and Macdonald ex-
tended the conjectures. Relevant density is

∏
1≤i≤n

(x±2
i ; q)

(ax±1
i , bx±1

i , cx±1
i , dx±1

i ; q)

∏
1≤i<j≤n

(x±1
i x±1

j ; q)

(tx±1
i x±1

j ; q)
.

(When n = 1, the Koornwinder polynomials become Askey-
Wilson polynomials.) Macdonald’s conjectures hold here, but
(surprisingly for a classical root system) this was the hardest case
(Sahi, using Cherednik’s approach, a construction of Noumi and
a reduction due to van Diejen).
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An alternate proof for Koornwinder polynomials

Basic idea: Construct polynomials satisfying Evaluation and Sym-

metry (an overdetermined system of equations), and show that

they’re Koornwinder polynomials using difference equations they

satisfy.

Koornwinder’s proof of existence (like Macdonald’s in other cases)

used a self-adjoint difference operator. For general root systems,

Macdonald had two constructions of such operators; the simpler

used “minuscule” weights, but these don’t exist for general BC.

However, certain special cases do have minuscule weights.
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If c = q1/2a, d = q1/2b, the Koornwinder polynomials are a special

case of Macdonald’s original construction (the BC/C case), and

have a minuscule weight. Corresponding operator D(n)(a, b; q, t)

takes hyperoctahedrally symmetric f to

∑
σ∈{±1}n

∏
1≤i≤n

(1− axσii )(1− bxσii )

1− x2σi
i

∏
1≤i<j≤n

1− txσii x
σj
j

1− xσii x
σj
j

× f(. . . , qσi/2xi, . . . ).

(N.b., Macdonald gave an explicit description of the operators

for minuscule weights in all cases except this one.)
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It turns out that this acts nicely on general Koornwinder poly-

nomials:

D(n)(a, b; q, t)Kλ(; q1/2a, q1/2b, c, d; q, t) ∝ Kλ(; a, b, q1/2c, q1/2d; q, t).

In particular, Kλ is an eigenfunction of

D(n)(c, d; q, t)D(n)(q−1/2a, q−1/2b; q, t).

Essential property: For partitions µ,

(D(n)(a, b; q, t)f)(. . . , qµitn−ia, . . . )

=
∑
ν
cµν(a, b; q, t)f(. . . , qνitn−iq1/2a, . . . )

with ν ranging over partitions with µi − 1 ≤ νi ≤ µi.
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Interpolation polynomials

Symmetry conjecture involves evaluations of the form Kλ(qµitn−ia).

Okounkov constructed a family of symmetric polynomials with

nice behaviour under such specializations:

Theorem [Okounkov]. There is a (unique) family of n-variable

Laurent polynomials P ∗(n)
λ (; q, t, s) such that

1. P ∗(n)
λ (; q, t, s) is invariant under the hyperoctahedral group.

2. P ∗(n)
λ (; q, t, s) has leading monomial

∏
i x
λi
i .

3. For any other partition µ, if µk < λk for some k, then

P
∗(n)
λ (. . . , qµitn−is, . . . ; q, t, s) = 0.

(Another overdetermined system of equations)
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Key observations:

1. The evaluation and symmetry formulas uniquely determine

the coefficients in the expansion of Koornwinder polynomials

in interpolation polynomials. (Okounkov’s “binomial formula”)

Coefficient of P ∗µ in Kλ is a simple factor times P ∗µ (with different

parameter) evaluated at λ.

2. The interpolation polynomials satisfy a difference equation

D(n)(s, u/s; q, t)P ∗(n)
λ (; q, t, q1/2s) ∝ P ∗(n)

λ (; q, t, s).

This implies that if we define polynomials using evaluation and

symmetry, they automatically satisfy the difference equation w.r.to

D(n)(a, b; q, t).
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Slight technicality: we had to break the a, b, c, d symmetry to

make this work, so don’t get the D(n)(c, d; q, t) equation. But

the interpolation polynomials satisfy enough identities to let one

recover this symmetry, thus proving both Evaluation and Sym-

metry conjectures.

In particular, we can expand P ∗(n)
λ (; q, t, s′) in terms of P ∗(n)

λ (; q, t, s),

and those coefficients [plethystic specializations of Macdonald

polynomials] themselves satisfy identities involving values of in-

terpolation polynomials.

Can also use these identities to directly prove a special case of

orthogonality (in which the contour integral degenerates to a

sum of residues), with explicit nonzero inner products. This is a

sufficiently general special case to prove the Norm conjecture.
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Elliptic difficulties

There are some issues with extending this to the elliptic level:

0. What should the analogues of the Macdonald conjectures be?

1. We used “leading monomial” a lot; this makes even less sense

at the elliptic level than it did at the q level. Elliptic functions

don’t even have monomials!

2. Elliptic functions also tend to have poles, and we’ll need to

specify something about where they are.

3. If we make the difference operator elliptic in the obvious way

(replace (1−x) by θp(x)), the resulting coefficients aren’t elliptic.
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Elliptic difference operators

Extending the operators is pretty easy. The key point is that
although 1 − x2 has degree 2, θp(x2) has degree 4. That is,
θp(x2) has four zeros in any fundamental region. So we just
need more numerator factors!

So we need more numerator factors in the difference operator.
The simplest way to do this is:∑

σ∈{±1}n

∏
1≤i≤n

θp(ax
σi
i , bx

σi
i , cx

σi
i , dx

σi
i )

θp(x
2σi
i )

∏
1≤i<j≤n

θp(tx
σi
i x

σj
j )

θp(x
σi
i x

σj
j )

f(. . . , qσi/2xi, . . . ).

This is elliptic iff tn−1abcd = p, so defines a family of operators
D(n)(a, b, c; q, t).

19



Note that this operator tends to introduce poles, and move the

existing poles. This phenomenon isn’t too bad if the poles of f

are on a suitable geometric progression: If( ∏
1≤i≤n
1≤j≤m

θp(q
−j+1/2bx±1

i )
)
f

is holomorphic, then so is( ∏
1≤i≤n
1≤j≤m

θp(q
−jbx±1

i )
)
D(n)(a, b, c; q, t)f.

So we should replace “polynomial” by “has poles along such a

geometric progression”. (After all, polynomial just means “all

poles are at infinity”. . . )
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What about the notion of leading monomial? We can think

of this as specifying asymptotics at infinity; equivalently, since

we’re allowing poles there, specifying the leading monomial is

tantamount to specifying that after clearing the poles, the result

vanishes to various orders.

Key idea: We’re already using vanishing conditions to define in-

terpolation polynomials, so let’s just replace the leading mono-

mial condition with another set of vanishing conditions!

[N.b., Coskun/Gustafson independently constructed these]
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The resulting interpolation functions satisfy many identities; in

particular, connection coefficients (change of basis coefficients

under changing a parameter) are themselves values of interpola-

tion functions. Moreover, we find that if we ask for a triangular

linear combination of interpolation functions that satisfies an S4

symmetry, there is essentially only one for which interpolation

function identities prove the symmetry. We thus obtain our el-

liptic analogues of Koornwinder polynomials.

One issue is that the operator moves poles, so tends to break

up orthogonality. We thus instead obtain biorthogonal functions

(dual bases of two spaces with constrained poles). Similarly, the

operators move poles in consistent directions, and thus never

give rise to eigenvalue equations.
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This is still good enough, though, that all of the Macdonald

conjectures for classical root systems are limiting cases of results

at the elliptic level, though. (The Koornwinder limit is easy, the

Macdonald limit somewhat more subtle.)

Interestingly, though we introduced the interpolation functions

just as an intermediate step in the construction, they’re actually

special cases of the biorthogonal functions! In particular, they

satisfy their own version of evaluation and symmetry (the latter in

sharp contrast to the interpolation polynomials; the limit breaks

the symmetry).

Thus it would seem that any extension of this theory (either to

nonsymmetric functions à la Cherednik, or to other root systems)

would necessarily involve analogues of interpolation functions.
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Recent developments (Work in progress)

1. A number of identities relating different classical groups have

elliptic analogues; e.g., the fact that∫
O∈On

sλ(O)dO

vanishes unless every part of λ is even. This generalizes to one of

a family of ≥ 20 multivariate quadratic transformations related to

Littlewood and Kawanaka identities. (Cauchy →W (E7)) (Proof

uses formal power series (p a formal variable) and symmetric

functions.)

2. Connections with noncommutative geometry, integrable sys-

tems, and ((double) affine) Hecke algebras.
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