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an oscillating tableau is a sequence of partitions (po, pi1, - - -, ftr)
» beginning with ()
» Ferrers diagrams of consecutive partitions differ by precisely
one cell
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an oscillating tableau is a sequence of partitions (po, pi1, - - -, ftr)

» beginning with ()
» Ferrers diagrams of consecutive partitions differ by precisely

one cell
» ris the length r=9
» 1=, is the (final) shape p=(21)

» n-symplectic if u; has at most n parts for all J n>3



n-symplectic oscillating tableaux

Ho M1 2 H3 Ha s 16 ur He Mo = W

@DH EEEREREN

an oscillating tableau is a sequence of partitions (po, pi1, - - -, ftr)

» beginning with ()
» Ferrers diagrams of consecutive partitions differ by precisely

one cell
» ris the length r=9
» 1=, is the (final) shape p=(21)
» n-symplectic if u; has at most n parts for all J n>3

why are n-symplectic oscillating tableaux interesting?



combinatorialist's answer

n-symplectic oscillating tableaux of length r and empty shape
and

(n 4 1)-noncrossing perfect matchings of {1,2,...,r}

are in bijection [Sundaram, Chen-Deng-Du-Stanley-Yan]!

but that's not for today. ..



Schur-Weyl duality

let V be the defining representation of the
general linear group GL(n)

and consider its r-th tensor power V®':

» GL(n) acts diagonally

» &, acts by permuting tensor positions
then

vere @B V(u) ® S(p)
pkr
{p)<n

as GL(n) x &, modules.

(V(u) and S(p) are the irreducible representations of GL(n) and
S, corresponding to the partition 1)



Robinson-Schensted correspondence

the combinatorial counterpart of

Vere B V(u) @ S(u)
wkr
{p)<n

is the Robinson-Schensted correspondence

{1,...,n}" < | SSYT(u, n) x SYT(1)

wkr
{p)<n

» V(u) has a basis indexed by SSYT(u, n),

semistandard Young tableaux of shape p, entries in {1,...

» S(u) has a basis indexed by SYT(u),
standard Young tableaux of shape



‘'symplectic’ Schur-Weyl duality

let V be the defining representation of the
symplectic group Sp(2n)

and consider its r-th tensor power V®':
» Sp(2n) acts diagonally
» &, acts by permuting tensor positions
then
V®”\“69VSp )@ U(n, r, 1)
p)<n

as Sp(2n) x &, modules.
(VSP(u) is the irreducible representations of Sp(2n)

corresponding to the partition p,
U(n, r, 1) is the isotypic component of type p, an &, module)



Berele's correspondence

a combinatorial counterpart of

ver= € VI (u) @ U(n,r, )
Lu)<n

is Berele's correspondence

{£1,...,£n} & U K(p, n) x Osc(n, r, u)
Hp)<n

» V5P(1) has a basis indexed by K(u, n),
King's n-symplectic semistandard tableaux of shape p, entries
in {£1,...,£n}

» U(n, r,p) has a basis indexed by Osc(n, r, u),
n-symplectic oscillating tableaux of length r, shape p



use n-symplectic oscillating tableaux to understand
the isotypic components U(n, r, u)!

in particular, compute their Frobenius character



Frobenius character

the Frobenius map ch is a ring isomorphism between
» the ring of (virtual) characters of the symmetric group, and

» the ring of symmetric functions

set ch U = ch x for a representation U with character x



Frobenius character

the Frobenius map ch is a ring isomorphism between
» the ring of (virtual) characters of the symmetric group, and

» the ring of symmetric functions
set ch U = ch x for a representation U with character x
example
let V' be the defining representation of GL(n)

by Schur-Weyl the isotypic component of type p in V& is S(1)

its Frobenius character is

chS(p) = su



Sundaram’s correspondence

to determine the Frobenius character of U(n, r, p),
decompose it into &,-irreducibles:

U(n,r,p) = @ a(\, 1)S(N)

Abr

then

ch U(nv r, }u) = Z a()‘v ,LL) S\
Ar



Sundaram’s correspondence

the combinatorial counterpart of

U(n, r,p) = @ a(r, 1)S(N)

Abr
is Sundaram'’s correspondence
Osc(n, r, u) < U LR(n, \/p, B) x SYT(A)
Ar
Brr—|pl

[ has even column lengths

» a(\, p) is the cardinality of LR(n, A/, 8),
the set of n-symplectic Littlewood-Richardson tableaux of
shape A/ and weight (3



the Frobenius character of U(n, r, 1)

chU(n,r,p) = Z Z cl;\ﬁ(n) S\

Abr BEr—|ul
(B has even column lengths

where cli‘ﬁ(n) = #LR(n, N/, B)



the Frobenius character of U(n, r, 1)

ch U(n7 ra/“) = Z Z C;i\,ﬁ(n) S\
Abr BEr—|ul
(B has even column lengths

where cﬁ‘ﬁ(n) = #LR(n, N/, B)

we want something simpler!



quasisymmetric expansion

the fundamental quasisymmetric functions are

Fp = g Xiy Xiy * * * X, -

i <<l
ij<ijr1 ifjED

a descent in a standard Young tableau is an entry k such that k+1
is in a lower row in English notation
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quasisymmetric expansion

the fundamental quasisymmetric functions are

Fp = Z Xiy Xiy * * * X, -
i1 <-<ir
ij<iji1 if jeD
a descent in a standard Young tableau is an entry k such that k+1
is in a higher row
then, the Frobenius character of S(u) can also be written as

ch S(M) = SH = Z FDes(Q)'
QESYT(p)

let's do the same for the symplectic group



descents for oscillating tableaux

H3 Ha 247 e

K7

He

fo = [

Mo pH1 M2
@DH LT L) L




descents for oscillating tableaux

Ho M1 M2 U3 Ha M5 He

o [ EEEREREE




descents for oscillating tableaux
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» convert the oscillating tableau to a highest weight word
wiws ... w, with letters in 1 <2 <---<n<n<---<2<1



descents for oscillating tableaux
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w:l1 2 1 2 1 1 2 3 3

» convert the oscillating tableau to a highest weight word
wiws ... w, with letters in 1 <2 <---<n<n<---<2<1

> kis a descent if wy < wyiq



quasisymmetric expansion

Sundaram’s correspondence

Osc(n, r, 1) < U LR(n, A/, B) x SYT(X)

Abr
Br—|ul
[ has even column lengths

preserves descent sets:
O < (L, Q) = Des(0O) = Des(Q)

therefore

ch U(”v r, M) = Z FDes(O)'
0€0sc(n,r,u)
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Summary

> let V the defining representation of Sp(2n)
» let Sp(2n) act diagonally on V&'
» let G, act on V®' by permuting tensor positions

then the Frobenius characteristic of the isotypic component of type
i in V' in terms of fundamental quasisymmetric functions is

Z FDes(O)

O€O0sc(n,r,u)

(this is easier to remember and to generalize than the expansion in
terms of Schur functions due to Sundaram)



Summary

> let V the defining representation of Sp(2n)
» let Sp(2n) act diagonally on V&'
» let G, act on V®' by permuting tensor positions

then the Frobenius characteristic of the isotypic component of type
i in V' in terms of fundamental quasisymmetric functions is

Z FDes(O)

O€O0sc(n,r,u)

(this is easier to remember and to generalize than the expansion in
terms of Schur functions due to Sundaram)
outlook:
> defining representations of orthogonal groups and G;
» cyclic sieving polynomials for promotion

» other representations



