Martin Rubey<sup>1</sup> Bruce Sagan<sup>2</sup> Bruce Westbury<sup>3</sup>

<sup>1</sup>TU Wien <sup>2</sup>Michigan State University <sup>3</sup>University of Warwick





an oscillating tableau is a sequence of partitions  $(\mu_0,\mu_1,\ldots,\mu_r)$ 

- ▶ beginning with ∅
- ► Ferrers diagrams of consecutive partitions differ by precisely one cell



an oscillating tableau is a sequence of partitions  $(\mu_0, \mu_1, \dots, \mu_r)$ 

- ▶ beginning with ∅
- ► Ferrers diagrams of consecutive partitions differ by precisely one cell

$$\mu_0$$
  $\mu_1$   $\mu_2$   $\mu_3$   $\mu_4$   $\mu_5$   $\mu_6$   $\mu_7$   $\mu_8$   $\mu_9 = \mu$ 

an oscillating tableau is a sequence of partitions  $(\mu_0, \mu_1, \dots, \mu_r)$ 

- ▶ beginning with ∅
- Ferrers diagrams of consecutive partitions differ by precisely one cell
- ► r is the length r = 9
- $\mu = \mu_r \text{ is the (final) shape} \qquad \qquad \mu = (21)$
- ▶ *n*-symplectic if  $\mu_i$  has at most *n* parts for all i  $n \ge 3$

$$\mu_0$$
  $\mu_1$   $\mu_2$   $\mu_3$   $\mu_4$   $\mu_5$   $\mu_6$   $\mu_7$   $\mu_8$   $\mu_9 = \mu$ 

an oscillating tableau is a sequence of partitions  $(\mu_0, \mu_1, \dots, \mu_r)$ 

- ▶ beginning with ∅
- ► Ferrers diagrams of consecutive partitions differ by precisely one cell
- r is the length r = 9
- $\mu = \mu_r$  is the (final) shape  $\mu = (21)$
- ▶ *n*-symplectic if  $\mu_i$  has at most *n* parts for all i  $n \ge 3$

why are *n*-symplectic oscillating tableaux interesting?

#### combinatorialist's answer

n-symplectic oscillating tableaux of length r and empty shape and

(n+1)-noncrossing perfect matchings of  $\{1,2,\ldots,r\}$  are in bijection [Sundaram, Chen-Deng-Du-Stanley-Yan]!

but that's not for today...

# Schur-Weyl duality

let V be the defining representation of the

general linear group 
$$GL(n)$$

and consider its *r*-th tensor power  $V^{\otimes r}$ :

- $ightharpoonup \operatorname{GL}(n)$  acts diagonally
- $ightharpoonup \mathfrak{S}_r$  acts by permuting tensor positions

then

$$V^{\otimes r} \cong \bigoplus_{\substack{\mu \vdash r \ \ell(\mu) \le n}} V(\mu) \otimes S(\mu)$$

as  $\mathrm{GL}(n) \times \mathfrak{S}_r$  modules.

 $(V(\mu))$  and  $S(\mu)$  are the irreducible representations of GL(n) and  $\mathfrak{S}_r$  corresponding to the partition  $\mu$ )

### Robinson-Schensted correspondence

the combinatorial counterpart of

$$V^{\otimes r} \cong \bigoplus_{\substack{\mu \vdash r \ \ell(\mu) \leq n}} V(\mu) \otimes S(\mu)$$

is the Robinson-Schensted correspondence

$$\{1,\ldots,n\}^r \leftrightarrow \bigcup_{\substack{\mu \vdash r \\ \ell(\mu) < n}} \mathsf{SSYT}(\mu,n) \times \mathsf{SYT}(\mu)$$

- ▶  $V(\mu)$  has a basis indexed by  $SSYT(\mu, n)$ , semistandard Young tableaux of shape  $\mu$ , entries in  $\{1, \ldots, n\}$
- S(μ) has a basis indexed by SYT(μ), standard Young tableaux of shape μ

# 'symplectic' Schur-Weyl duality

let V be the defining representation of the

symplectic group 
$$Sp(2n)$$

and consider its *r*-th tensor power  $V^{\otimes r}$ :

- ▶ Sp(2n) acts diagonally
- $ightharpoonup \mathfrak{S}_r$  acts by permuting tensor positions

then

$$V^{\otimes r} \cong \bigoplus_{\ell(\mu) \leq n} V^{\operatorname{Sp}}(\mu) \otimes \mathit{U}(n,r,\mu)$$

as  $\mathrm{Sp}(2n) \times \mathfrak{S}_r$  modules.

 $(V^{\operatorname{Sp}}(\mu))$  is the irreducible representations of  $\operatorname{Sp}(2n)$  corresponding to the partition  $\mu$ ,  $U(n,r,\mu)$  is the isotypic component of type  $\mu$ , an  $\mathfrak{S}_r$  module)

### Berele's correspondence

a combinatorial counterpart of

$$V^{\otimes r} \cong \bigoplus_{\ell(\mu) \leq n} V^{\operatorname{Sp}}(\mu) \otimes U(n,r,\mu)$$

is Berele's correspondence

$$\{\pm 1, \ldots, \pm n\}^r \leftrightarrow \bigcup_{\ell(\mu) \le n} \mathsf{K}(\mu, n) \times \mathsf{Osc}(n, r, \mu)$$

- ▶  $V^{\mathrm{Sp}}(\mu)$  has a basis indexed by  $\mathsf{K}(\mu,n)$ ,  $\mathit{King's n-symplectic semistandard tableaux}$  of shape  $\mu$ , entries in  $\{\pm 1,\ldots,\pm n\}$
- ▶  $U(n, r, \mu)$  has a basis indexed by  $Osc(n, r, \mu)$ , n-symplectic oscillating tableaux of length r, shape  $\mu$

use *n*-symplectic oscillating tableaux to understand

the isotypic components  $U(n, r, \mu)!$ 

in particular, compute their Frobenius character

#### Frobenius character

the Frobenius map ch is a ring isomorphism between

- the ring of (virtual) characters of the symmetric group, and
- the ring of symmetric functions

set  $\operatorname{ch} U = \operatorname{ch} \chi$  for a representation U with character  $\chi$ 

#### Frobenius character

the Frobenius map ch is a ring isomorphism between

- the ring of (virtual) characters of the symmetric group, and
- the ring of symmetric functions

set  $\operatorname{ch} U = \operatorname{ch} \chi$  for a representation U with character  $\chi$ 

### example

let V be the defining representation of GL(n)

by Schur-Weyl the isotypic component of type  $\mu$  in  $V^{\otimes r}$  is  $S(\mu)$ 

its Frobenius character is

$$\mathsf{ch}\, \mathcal{S}(\mu) = \mathit{s}_{\mu}$$

## Sundaram's correspondence

to determine the Frobenius character of  $U(n, r, \mu)$ , decompose it into  $\mathfrak{S}_r$ -irreducibles:

$$U(n,r,\mu) \cong \bigoplus_{\lambda \vdash r} a(\lambda,\mu)S(\lambda)$$

then

$$\mathsf{ch}\; \mathit{U}(\mathit{n},\mathit{r},\mu) = \sum_{\lambda \vdash \mathit{r}} \mathit{a}(\lambda,\mu)\, \mathit{s}_{\lambda}$$

## Sundaram's correspondence

the combinatorial counterpart of

$$U(n,r,\mu)\cong\bigoplus_{\lambda\vdash r}a(\lambda,\mu)S(\lambda)$$

is Sundaram's correspondence

$$\operatorname{Osc}(n,r,\mu) \leftrightarrow \bigcup_{\substack{\lambda \vdash r \\ \beta \vdash r - |\mu| \\ \beta \text{ has even column lengths}}} \operatorname{LR}(n,\lambda/\mu,\beta) \times \operatorname{SYT}(\lambda)$$

▶  $a(\lambda, \mu)$  is the cardinality of LR $(n, \lambda/\mu, \beta)$ , the set of n-symplectic Littlewood-Richardson tableaux of shape  $\lambda/\mu$  and weight  $\beta$ 

# the Frobenius character of $U(n, r, \mu)$

$$\mathsf{ch}\; U(n,r,\mu) = \sum_{\lambda \vdash r} \left( \sum_{\substack{\beta \vdash r - |\mu| \\ \beta \; \mathsf{has} \; \mathsf{even} \; \mathsf{column} \; \mathsf{lengths}}} c_{\mu,\beta}^{\lambda}(n) \right) \mathsf{s}_{\lambda}$$

where 
$$c_{\mu,\beta}^{\lambda}(n) = \# \operatorname{LR}(n,\lambda/\mu,\beta)$$

# the Frobenius character of $U(n, r, \mu)$

$$\operatorname{ch} U(n,r,\mu) = \sum_{\lambda dash r} \left( \sum_{\substack{eta dash r - |\mu| \ eta ext{ has even column lengths}}} c_{\mu,eta}^{\lambda}(n) 
ight) s_{\lambda}$$

where 
$$c_{\mu,\beta}^{\lambda}(n)=\#\operatorname{LR}(n,\lambda/\mu,\beta)$$

we want something simpler!

the fundamental quasisymmetric functions are

$$F_D = \sum_{\substack{i_1 \leq \cdots \leq i_r \\ i_j < i_{j+1} \text{ if } j \in D}} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

a descent in a standard Young tableau is an entry k such that k+1 is in a lower row in English notation

the fundamental quasisymmetric functions are

$$F_D = \sum_{\substack{i_1 \leq \cdots \leq i_r \\ i_j < i_{j+1} \text{ if } j \in D}} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

a descent in a standard Young tableau is an entry k such that k+1 is in a higher row

the fundamental quasisymmetric functions are

$$F_D = \sum_{\substack{i_1 \leq \cdots \leq i_r \\ i_j < i_{j+1} \text{ if } j \in D}} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

a descent in a standard Young tableau is an entry k such that k+1 is in a higher row

then, the Frobenius character of  $S(\mu)$  can also be written as

$$\operatorname{ch} S(\mu) = s_{\mu} = \sum_{Q \in \operatorname{SYT}(\mu)} F_{\operatorname{Des}(Q)}.$$

let's do the same for the symplectic group







▶ convert the oscillating tableau to a highest weight word  $w_1w_2 \dots w_r$  with letters in  $1 < 2 < \dots < n < \bar{n} < \dots < \bar{2} < \bar{1}$ 



- ▶ convert the oscillating tableau to a highest weight word  $w_1w_2 \dots w_r$  with letters in  $1 < 2 < \dots < n < \bar{n} < \dots < \bar{2} < \bar{1}$
- k is a descent if  $w_k < w_{k+1}$

#### Sundaram's correspondence

$$\mathsf{Osc}(\textit{n},\textit{r},\mu) \leftrightarrow \bigcup_{\substack{\substack{\lambda \vdash \textit{r} \\ \beta \vdash \textit{r} - |\mu| \\ \beta \text{ has even column lengths} }} \mathsf{LR}(\textit{n},\lambda/\mu,\beta) \times \mathsf{SYT}(\lambda)$$

preserves descent sets:

$$O \leftrightarrow (L, Q) \Rightarrow \mathsf{Des}(O) = \mathsf{Des}(Q)$$

therefore

$$\operatorname{ch} U(n, r, \mu) = \sum_{O \in \operatorname{Osc}(n, r, \mu)} F_{\operatorname{Des}(O)}.$$

| Ø |   |   |    |    |   |    |    |    |  |
|---|---|---|----|----|---|----|----|----|--|
| U |   |   |    |    |   |    |    |    |  |
|   | 1 |   |    |    |   |    |    |    |  |
|   |   | 2 |    |    |   |    |    |    |  |
|   |   |   | 21 |    |   |    |    |    |  |
|   |   |   |    | 11 |   |    |    |    |  |
|   |   |   |    |    | 1 |    |    |    |  |
|   |   |   |    |    |   | 11 |    |    |  |
|   |   |   |    |    |   |    | 21 |    |  |
|   |   |   |    |    |   |    |    | 31 |  |

21



| Ø |                       |                       |                       |    | X |    |    |                 |   |
|---|-----------------------|-----------------------|-----------------------|----|---|----|----|-----------------|---|
| Ø | 1                     |                       |                       | X  |   |    |    |                 |   |
| Ø | 1                     | 2                     |                       |    |   |    |    |                 |   |
| Ø | 1                     | <b>x</b> <sup>2</sup> | 21                    |    |   |    |    |                 |   |
| Ø | <i>x</i> <sup>1</sup> | 1                     | 11                    | 11 |   |    |    |                 |   |
| Ø | Ø                     | Ø                     | 1                     | 1  | 1 |    |    |                 |   |
| Ø | Ø                     | Ø                     | 1                     | 1  | 1 | 11 |    |                 |   |
| Ø | Ø                     | Ø                     | 1                     | 1  | 1 | 11 | 21 |                 | X |
| Ø | Ø                     | Ø                     | 1                     | 1  | 1 | 11 | 21 | x <sup>31</sup> |   |
| Ø | Ø                     | Ø                     | <i>x</i> <sup>1</sup> | 1  | 1 | 11 | 21 | 21              | 2 |
|   |                       |                       |                       |    |   |    | X  |                 |   |
|   |                       |                       |                       |    |   | X  |    |                 |   |
|   |                       |                       |                       |    |   |    |    |                 |   |



| 1 | 2 | 21       | 31         | x <sup>41</sup> | 411 | 421 | 431             | 441 |
|---|---|----------|------------|-----------------|-----|-----|-----------------|-----|
| 1 |   |          | X          |                 |     |     |                 |     |
|   | 2 |          |            |                 |     |     |                 |     |
|   | X | 21       |            |                 |     |     |                 |     |
| X |   |          | 11         |                 |     |     |                 |     |
|   |   |          |            | 1               |     |     |                 |     |
|   |   |          |            |                 | 11  |     |                 |     |
|   |   |          |            |                 |     | 21  |                 | X   |
|   |   |          |            |                 |     |     | x <sup>31</sup> |     |
| Ø | Ø | $\chi^1$ | 1          | 1               | 11  | 21  | 21              | 21  |
|   |   |          |            |                 |     | Χ   |                 |     |
|   |   |          |            |                 | X   |     |                 |     |
|   | 1 | 1 2 X X  | 1 2 X 21 X | 1               | 1   | 1   | 1               | 1   |



### Summary

- ▶ let V the defining representation of Sp(2n)
- ▶ let Sp(2n) act diagonally on  $V^{\otimes r}$
- ▶ let  $\mathfrak{S}_r$  act on  $V^{\otimes r}$  by permuting tensor positions

then the Frobenius characteristic of the isotypic component of type  $\mu$  in  $V^{\otimes r}$  in terms of fundamental quasisymmetric functions is

$$\sum_{O \in \mathsf{Osc}(n,r,\mu)} F_{\mathsf{Des}(O)}$$

(this is easier to remember and to generalize than the expansion in terms of Schur functions due to Sundaram)

### Summary

- ▶ let V the defining representation of Sp(2n)
- ▶ let Sp(2n) act diagonally on  $V^{\otimes r}$
- ▶ let  $\mathfrak{S}_r$  act on  $V^{\otimes r}$  by permuting tensor positions

then the Frobenius characteristic of the isotypic component of type  $\mu$  in  $V^{\otimes r}$  in terms of fundamental quasisymmetric functions is

$$\sum_{O \in \mathsf{Osc}(n,r,\mu)} F_{\mathsf{Des}(O)}$$

(this is easier to remember and to generalize than the expansion in terms of Schur functions due to Sundaram)

#### outlook:

- $\triangleright$  defining representations of orthogonal groups and  $G_2$
- cyclic sieving polynomials for promotion
- other representations