Descent sets for oscillating tableaux

Martin Rubey ${ }^{1}$ Bruce Sagan ${ }^{2}$ Bruce Westbury ${ }^{3}$

${ }^{1}$ TU Wien
${ }^{2}$ Michigan State University
${ }^{3}$ University of Warwick

TOUNAMSNTARAR
 HEMAgenvatornet

n-symplectic oscillating tableaux

an oscillating tableau is a sequence of partitions $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{r}\right)$

- beginning with \emptyset
- Ferrers diagrams of consecutive partitions differ by precisely one cell

n-symplectic oscillating tableaux

an oscillating tableau is a sequence of partitions $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{r}\right)$

- beginning with \emptyset
- Ferrers diagrams of consecutive partitions differ by precisely one cell

n-symplectic oscillating tableaux

an oscillating tableau is a sequence of partitions $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{r}\right)$

- beginning with \emptyset
- Ferrers diagrams of consecutive partitions differ by precisely one cell
- r is the length

$$
r=9
$$

- $\mu=\mu_{r}$ is the (final) shape

$$
\mu=(21)
$$

- n-symplectic if μ_{i} has at most n parts for all i
$n \geq 3$

n-symplectic oscillating tableaux

an oscillating tableau is a sequence of partitions $\left(\mu_{0}, \mu_{1}, \ldots, \mu_{r}\right)$

- beginning with \emptyset
- Ferrers diagrams of consecutive partitions differ by precisely one cell
- r is the length

$$
\begin{array}{r}
r=9 \\
\mu=(21) \\
n \geq 3
\end{array}
$$

- $\mu=\mu_{r}$ is the (final) shape
- n-symplectic if μ_{i} has at most n parts for all i
why are n-symplectic oscillating tableaux interesting?

combinatorialist's answer

n-symplectic oscillating tableaux of length r and empty shape and
$(n+1)$-noncrossing perfect matchings of $\{1,2, \ldots, r\}$
are in bijection [Sundaram, Chen-Deng-Du-Stanley-Yan]!
but that's not for today...

Schur-Weyl duality

let V be the defining representation of the

$$
\text { general linear group GL(} n \text {) }
$$

and consider its r-th tensor power $V^{\otimes r}$:

- GL(n) acts diagonally
- \mathfrak{S}_{r} acts by permuting tensor positions
then

$$
V^{\otimes r} \cong \bigoplus_{\substack{\mu \vdash r \\ \ell(\mu) \leq n}} V(\mu) \otimes S(\mu)
$$

as $\operatorname{GL}(n) \times \mathfrak{S}_{r}$ modules.
$(V(\mu)$ and $S(\mu)$ are the irreducible representations of $\mathrm{GL}(n)$ and \mathfrak{S}_{r} corresponding to the partition μ)

Robinson-Schensted correspondence

the combinatorial counterpart of

$$
V^{\otimes r} \cong \bigoplus_{\substack{\mu \vdash r \\ \ell(\mu) \leq n}} V(\mu) \otimes S(\mu)
$$

is the Robinson-Schensted correspondence

$$
\{1, \ldots, n\}^{r} \leftrightarrow \bigcup_{\substack{\mu \vdash r \\ \ell(\mu) \leq n}} \operatorname{SSYT}(\mu, n) \times \operatorname{SYT}(\mu)
$$

- $V(\mu)$ has a basis indexed by $\operatorname{SSYT}(\mu, n)$, semistandard Young tableaux of shape μ, entries in $\{1, \ldots, n\}$
- $S(\mu)$ has a basis indexed by $\operatorname{SYT}(\mu)$, standard Young tableaux of shape μ

'symplectic' Schur-Weyl duality

let V be the defining representation of the

$$
\text { symplectic group } \mathrm{Sp}(2 n)
$$

and consider its r-th tensor power $V^{\otimes r}$:

- $\operatorname{Sp}(2 n)$ acts diagonally
- \mathfrak{S}_{r} acts by permuting tensor positions
then

$$
V^{\otimes r} \cong \bigoplus_{\ell(\mu) \leq n} V^{\mathrm{Sp}}(\mu) \otimes U(n, r, \mu)
$$

as $\operatorname{Sp}(2 n) \times \mathfrak{S}_{r}$ modules.
($V^{\mathrm{Sp}}(\mu)$ is the irreducible representations of $\mathrm{Sp}(2 n)$
corresponding to the partition μ, $U(n, r, \mu)$ is the isotypic component of type μ, an \mathfrak{S}_{r} module)

Berele's correspondence

a combinatorial counterpart of

$$
V^{\otimes r} \cong \bigoplus_{\ell(\mu) \leq n} V^{\mathrm{Sp}}(\mu) \otimes U(n, r, \mu)
$$

is Berele's correspondence

$$
\{ \pm 1, \ldots, \pm n\}^{r} \leftrightarrow \bigcup_{\ell(\mu) \leq n} \mathrm{~K}(\mu, n) \times \operatorname{Osc}(n, r, \mu)
$$

- $V^{\mathrm{Sp}}(\mu)$ has a basis indexed by $\mathrm{K}(\mu, n)$, King's n-symplectic semistandard tableaux of shape μ, entries in $\{ \pm 1, \ldots, \pm n\}$
- $U(n, r, \mu)$ has a basis indexed by $\operatorname{Osc}(n, r, \mu)$, n-symplectic oscillating tableaux of length r, shape μ
use n-symplectic oscillating tableaux to understand the isotypic components $U(n, r, \mu)$!
in particular, compute their Frobenius character

Frobenius character

the Frobenius map ch is a ring isomorphism between

- the ring of (virtual) characters of the symmetric group, and
- the ring of symmetric functions
set ch $U=\operatorname{ch} \chi$ for a representation U with character χ

Frobenius character

the Frobenius map ch is a ring isomorphism between

- the ring of (virtual) characters of the symmetric group, and
- the ring of symmetric functions
set ch $U=$ ch χ for a representation U with character χ example
let V be the defining representation of $\mathrm{GL}(n)$
by Schur-Weyl the isotypic component of type μ in $V^{\otimes r}$ is $S(\mu)$
its Frobenius character is

$$
\operatorname{ch} S(\mu)=s_{\mu}
$$

Sundaram's correspondence

to determine the Frobenius character of $U(n, r, \mu)$, decompose it into \mathfrak{S}_{r}-irreducibles:

$$
U(n, r, \mu) \cong \bigoplus_{\lambda \vdash r} a(\lambda, \mu) S(\lambda)
$$

then

$$
\operatorname{ch} U(n, r, \mu)=\sum_{\lambda \vdash r} a(\lambda, \mu) s_{\lambda}
$$

Sundaram's correspondence

the combinatorial counterpart of

$$
U(n, r, \mu) \cong \bigoplus_{\lambda \vdash r} a(\lambda, \mu) S(\lambda)
$$

is Sundaram's correspondence

$$
\operatorname{Osc}(n, r, \mu) \leftrightarrow \bigcup_{\substack{\lambda \vdash r \\ \beta \vdash r-|\mu| \\ \beta \text { has even column lengths }}} \operatorname{LR}(n, \lambda / \mu, \beta) \times \operatorname{SYT}(\lambda)
$$

- $a(\lambda, \mu)$ is the cardinality of $\operatorname{LR}(n, \lambda / \mu, \beta)$, the set of n-symplectic Littlewood-Richardson tableaux of shape λ / μ and weight β

the Frobenius character of $U(n, r, \mu)$

$$
\operatorname{ch} U(n, r, \mu)=\sum_{\lambda \vdash r}\left(\sum_{\substack{\beta \vdash r-|\mu| \\ \beta \text { has even column lengths }}} c_{\mu, \beta}^{\lambda}(n)\right) s_{\lambda}
$$

where $c_{\mu, \beta}^{\lambda}(n)=\# \operatorname{LR}(n, \lambda / \mu, \beta)$

the Frobenius character of $U(n, r, \mu)$

$$
\operatorname{ch} U(n, r, \mu)=\sum_{\lambda \vdash r}\left(\sum_{\substack{\beta \vdash r-|\mu| \\ \beta \text { has even column lengths }}} c_{\mu, \beta}^{\lambda}(n)\right) s_{\lambda}
$$

where $c_{\mu, \beta}^{\lambda}(n)=\# \operatorname{LR}(n, \lambda / \mu, \beta)$
we want something simpler!

quasisymmetric expansion

the fundamental quasisymmetric functions are

$$
F_{D}=\sum_{\substack{i_{1} \leq \cdots<i_{r} \\ i_{j}<i_{j+1} \text { if } j \in D}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

a descent in a standard Young tableau is an entry k such that $k+1$ is in a lower row in English notation

quasisymmetric expansion

the fundamental quasisymmetric functions are

$$
F_{D}=\sum_{\substack{i_{1} \leq \cdots \leq i_{r} \\ i_{j}<i_{j+1} \leq 1 \\ \text { if } j \in D}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

a descent in a standard Young tableau is an entry k such that $k+1$ is in a higher row

quasisymmetric expansion

the fundamental quasisymmetric functions are

$$
F_{D}=\sum_{\substack{i_{1} \leq \cdots \leq i_{r} \\ i_{j}<i_{j+1}=1 \text { if } j \in D}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

a descent in a standard Young tableau is an entry k such that $k+1$ is in a higher row
then, the Frobenius character of $S(\mu)$ can also be written as

$$
\operatorname{ch} S(\mu)=s_{\mu}=\sum_{Q \in \operatorname{SYT}(\mu)} F_{\operatorname{Des}(Q)} .
$$

let's do the same for the symplectic group

descents for oscillating tableaux

descents for oscillating tableaux

descents for oscillating tableaux

- convert the oscillating tableau to a highest weight word $w_{1} w_{2} \ldots w_{r}$ with letters in $1<2<\cdots<n<\bar{n}<\cdots<\overline{2}<\overline{1}$

descents for oscillating tableaux

- convert the oscillating tableau to a highest weight word $w_{1} w_{2} \ldots w_{r}$ with letters in $1<2<\cdots<n<\bar{n}<\cdots<\overline{2}<\overline{1}$
- k is a descent if $w_{k}<w_{k+1}$

quasisymmetric expansion

Sundaram's correspondence

$$
\operatorname{Osc}(n, r, \mu) \leftrightarrow \bigcup_{\substack{\lambda \vdash r \\ \beta \vdash r-|\mu| \\ \beta \text { has even column lengths }}} \operatorname{LR}(n, \lambda / \mu, \beta) \times \operatorname{SYT}(\lambda)
$$

preserves descent sets:

$$
O \leftrightarrow(L, Q) \Rightarrow \operatorname{Des}(O)=\operatorname{Des}(Q)
$$

therefore

$$
\text { ch } U(n, r, \mu)=\sum_{O \in \operatorname{Osc}(n, r, \mu)} F_{\operatorname{Des}(O)} \text {. }
$$

proof

1								
	2							
		21						
			11					
				1				
					11			
						21		
							31	

proof

\emptyset									
\emptyset	1								
\emptyset	1	2							
\emptyset	1	1	x^{2}	21					
\emptyset	x^{1}	1	11	11					
\emptyset	\emptyset	\emptyset	1	1	1				
\emptyset	\emptyset	\emptyset	\emptyset	1	1	1	11		
\emptyset	\emptyset	\emptyset	1	1	1	11	21		
\emptyset	\emptyset	\emptyset	1	1	1	11	21	x^{31}	
\emptyset	\emptyset	\emptyset	1	1	1	11	21	21	21

proof

\emptyset					X				
\emptyset	1			X					
\emptyset	1	2							
\emptyset	1	x^{2}	21						
\emptyset	x^{1}	1	11	11					
\emptyset	\emptyset	\emptyset	1	1	1				
\emptyset	\emptyset	\emptyset	1	1	1	11			
\emptyset	\emptyset	\emptyset	1	1	1	11	21		x
\emptyset	\emptyset	\emptyset	1	1	1	11	21	x^{31}	
\emptyset	\emptyset	\emptyset	x^{1}	1	1	11	21	21	21
							x		
						X			

proof

\emptyset	1	2	21	31	x^{41}	41	42		141
\emptyset	1	2	21	x^{31}	31	311	32	1331	43
\emptyset	1	2	21	21	21	211	22	1321	42
0	1	x^{2}	21	21	21	21.	22	1321	42
θ	x^{1}	1	11	11	11	111	211	1311	41
\emptyset	\emptyset	\emptyset	1	1	1	11	21	31	41
\emptyset	\square	\emptyset	1	1	1	11	21	31	41
\emptyset	\emptyset	\emptyset	1	1	1	11	21	31	x^{41}
\emptyset	\emptyset	\emptyset	1	1	1	11	21	x^{31}	31
\emptyset	0	\emptyset	x^{1}	1	1	11	21	$1{ }^{21}$	21
							x		
						X			

proof

proof

Summary

- let V the defining representation of $\operatorname{Sp}(2 n)$
- let $\operatorname{Sp}(2 n)$ act diagonally on $V^{\otimes r}$
- let \mathfrak{S}_{r} act on $V^{\otimes r}$ by permuting tensor positions
then the Frobenius characteristic of the isotypic component of type μ in $V \otimes r$ in terms of fundamental quasisymmetric functions is

$$
\sum_{O \in \operatorname{Osc}(n, r, \mu)} F_{\operatorname{Des}(O)}
$$

(this is easier to remember and to generalize than the expansion in terms of Schur functions due to Sundaram)

Summary

- let V the defining representation of $\operatorname{Sp}(2 n)$
- let $\operatorname{Sp}(2 n)$ act diagonally on $V^{\otimes r}$
- let \mathfrak{S}_{r} act on $V^{\otimes r}$ by permuting tensor positions
then the Frobenius characteristic of the isotypic component of type μ in $V^{\otimes r}$ in terms of fundamental quasisymmetric functions is

$$
\sum_{O \in \operatorname{Osc}(n, r, \mu)} F_{\operatorname{Des}(O)}
$$

(this is easier to remember and to generalize than the expansion in terms of Schur functions due to Sundaram)
outlook:

- defining representations of orthogonal groups and G_{2}
- cyclic sieving polynomials for promotion
- other representations

