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Polyhedra and polytopes

Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

Polytope = bounded polyhedron.

The dimension of P is the dimension of its affine hull.
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Polyhedra and polytopes

Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane
not cutting,

but touching P.
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Polyhedra and polytopes

Faces of P

We say that H ∩ P is a face of P.
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Polyhedra and polytopes

Faces of P

Faces of dimension 0 are called vertices.
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Polyhedra and polytopes

Faces of P

Faces of dimension 1 are called edges.
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Polyhedra and polytopes

Faces of P

Faces of dimension d − 1 are called facets.
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Polyhedra and polytopes

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

6



Introduction Diameter of polyhedra Diameter of simplicial complexes

Polyhedra and polytopes

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

6



Introduction Diameter of polyhedra Diameter of simplicial complexes

Polyhedra and polytopes

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

6



Introduction Diameter of polyhedra Diameter of simplicial complexes

Polyhedra and polytopes

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

diam(P) = max{d(u, v) : u, v ∈ V}.
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The Hirsch Conjecture

The Hirsch conjecture

Conjecture (W. M. Hirsch, 1957)
For every polytope P with n facets and dimension d ,

diam(P) ≤ n − d .

polytope facets dimension n − d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k -prism k + 2 3 k − 1 bk/2c+ 1
n-cube 2n n n n
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The Hirsch Conjecture

Brief history of the conjecture

1 It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

2 Several special cases have been proved: d ≤ 3, n− d ≤ 6,
0/1-polytopes, . . .

3 In 1967, Klee and Walkup disproved the unbounded case.
In 2010 I disproved the bounded case.

4 The constructions do not produce polytopes whose
diameter is more than a small constant times the Hirsch
bound.

5 In the general case we do not even know of a
polynomial bound for diam(P) in terms of n and d .
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The Hirsch Conjecture

Motivation: LP

The feasibility region of a linear program is a polyhedron P
with (at most) n facets and d dimensions.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method (Dantzig 1947) solves the linear
program by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
In particular, a polynomial pivot rule for the simplex method
would prove that Linear Programming can be performed in
strongly polynomial time (one of Smale’s "problems for the
next century").
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The Hirsch Conjecture

Polynomial Hirsch conjecture

In this sense, more important than the original Hirsch
conjecture is the following “polynomial version” of it:

Polynomial Hirsch Conjecture

Let H(n,d) denote the maximum diameter of d-polyhedra with
n facets. There is a constant k such that:

H(n,d) ≤ nk , ∀n,d .
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General bounds and known cases
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General bounds and known cases

Two reductions

(Klee, 1964) For every n,d the maximum H(n,d) is
attained at a simple polyhedron.

(Klee-Walkup, 1967) For every n,d ,

H(n,d) ≤ H(2n − 2d ,n − d).

Corollary (d-step theorem)

In order to bound H(n,d) it suffices to bound H(2d ,d)
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General bounds and known cases

Two general bounds

Theorem (Kalai-Kleitman, 1992, “quasi-polynomial”)

H(n,d) ≤ nlog2 d+2, ∀n,d .

Theorem (Larman, 1970; Barnette, 1974, linear in fixed d)

H(n,d) ≤ n2d−3, ∀n,d .
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General bounds and known cases

Some known cases

The Hirsch bound holds for
d ≤ 3 (Klee, 1966).
Hb(9,4) = Hb(10,5) = 5 (Klee-Walkup, 1967)
⇒ Hirsch bound for n − d ≤ 5
Hb(10,4) = 5, Hb(11,5) = 6, (Goodey, 1972)
0-1 polytopes (Naddef, 1989)

Recent additions:
Hb(12,6) = 6 (Bremner-Schewe, 2008)
⇒ Hirsch bound for n − d ≤ 6
Hb(12,4) = Hb(12,5) = 7 (Bremner et al., 2012).
Flag polytopes (and polyhedra).
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Introduction Diameter of polyhedra Diameter of simplicial complexes

General bounds and known cases

Flag simplicial complexes

We know that w.l.o.g. we can assume our d-polytopes or
d-polyhedra to be simple.

Let us think about their duals, whose
face complex is a simplicial (d − 1)-sphere or (d − 1)-ball.
In this setting the Hirsch question is about the diameter of the
dual graphs of polytopal spheres (or the analogue for balls).

Let us consider the following particular case:

Definition
A pure simplicial complex is called flag if it equals the clique
complex of a graph (that is, every clique defines a simplex).

14
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complex of a graph (that is, every clique defines a simplex).
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General bounds and known cases

Theorem (Adiprasito-Benedetti, 2013+)
If the dual of a simple polyhedron P is flag, then P satisfies the
Hirsch bound.

Sketch of proof.
If a simplicial complex K is flag then, with the “spherical
right-angled metric” for every simplex, every star in K is
geodesically convex (Gromov, 1987)
Hence, every geodesic path γ between the interior of two
simplices u and v of K is non-revisiting (it never abandons a
star and then enter it again).
Such paths can be perturbed to not cross simplices of
codimension two or higher, hence they induce non-revisiting
paths in the dual graph.

The proof works for all pure and normal flag simplicial complexes. Pure
normal s. c. include all simplicial manifolds, with or w.o. boundary.
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Counter-examples to Hirsch
(and what can we expect from them)

16



Introduction Diameter of polyhedra Diameter of simplicial complexes

Counter-examples to Hirsch

Counter-examples to Hirsch

The first counter-example to the Hirsch conjecture was found in
1967:

Theorem (Klee-Walkup, 1967)

H(8,4) = 5

But for bounded polytopes the Hirsch Conjecture was open
until recently:

Theorem
Hb(86,43) ≥ 44 (S. 2012)
Hb(40,20) ≥ 21 (Matschke-S.-Weibel, ≥ 2012)
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Counter-examples to Hirsch

Spindles

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .

Exercise
3-spindles have
length ≤ 3.
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Counter-examples to Hirsch

Spindles

Theorem (S., 2012; “Strong d-step theorem for spindles”)

If a d-spindle P has length l > d then there is another spindle
P ′ (of dimension n − d, with 2n − 2d facets, and length l + n − 2d > n − d)
that violates the Hirsch conjecture.

This suggests that we call spindles with l > d non-Hirsch
spindles.

All 3-spindles are Hirsch (exercise).
All 4-spindles are Hirsch (S.-Stephen-Thomas, 2010).
Non-Hirsch 5-spindles exist (S., 2012), with 25 facets
(S.-Matschke-Weibel, 2012+).
“Highly non-Hirsch” 5-spindles exist, with l ∼

√
n/96

(S.-Matschke-Weibel, 2012+).
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Counter-examples to Hirsch

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

1 Products of several copies of it (dimension increases).
2 Gluing (or, rather, “blending”) several copies of it

(dimension is fixed).

To analyze the asymptotics of these operations, we call Hirsch
excess of a d-polytope P with n facets and diameter δ the
number

ε(P) :=
δ

n − d
− 1 =

δ − (n − d)

n − d
.

E. g.: The excess of our non-Hirsch polytope with n − d = 20
and with diameter 21 is

21− 20
20

= 5%.
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Counter-examples to Hirsch

Many non-Hirsch polytopes

1 Taking products preserves the excess.

Corollary
For each k ∈ N there is a non-Hirsch polytope of dimension
20k with 40k facets and with excess 0.05.

2 Gluing several copies (slightly) decreases the excess.

Corollary
For each k ∈ N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

0.05
(

1− 1
k

)
.
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Counter-examples to Hirsch

The excess of a spindle

We know there are “worse” (arbitrarily long) 5-spindles.

Will
those produce non-Hirsch polytopes with more excess?

To analyze the asymptotics of this, let us call spindle excess of
a spindle of length l with n facets and dimension d the quantity

l − d
n − d

Lemma
Via the strong d-step Theorem, a spindle of a certain excess
produces non-Hirsch polytopes of that same excess.

21
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Counter-examples to Hirsch

Spindles of large width won’t help (much)

In dimension 5, we know how to construct spindles, with
l ∈ Θ(

√
n)

. . . but their excess tends to zero:

lim
l − 5
n − 5

∼ lim
√

n − 5
n − 5

= 0.

Let us be optimistic and suppose that we could construct
5-spindles with n facets and linear length ' αn. Their excess
will now tend to α. So, we still get only polytopes that violate
Hirsch by a constant (“linear” Hirsch bound).

OK, let us try to be more optimistic. Can we hope for spindles
of length greater than linear in their number of facets?

22
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OK, let us try to be more optimistic.

Can we hope for spindles
of length greater than linear in their number of facets?

22



Introduction Diameter of polyhedra Diameter of simplicial complexes

Counter-examples to Hirsch

Spindles of large width won’t help (much)

In dimension 5, we know how to construct spindles, with
l ∈ Θ(

√
n). . . but their excess tends to zero:

lim
l − 5
n − 5

∼ lim
√

n − 5
n − 5

= 0.

Let us be optimistic and suppose that we could construct
5-spindles with n facets and linear length ' αn. Their excess
will now tend to α. So, we still get only polytopes that violate
Hirsch by a constant (“linear” Hirsch bound).

OK, let us try to be more optimistic. Can we hope for spindles
of length greater than linear in their number of facets?

22



Introduction Diameter of polyhedra Diameter of simplicial complexes

Counter-examples to Hirsch

In fixed dimension, certainly not:

Theorem (Larman, 1970)
The length of a d-dimensional spindle with n facets cannot
exceed 2d−3n.

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem (Matschke-S.-Weibel, 2012+)
The length of a 5-dimensional spindle with n facets cannot
exceed n/3 + 1.

Corollary
Using the Strong d-step Theorem for 5-spindles it is impossible
to violate the Hirsch conjecture by more than 33%.
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Non-decomposable polyhedra

Decomposability of simplicial complexes

As we did when speaking of flag complexes, here we dualize
the Hirsch question and think of it as a question on the
diameter of the dual graph of a pure simplicial complex.

Definition (Provan-Billera, 1980)

Let C be a pure (d − 1)-dimensional simplicial complex and let
0 ≤ k ≤ d − 1. We say that C is weakly k-decomposable if
either

1 C is a (d − 1)-simplex, or
2 there exists a face S ∈ C (called a shedding face) with

dim(S) ≤ k such that C \ S is (d − 1)-dimensional and
weakly k -decomposable.

Here C \ S denotes C minus the (open) star of S. (The star of a
face is the set of all faces containing it).
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Non-decomposable polyhedra

Motivation and properties

Weakly 0-decomposable complexes satisfy the Hirsch
bound.

In fact, Billera and Provan proved:

Theorem (Provan-Billera, 1980)

Let C be a pure (d − 1)-dimensional complex. Let
fk (C) =number of k-faces C:

1 If C is k-decomposable then diam(C) ≤ fk (C)−
( d

k+1

)
.

2 If C is weakly k-decomposable then diam(C) ≤ 2fk (C).

. . . where (strongly) decomposable complexes are defined
with an extra recursive condition.
All polytopal (d − 1)-spheres and (d − 1)-balls are
(d − 1)-decomposable, since this is equivalent to shellable.
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Non-decomposable polyhedra

Motivation and properties

That is, to say:
Decomposability “interpolates” between 0-decomposable
(which implies Hirsch) and (d − 1)-decomposable (which
includes all polytopes and polyhedra).

This motivates the following question.

Question:
Do “non-k -decomposable polytopes” exist for every k?

(A negative answer would imply the polynomial Hirsch
conjecture).
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Non-decomposable polyhedra

Highly non-decomposable polytopes exist

Up to five years ago, all we knew is that there are
non-0-decomposable polytopes (Klee-Kleinschmidt, 1987).

Theorem (Fractional hypersimplices are not decomposable)

For all a,b ∈ N let ∆a,b = [0,1]a+b+1 ∩ {
∑

xi = a + 1
2} and let

∇a,b be its polar dual.

1 (De Loera and Klee 2012+). If a,b ≥ 2 then ∇a,b is not
weakly 0-decomposable. In particular, ∇2,2 is a
non-weakly-0-decomposable simplicial 4-polytope with 10
vertices and 30 facets.

2 (Hähnle, Klee and Pilaud 2012+). If k ≤
√

2 min(a,b)− 3
then ∇a,b is not weakly k-decomposable. In particular, for
every k there is a non-weakly-k-decomposable polytope
(of dimension 2

⌈
(k + 3)2/4

⌉
with (k + 3)2 + 2 vertices).
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Bounds in terms of coefficients

The role of coefficients

There are several now classical results giving upper bounds on
the diameter of polytopes or polyhedra whose defining vertices
or facets have coefficients of bounded size. For example:

If P has all vertices integer and in [0,1]d then diam(P) ≤ d
(Naddef,1989). That is, the Hirsch bound holds for 0/1
polytopes.
If P has all vertices integer and in [0, k ]d then
diam(P) ≤ kd (Kleinschmidt-Onn, 1992).
If P = {x ∈ Rd : Ax ≤ b} is defined by a totally unimodular
matrix A then diam(P) ≤ O(d16n3(log(dn))3) (Dyer-Frieze
1994).

This last result has been recently generalized to great extent.
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Bounds in terms of coefficients

Polytopes with bounded subdeterminants

Theorem (Bonifas-Di Summa-Eisenbrand-Hähnle-Niemeier,
2011+)

Let P = {x ∈ Rd : Ax ≤ b} be a polytope defined by an integer
matrix A ∈ Zn×d and suppose all subdeterminants of A are
bounded in absolute value by a certain M ∈ N. The, the
diameter of P is bounded by O

(
M2d3.5 log dM

)
.

Two important remarks:
The number n of facets does not appear in the bound.
Plugging M = 1 (totally unimodular matrix) this result
specializes to a drastic improvement of the Dyer-Frieze
bound.
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Introduction Diameter of polyhedra Diameter of simplicial complexes

Bounds in terms of coefficients

Spherical volumes

Sketch of proof.

W.l.o.g. assume P simple, and argue on its normal fan (a
simplicial fan).
Consider spherical volumes of the normal cones.
Fix two cones cv and cu and study how the volume
spanned by respective “breadth first search” trees from
both ends grows.
When both volumes can be guaranteed to be at least half
of the unit sphere, we have found a path from u to v .
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Introduction Diameter of polyhedra Diameter of simplicial complexes

Bounds in terms of coefficients

Spherical volumes

The crucial step is the following “volume expansion” result:

Lemma

Let Ui denote the spherical volume covered by all cones at
distance at most i from an initial cone cu. Then, while vol(Ui) is
less than half of the volume of the d-sphere we have:

vol(Ui+1) ≥

(
1 +

√
2
π

1
M2d2.5

)
vol(Ui).

Corollary

If i ≥
√

π
2 M2d2.5 ln(2d/ vol(cu)) then Ui covers more than half

the sphere. Also, vol(cu) ≥ 1/(d !dd/2Md ).
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General simplicial complexes
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Introduction Diameter of polyhedra Diameter of simplicial complexes

General simplicial complexes

More general setting

Instead of looking at (simplicial) polytopes, why not look at the
maximum diameter of more general complexes?

Pure simplicial complexes. Hc(n,d)

Pseudo-manifolds (w. or wo. bdry).
Simplicial manifolds (w. or wo. bdry).
Simplicial spheres (or balls).
. . .

Remark, n is the number of vertices and d − 1 is the dimension.

Hc(n,d) is the (dual) diameter; two simplices are considered
adjacent if they differ by a single vertex.
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Introduction Diameter of polyhedra Diameter of simplicial complexes

General simplicial complexes

A simple, yet interesting, observation

The Johnson graph J(n,d) is the graph with V =
([n]

d

)
and

adjacency given by sets differing in a single element.

Equivalently, J(n,d) equals:
The dual graph of the complete (d − 1)-complex on n
elements.
The basis exchange graph of the uniform matroid of rank d
on n elements.
The graph of the d-th hypersimplex of dimension d .

A corridor is a pure complex whose dual graph is a path.

Lemma
Hc(n,d) is attained at a corridor (in particular, at a
pseudo-manifold) for every n,d.
Hc(n,d) equals the length of the maximum induced path in
J(n,d).
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Introduction Diameter of polyhedra Diameter of simplicial complexes

General simplicial complexes

The maximum diameter of pure simplicial complexes

In dimension two:

Theorem (S., 2013+)

2
9

(n − 1)2 < Hc(n,3) <
1
4

n2.

In higher dimension:

Theorem (S., 2013+)

Hc(kn, kd) >
2
2k Hc(n,d)k .

Corollary (S., 2013+)

Ω(n2d/3) ≤ Hc(n,d) ≤ O(nd ).
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Normal complexes

Normal complexes
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Introduction Diameter of polyhedra Diameter of simplicial complexes

Normal complexes

So, pure simplicial complexes (even pseudo-manifolds) can
have exponential diameters.

What restriction should we put for (having at least hopes of)
getting polynomial diameters?

It seems that everybody’s favorite is:

Definition
A simplicial complex K is called normal or locally strongly
connected if the dual graph of every star (equivalently, of every
link) is connected. That is, if for every face S and every two
facets X , Y with S ⊂ X ∩ Y it is possible to go from X to Y
without “abandoning S”.

Manifolds (w. or wo. boundary) are normal, but
pseudo-manifolds are not, in general.
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Introduction Diameter of polyhedra Diameter of simplicial complexes

Normal complexes

The importance of being normal

Normality is a hereditary property. Every link in a normal
complex is normal, which is convenient for proofs by
induction on d .

One can argue that the dual graph of a complex only
captures proximity if the complex is normal.
The Adiprasito-Benedetti proof of Hirsch bound works for
all normal and flag pure simplicial complexes.
The Kalai-Kleitman and the Barnette-Larman bounds work
(with simpler proofs!!) for all normal complexes. That is:

Theorem

Hn(n,d) ≤ nlog d+1, Hn(n,d) ≤ 2d−2n.
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Introduction Diameter of polyhedra Diameter of simplicial complexes

Normal complexes

An abstraction of normality

Definition (Eisenbrand-Hähnle-Razborov-Rothvoss, 2010)
A connected layer family (CLF) of rank d on n symbols is a pure
simplicial complex K of dimension d − 1 with n vertices,
together with a map

λ : facets(K )→ Z

with the following property: for every simplex (of whatever
dimension) τ ∈ K the values taken by λ in the star of τ form an
interval.
The length of a CLF is the difference between the maximum
and the minimum values taken by λ.
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Normal complexes

Example: A CLF of rank 2 and length ∼ 3n/2

λ 0 1 2 3 4 5 6 7 8 9
13 14 35 36 57 58

∆ 12 34 56 78
24 23 46 45 68 67

Let Hclf (n,d) := max length of a CLF of rank d on n symbols.
The example shows that:

Hclf (n,2) ≥
⌊

3n
2

⌋
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Normal complexes

C.l.f.’s versus normal complexes

The clf property is hereditary via links: If K is a clf, every link in
it (together with “the same” map λ) is a clf.

Lemma
Hn(n,d) ≤ Hclf (n,d)

Proof.
If a pure simplicial complex K is normal, then K is a clf with
respect to the map λ(v) = d(u, v).

Conjecture

Hclf (n,d) ≤ (n − 1)Hn(n,d)

“Idea of proof”: Adjacent simplices have |λ(X )− λ(Y )| ≤ n − 1.
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If a pure simplicial complex K is normal, then K is a clf with
respect to the map λ(v) = d(u, v).

Conjecture

Hclf (n,d) ≤ (n − 1)Hn(n,d)

“Idea of proof”: Adjacent simplices have |λ(X )− λ(Y )| ≤ n − 1.
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Normal complexes

Theorem (Eisenbrand-Hähnle-Razborov-Rothvoss, 2010)
1 Hclf (n,d) ≥ HM(n,d) ≥ H(n,d).

2 Hclf (n,d) ≤ nlog2 d+1. (Kalai-Kleitman bound)
3 Hclf (n,d) ≤ 2d−1n. (Barnette-Larman bound)
4 Hclf (n,n/4) ≥ Ω(n2/ log n).
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)

A CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 113 114 124 134 144 244 344 444

122 123 133 224 234 334
222 223 233 333
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Connected Layer Multi-families

Definition
A connected layer multifamily (CLMF) of rank d on n symbols is
the same as a CLF, except we allow a pure simplicial
multicomplex ∆ (simplices are multisets of vertices, with
repetitions allowed)

Another CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444
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Connected Layer Multi-families

Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

It turns out that in these two cases:

Theorem (polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).
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Connected Layer Multi-families

Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

A complete CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 113 114 124 134 144 244 344 444

122 123 133 224 234 334
222 223 233 333

It turns out that in these two cases:

Theorem (polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).
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Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

An injective CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444

It turns out that in these two cases:
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42



Introduction Diameter of polyhedra Diameter of simplicial complexes

Connected Layer Multi-families

Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

An injective CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444

It turns out that in these two cases:

Theorem (polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).

42



Introduction Diameter of polyhedra Diameter of simplicial complexes

Connected Layer Multi-families

Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

An injective CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 122 222 223 233 333 334 344 444

It turns out that in these two cases:

Theorem (polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).

42



Introduction Diameter of polyhedra Diameter of simplicial complexes

Connected Layer Multi-families

Complete and injective clmf’s

“Complete” and “injective” clmf’s are (the) two extremal cases.

A complete CLMF of length d(n − 1):

λ 3 4 5 6 7 8 9 10 11 12
∆ 111 112 113 114 124 134 144 244 344 444

122 123 133 224 234 334
222 223 233 333

It turns out that in these two cases:

Theorem (polymath3, 2010)
A Connected Layer (Multi)-Family with λ injective or ∆
complete cannot have length greater than d(n − 1).

42



Introduction Diameter of polyhedra Diameter of simplicial complexes

Connected Layer Multi-families

Hähnle’s Conjecture

This suggests the following conjecture

Conjecture (Hähnle@polymath3, 2010)
The length of a clmf of rank d on n symbols cannot exceed

d(n − 1).

Theorem (polymath3, 2010)

The lengths of clmf’s still satisfy the Kalai-Kleitman (nlog d+1)
and the Larman-Barnette (2d−1n) bounds.
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Connected Layer Multi-families

A New Hope

Hähnle’s Conjecture has been checked for all the values of n
and d satisfying n ≤ 3, d ≤ 2, n + d ≤ 11, or 6n + d ≤ 37.

If true, it would imply:

Conjecture
The diameter of a d-polytope with n-facets cannot exceed

d(n − d) + 1.
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