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ABSTRACT. Unicellular maps are a natural generalisation of plane trees to higher genus surfaces. In this
article we study covered maps, which are maps together with a distinguished unicellular spanning submap.
We prove that the covered maps of genus g with n edges are in bijection with pairs made of a plane tree
with n edges and a bipartite unicellular map of genus g with n + 1 edges. This generalises to any genus the
bijection given in [2] between planar tree-rooted maps (maps with a distinguished spanning tree) and pairs
made of a tree with n edges and a tree with n + 1 edges. In the special case of genus 1, a duality argument
allows us to obtain a bijective proof of a formula of Lehman and Walsh [4] about the number of tree-rooted
maps of genus 1.

1. INTRODUCTION

We consider maps on orientable surfaces of arbitrary genus. A map is unicellular if it has a single face,
that is, if the complement of the map is simply connected. A unicellular map on the torus is represented in
Figure 4(b). A covered map is a map together with a distinguished spanning unicellular submap. A map
of genus g can have spanning submaps of any genus in {0...,¢}. An example of covered map is given in
Figure 1. The main goal of this article is to exhibit a bijection ¥ between covered maps of genus g and size
n and pairs made of a plane tree of size n and a unicellular map of genus g and size n + 1.

Covered maps are a natural generalisation of tree-rooted maps, that is, maps together with a distinguished
spanning tree. In the planar case these two notions coincide and our bijection ¥ specialise into the bijection
found in [2] in order to give a bijective explanation of a result of Mullin [6]: the number of planar tree-rooted
maps of size n is T,? = C,,Cp41, where C), = % is the n'® Catalan number i.e. the number of plane
trees with n edges. In the case of the torus, a duality argument shows that exactly half of the covered maps
of size n are tree-rooted maps. Therefore, our bijection ¥ give a bijective explanation to the formula of
Lehman and Walsh [4]: the number of tree-rooted maps of genus 1 is 7} = 1C,, B}, |, where B} = (Gn_1).

6n!(n—3)!
is the number of bipartite unicellular maps with n edges.

We first recall some definitions. A map is a connected graph embedded in an orientable surface considered
up to homeomorphism. By embedded, one means drawn on the surface in such a way the edges do not
intersect and the faces (connected components of the complement of the graph) are simply connected. An
example is given in Figure 1 (forget the thick lines for the time being). The genus of a map is the genus of
the surface in which it is embedded and its size is the number of edges. A planar map is a map of genus
0. A map is unicellular if it has a single face. For instance, plane trees are the unicellular planar maps. A
map is bipartite if the underlying graph is. A unicellular bipartite map of genus 1 is represented in Figure 4(b).

The embedding of a map defines a cyclic order (the counterclockwise order) of the half-edges around each
vertex. There is, in fact, a one-to-one correspondence between maps and connected graphs together with a
cyclic order of the edges around each vertex [5]. Equivalently, a map can be defined as a triple M = (H, o, ),
where H is a finite set whose element are the half-edges, « is an involution of H without fixed point, and o
is a permutation of H such that the group generated by a and o acts transitively on H. The cycles of the
involution o are the edges and the cycles of the permutation o are the vertices together with the counter-
clockwise order of half-edges around them. For instance, the map in Figure 1 is M = (H, 0, a), where H =
{1,17,2,2',...,9,9}, a = (1,1)(2,2")---(9,9") and ¢ = (1,2,6)(1',2,3,5)(3,4")(5,9')(4,8,9)(6',7,8,7).
Observe that the faces of M are in bijection with the cycles of the permutation ¢ = oa. For the map of
Figure 1, ¢ = (1,2/,6,7,6')(1',2,3,4',8,7,8,9,5)(3,5',9',4). A map is rooted if one of the half-edges is
distinguished as the root; we denote by M = (H,r,0,«) the map (H, o, ) having root r. In the following
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maps are rooted and are considered up to isomorphism (relabelling of the half-edges).

Given a subset S of H, the restriction of m to S, denoted by m|s is the permutation of S whose cycles are
obtained from the cycles of 7w by erasing the elements not in S. For instance, if 7 = (a, b, c)(d, e)(f, g, h, )
and S = {b,c, f,g,i}, then mg = (b,c)(f,9,7). A submap of a map M = (H,o,a) is a map of the form
N = (S,qg,05),where S C H. It is spanning if every cycle of o contains an element of S. A submap
of a map of genus g has genus less or equal to g. For instance, the map M in Figure 1 has genus 1 while
the spanning submap T = (S, o5, 0g) induced by the set S = {1,1’,3,3',6,6",8,8,9,9'} (thick lines) has
genus 0. A pair (M, T) made of a map M and a unicellular spanning submap 7 is a covered map. A covered
map (M, T) is represented in Figure 1. Given a covered map (M,T), a half-edge is called internal if it
belongs to the submap T and external otherwise. An orientation of a map M = (H,o,«) is a partition
H = IO such that the involution o maps the set I on the set O; the half-edges in I and O are respectively
called ingoing and outgoing. The orientation I = {1’,2',...,9'} and O = {1,2,...,9} of the map M is
represented in Figure 2(a).

2. BIJECTION

We now define the mapping ¥ which associates to a covered map (M, T) a pair made of a (rooted plane)
tree U1 (M, T) and a bipartite unicellular map Wo(M,T). The mapping ¥ has two steps. At the first step,
one defines an orientation (I,0) = dp(T) of the map M which is closely related to the order in which
half-edges of M appear around the submap T. At the second step, the map is broken into two parts: a plane
tree U1 (M, T) containing every edge of M and a bipartite unicellular map ¥o(M,T) which roughly speaking
describes how to fold the tree U1 (M,T) in order to obtain the map M (and the orientation (I, O)).

Step 1: orientation. Consider a map M = (H,r,«a,0). We denote by ¢ = oa the permutation corre-
sponding to the faces of M. For any unicellular spanning submap T of M, we call the motion function
around T the mapping 6 on H defined by 6(h) = o(h) if h is external and 6(h) = ¢(h) otherwise. It
can be shown that the motion function 6 is a cyclic permutation of H if and only if T is a unicellular
map. In this case, the motion function # induces a total order on the set of half-edges H by setting
r <7 0(r) <7 02(r)--- <7 0111 (r). For instance, the order induced by the spanning submap T in Figure 1
851 <2<3<4 <3< <l'<2<6<T<8<9<5<9 <4<8 <7<6. We are now ready to
define the orientation d5;(7T") which is represented in Figure 2.

Definition 2.1. Let M be a map. The mapping §;; associates to a unicellular submap T of M the orientation
dm(T) = (I,0), where the set of ingoing half-edges I contains the internal half-edges such that a(h) <r h
and the external half-edges such that h <p a(h) (and O = H —I).

Step 2: unfolding. Let us first describe the unfolding step informally. At this step, each vertex of
the map M is broken according to the rule described in Figure 3(a). The rule is the following: given a
vertex, that is, a cycle v = (hy,...,hr) of 0 we consider the indices 1 < i1 < ip < --- < 4y = k of
the ingoing half-edges incident to v. At the unfolding step, the vertex v is decomposed into [ vertices
vy = (h1,.. Ry ), v2 = (Riy41y- -5 hig)y ooy = (Biy_ 41, - -+, Dy, ). Note that the decomposition of v can be
written as: v = v1v2 - - T, where me(h) = h if h € O and 7e(hs;) = hy;,, for j = 1,...,1. Figure 3(a)
shows the topological representation of the decomposition of a vertex incident to 3 ingoing half-edges. After
unfolding, one gets the vertices v, v2,vs (they will be vertices of the plane tree U1 (M, T)) and a big black
vertex corresponding to the permutation e (it will be a vertex of the unicellular bipartite map ¥o(M,T)).

We now describe the unfolding step in more details. Let (I, 0) = §5;(T) be the orientation of M associated
to the unicellular map T. Let ¢ and o be two new elements not in H. We define ¢’ (resp. ¢’) as the
permutation of I’ = I U {i} (resp. O’ = O U {o}) obtained from o by inserting the new half-edge 4
(resp. o) just before the root r in the cycle of o (resp. ¢) containing r. We also consider the restrictions
Te = o/ and T = ¢, In our favourite example, we get ma = (i)(1',2',5')(3',4")(6,7')(8')(9") and
7o = (0,1,6)(2,3,7,8,9)(4). We now define m = mem;* and 7/ = o'n; ! (here we make a slight abuse of
notation by considering that m, = a"I, acts as the identity on O’ and that 7w, = (b? o acts as the identity
on I’). We are now ready to define the mapping V.
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FIGURE 2. (a) Orientation (O,I) = dp(T). (b) Unfolding

(a)

FIGURE 4. (a) The tree ¥1(M,T). (b) The unicellular map o (M, T).



Definition 2.2. Let M = (H,r,0,«) be a map and let T be a unicellular spanning submap. The mapping
U associates to the covered map (M, T) the pair (U1(M,T), ¥o(M,T)) defined by: ¥1(M,T) = (H,t, 7, )
and Wo(M,T) = (H',i,7, ) where 7 = T‘/H and t = 7/(1).

The image of the covered map in Figure 1 by ¥; and ¥y are represented respectively in Figure 4 (a)
and (b). Our main result is the following:

Theorem 2.3. The mapping ¥ : (M,T) — (U1(M,T),¥2(M,T)) is a bijection between covered maps of
size n and genus g and pairs made of a tree of size n and a bipartite unicellular map of size n+1 and genus g.

3. ENUMERATIVE CORROLARIES.

The immediate enumerative corrolary of Theorem 2.3 is the following.

(2n)!

Corollary 3.1. The number of covered maps of size n and genus g is S = C,, B, |, where C,, = At 1)T

is the n*™ Catalan number and BY is the number of bipartite unicellular maps with n edges.

In [3], an expression is given for the number BY of bipartite unicellular maps. In particular, it is shown
there that for a given genus g the asymptotic of BY is

1
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Using this formula, we obtain the following asymptotic result.

Bi ~—oo . n3973/24n'

Proposition 3.2. Let g be a non-negative integer. The asymptotic number of covered maps of genus g and
stze n 18
4 39—31@an

Covered maps vs tree-rooted maps. As mentioned in the introduction, the notion of covered map
generalise the well studied notion of tree-rooted map. In the planar case (genus 0), the two notions coincide.
In the toroidal case (genus 1), a duality argument shows that exactly half of the covered maps of size n are
tree-rooted maps. This property, together with the expression of Bl given in [3] allows one to recover a
result obtained by Lehman and Walsh:

Proposition 3.3. [4] The number T} of tree-rooted maps of size n on the torus is
Tl = lA,ll _ lCnB,ll _ (2n)!(2n + 1)! '
2 2 12(n — 2)In!((n 4+ 1)!)?
For genus g greater than 1, no nice relation seems to hold between the number S¢ of covered maps of size

n and the number T of tree-rooted maps of size n. However, it is proved in [1] that the asymptotic number
of tree-rooted maps of genus g is

4
2 T9 ~ ———— 397316,
2) " gl 489 "

Comparing this result with (1) shows that Sg ~ 29T9. In other words, the probability that a covered map of

genus ¢ is a tree-rooted map tends to 1/29. As an algorithmic consequence of this fact, our bijection could
be used to provide an optimal coding of tree-rooted maps of genus g, using only 4 + o(1) bits per edge.
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