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Abstract. Unicellular maps are a natural generalisation of plane trees to higher genus surfaces. In this
article we study covered maps, which are maps together with a distinguished unicellular spanning submap.
We prove that the covered maps of genus g with n edges are in bijection with pairs made of a plane tree

with n edges and a bipartite unicellular map of genus g with n + 1 edges. This generalises to any genus the
bijection given in [2] between planar tree-rooted maps (maps with a distinguished spanning tree) and pairs
made of a tree with n edges and a tree with n + 1 edges. In the special case of genus 1, a duality argument
allows us to obtain a bijective proof of a formula of Lehman and Walsh [4] about the number of tree-rooted
maps of genus 1.

1. Introduction

We consider maps on orientable surfaces of arbitrary genus. A map is unicellular if it has a single face,
that is, if the complement of the map is simply connected. A unicellular map on the torus is represented in
Figure 4(b). A covered map is a map together with a distinguished spanning unicellular submap. A map
of genus g can have spanning submaps of any genus in {0 . . . , g}. An example of covered map is given in
Figure 1. The main goal of this article is to exhibit a bijection Ψ between covered maps of genus g and size
n and pairs made of a plane tree of size n and a unicellular map of genus g and size n + 1.

Covered maps are a natural generalisation of tree-rooted maps, that is, maps together with a distinguished
spanning tree. In the planar case these two notions coincide and our bijection Ψ specialise into the bijection
found in [2] in order to give a bijective explanation of a result of Mullin [6]: the number of planar tree-rooted

maps of size n is T 0
n = CnCn+1, where Cn = (2n)!

n!(n+1)! is the nth Catalan number i.e. the number of plane

trees with n edges. In the case of the torus, a duality argument shows that exactly half of the covered maps
of size n are tree-rooted maps. Therefore, our bijection Ψ give a bijective explanation to the formula of

Lehman and Walsh [4]: the number of tree-rooted maps of genus 1 is T 1
n = 1

2CnB1
n+1, where B1

n = (2n−1)!
6n!(n−3)!

is the number of bipartite unicellular maps with n edges.

We first recall some definitions. A map is a connected graph embedded in an orientable surface considered
up to homeomorphism. By embedded, one means drawn on the surface in such a way the edges do not
intersect and the faces (connected components of the complement of the graph) are simply connected. An
example is given in Figure 1 (forget the thick lines for the time being). The genus of a map is the genus of
the surface in which it is embedded and its size is the number of edges. A planar map is a map of genus
0. A map is unicellular if it has a single face. For instance, plane trees are the unicellular planar maps. A
map is bipartite if the underlying graph is. A unicellular bipartite map of genus 1 is represented in Figure 4(b).

The embedding of a map defines a cyclic order (the counterclockwise order) of the half-edges around each
vertex. There is, in fact, a one-to-one correspondence between maps and connected graphs together with a
cyclic order of the edges around each vertex [5]. Equivalently, a map can be defined as a triple M = (H, σ, α),
where H is a finite set whose element are the half-edges, α is an involution of H without fixed point, and σ
is a permutation of H such that the group generated by α and σ acts transitively on H . The cycles of the
involution σ are the edges and the cycles of the permutation σ are the vertices together with the counter-
clockwise order of half-edges around them. For instance, the map in Figure 1 is M = (H, σ, α), where H =
{1, 1′, 2, 2′, . . . , 9, 9′}, α = (1, 1′)(2, 2′) · · · (9, 9′) and σ = (1, 2, 6)(1′, 2′, 3, 5′)(3′, 4′)(5, 9′)(4, 8′, 9)(6′, 7′, 8, 7).
Observe that the faces of M are in bijection with the cycles of the permutation φ = σα. For the map of
Figure 1, φ = (1, 2′, 6, 7′, 6′)(1′, 2, 3, 4′, 8′, 7, 8, 9, 5)(3′, 5′, 9′, 4). A map is rooted if one of the half-edges is
distinguished as the root ; we denote by M = (H, r, σ, α) the map (H, σ, α) having root r. In the following
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maps are rooted and are considered up to isomorphism (relabelling of the half-edges).

Given a subset S of H , the restriction of π to S, denoted by π|S is the permutation of S whose cycles are
obtained from the cycles of π by erasing the elements not in S. For instance, if π = (a, b, c)(d, e)(f, g, h, i)
and S = {b, c, f, g, i}, then π|S = (b, c)(f, g, i). A submap of a map M = (H, σ, α) is a map of the form
N = (S, α|S , σ|S),where S ⊆ H . It is spanning if every cycle of σ contains an element of S. A submap
of a map of genus g has genus less or equal to g. For instance, the map M in Figure 1 has genus 1 while
the spanning submap T = (S, α|S , σ|S) induced by the set S = {1, 1′, 3, 3′, 6, 6′, 8, 8′, 9, 9′} (thick lines) has
genus 0. A pair (M, T ) made of a map M and a unicellular spanning submap T is a covered map. A covered
map (M, T ) is represented in Figure 1. Given a covered map (M, T ), a half-edge is called internal if it
belongs to the submap T and external otherwise. An orientation of a map M = (H, σ, α) is a partition
H = I ⊎O such that the involution α maps the set I on the set O; the half-edges in I and O are respectively
called ingoing and outgoing. The orientation I = {1′, 2′, . . . , 9′} and O = {1, 2, . . . , 9} of the map M is
represented in Figure 2(a).

2. Bijection

We now define the mapping Ψ which associates to a covered map (M, T ) a pair made of a (rooted plane)
tree Ψ1(M, T ) and a bipartite unicellular map Ψ2(M, T ). The mapping Ψ has two steps. At the first step,
one defines an orientation (I, O) = δM (T ) of the map M which is closely related to the order in which
half-edges of M appear around the submap T . At the second step, the map is broken into two parts: a plane
tree Ψ1(M, T ) containing every edge of M and a bipartite unicellular map Ψ2(M, T ) which roughly speaking
describes how to fold the tree Ψ1(M, T ) in order to obtain the map M (and the orientation (I, O)).

Step 1: orientation. Consider a map M = (H, r, α, σ). We denote by φ = σα the permutation corre-
sponding to the faces of M . For any unicellular spanning submap T of M , we call the motion function

around T the mapping θ on H defined by θ(h) = σ(h) if h is external and θ(h) = φ(h) otherwise. It
can be shown that the motion function θ is a cyclic permutation of H if and only if T is a unicellular
map. In this case, the motion function θ induces a total order on the set of half-edges H by setting
r <T θ(r) <T θ2(r) · · · <T θ|H|−1(r). For instance, the order induced by the spanning submap T in Figure 1
is 1 < 2′ < 3 < 4′ < 3′ < 5′ < 1′ < 2 < 6 < 7′ < 8 < 9 < 5 < 9′ < 4 < 8′ < 7 < 6′. We are now ready to
define the orientation δM (T ) which is represented in Figure 2.

Definition 2.1. Let M be a map. The mapping δM associates to a unicellular submap T of M the orientation
δM (T ) = (I, O), where the set of ingoing half-edges I contains the internal half-edges such that α(h) <T h
and the external half-edges such that h <T α(h) (and O = H − I).

Step 2: unfolding. Let us first describe the unfolding step informally. At this step, each vertex of
the map M is broken according to the rule described in Figure 3(a). The rule is the following: given a
vertex, that is, a cycle v = (h1, . . . , hk) of σ we consider the indices 1 ≤ i1 < i2 < · · · < il = k of
the ingoing half-edges incident to v. At the unfolding step, the vertex v is decomposed into l vertices
v1 = (h1, . . . hi1), v2 = (hi1+1, . . . , hi2), . . . , vl = (hil−1+1, . . . , hil

). Note that the decomposition of v can be
written as: v = v1v2 · · · vlπ•, where π•(h) = h if h ∈ O and π•(hij

) = hij+1
for j = 1, . . . , l. Figure 3(a)

shows the topological representation of the decomposition of a vertex incident to 3 ingoing half-edges. After
unfolding, one gets the vertices v1, v2, v3 (they will be vertices of the plane tree Ψ1(M, T )) and a big black
vertex corresponding to the permutation π• (it will be a vertex of the unicellular bipartite map Ψ2(M, T )).

We now describe the unfolding step in more details. Let (I, O) = δM (T ) be the orientation of M associated
to the unicellular map T . Let i and o be two new elements not in H . We define σ′ (resp. φ′) as the
permutation of I ′ = I ∪ {i} (resp. O′ = O ∪ {o}) obtained from σ by inserting the new half-edge i
(resp. o) just before the root r in the cycle of σ (resp. φ) containing r. We also consider the restrictions
π• = σ′

|I′ and π◦ = φ′
|O′ . In our favourite example, we get π• = (i)(1′, 2′, 5′)(3′, 4′)(6′, 7′)(8′)(9′) and

π◦ = (o, 1, 6)(2, 3, 7, 8, 9)(4). We now define π = π•π
−1
◦ and τ ′ = σ′π−1

• (here we make a slight abuse of
notation by considering that π• = σ′

|I′ acts as the identity on O′ and that π◦ = φ′
|O′ acts as the identity

on I ′). We are now ready to define the mapping Ψ.
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Figure 1. A map M (rooted on the half-edge 1) and a unicellular spanning submap T (thick lines).
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Figure 2. (a) Orientation (O, I) = δM (T ). (b) Unfolding
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Figure 3. Topological representation of the unfolding around a vertex (a) and around a face (b).
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Figure 4. (a) The tree Ψ1(M, T ). (b) The unicellular map Ψ2(M, T ).
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Definition 2.2. Let M = (H, r, σ, α) be a map and let T be a unicellular spanning submap. The mapping
Ψ associates to the covered map (M, T ) the pair (Ψ1(M, T ), Ψ2(M, T )) defined by: Ψ1(M, T ) = (H, t, τ, α)
and Ψ2(M, T ) = (H ′, i, π, α) where τ = τ ′

|H and t = τ ′(i).

The image of the covered map in Figure 1 by Ψ1 and Ψ2 are represented respectively in Figure 4 (a)
and (b). Our main result is the following:

Theorem 2.3. The mapping Ψ : (M, T ) 7→ (Ψ1(M, T ), Ψ2(M, T )) is a bijection between covered maps of

size n and genus g and pairs made of a tree of size n and a bipartite unicellular map of size n+1 and genus g.

3. Enumerative corrolaries.

The immediate enumerative corrolary of Theorem 2.3 is the following.

Corollary 3.1. The number of covered maps of size n and genus g is Sg
n = CnBg

n+1, where Cn = (2n)!
n!(n+1)!

is the nth Catalan number and Bg
n is the number of bipartite unicellular maps with n edges.

In [3], an expression is given for the number Bg
n of bipartite unicellular maps. In particular, it is shown

there that for a given genus g the asymptotic of Bg
n is

Bg
n ∼n→∞

1√
π g! 48g

· n3g−3/24n.

Using this formula, we obtain the following asymptotic result.

Proposition 3.2. Let g be a non-negative integer. The asymptotic number of covered maps of genus g and

size n is

Sg
n ∼ 4

π g! 96g
· n3g−316n.(1)

Covered maps vs tree-rooted maps. As mentioned in the introduction, the notion of covered map
generalise the well studied notion of tree-rooted map. In the planar case (genus 0), the two notions coincide.
In the toroidal case (genus 1), a duality argument shows that exactly half of the covered maps of size n are
tree-rooted maps. This property, together with the expression of B1

n given in [3] allows one to recover a
result obtained by Lehman and Walsh:

Proposition 3.3. [4] The number T 1
n of tree-rooted maps of size n on the torus is

T 1
n =

1

2
A1

n =
1

2
CnB1

n =
(2n)!(2n + 1)!

12(n − 2)!n!((n + 1)!)2
.

For genus g greater than 1, no nice relation seems to hold between the number Sg
n of covered maps of size

n and the number T g
n of tree-rooted maps of size n. However, it is proved in [1] that the asymptotic number

of tree-rooted maps of genus g is

T g
n ∼ 4

π g! 48g
· n3g−316n.(2)

Comparing this result with (1) shows that Sg
n ∼ 2gT g

n . In other words, the probability that a covered map of
genus g is a tree-rooted map tends to 1/2g. As an algorithmic consequence of this fact, our bijection could
be used to provide an optimal coding of tree-rooted maps of genus g, using only 4 + o(1) bits per edge.
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