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Abstract

We consider maps on orientable surfaces. A map is unicellular if it has
a single face. A covered map is a map with a marked unicellular spanning
submap. For a map of genus g, the unicellular submap can have any genus
in {0, 1, . . . , g}. Our main result is a bijection between covered maps with
n edges and genus g and pairs made of a plane tree with n edges and a
unicellular bipartite map of genus g with n + 1 edges.

In the planar case, the covered maps are maps with a marked span-
ning tree (a.k.a. tree-rooted maps) and our bijection specializes into a
construction obtained by the first author in [3]. A strong connection sub-
sists between covered maps and tree-rooted maps in genus 1 (because a
covered map is either a tree-rooted map or the dual of a tree-rooted map)
and we thereby obtain a bijective explanation of a formula by Lehman and
Walsh on the number of tree-rooted maps of genus 1 [24]. A more surpris-
ing byproduct of our bijection is an equivalence between an enumerative
formula by Harer and Zagier concerning unicellular maps of given genus
and a similar formula by Jackson concerning bipartite unicellular maps of
given genus. The equivalence is obtained by observing that covered maps
can be seen as a shuffle of two unicellular maps, hence that our bijec-
tion gives a relations between shuffles of unicellular maps and bipartite
unicellular maps.

We also show that the bijection of Bouttier, Di Francesco and Gui-
tter [6] (which generalizes a famous bijection by Schaeffer [30]) between
bipartite maps and so-called well-labelled mobiles can be described as a
special case of our bijection.
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1 Introduction.

We consider maps on orientable compact surfaces of arbitrary genus. A map is
said unicellular if it has a single face as is the case for the map represented in
Figure 2. A covered map is a map together with a marked unicellular spanning
submap. A map of genus g have spanning submaps of any genus in {0 . . . , g}. In
particular, tree-rooted maps (maps with a marked spanning tree) are a special
case of covered map since a spanning tree is a spanning unicellular submap of
genus 0. A covered map of genus 2 having a unicellular spanning submap of
genus 1 is represented in Figure 1(a). More details about maps and the genus
of submaps are given in Section 2.

Our main result is a bijection Ψ between covered maps of genus g with n
edges and pairs made of a plane tree with n edges and a bipartite unicellular
map of genus g with n+ 1 edges. The image of a covered map by the mapping
Ψ is represented in Figure 1(b). The bijection Ψ generalizes a construction by
the first author [3] between planar tree-rooted maps with n edges and pairs of
plane trees with n and n+ 1 edges respectively1.

Ψ

(b)(a)

Figure 1: (a) A covered map of genus 2 (the unicellular submap of genus 1 is
drawn in thick lines). (b) The image of the covered map by the bijection Ψ is
made of a bipartite unicellular map of genus 2 and a plane tree.

It is an important observation that the dual of a planar tree-rooted map is a
planar tree-rooted map, that is to say, the dual of the edges not in the spanning
tree form a spanning tree of the dual map. Pushing this observation further,
Mullin showed that tree-rooted maps could be encoded by a shuffle of two trees
(one representing the spanning tree, the other representing the dual spanning
tree), or more precisely as a shuffle of two parenthesis systems encoding these
trees [29]. Covered maps generalize these properties: the dual of a covered map
is a covered map and covered maps can be encoded by shuffles of two unicellular
maps (more details are given in Section 3). We emphasize that our bijection
Ψ (as the construction in [3]) is of very different nature: the result is a pair of

1In [3], the tree with n + 1 edges was actually described as a non-crossing partition.
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unicellular maps of a fixed size and not a shuffle.

Our bijection Ψ has the interesting property that it can be specialized in
various ways in order to obtain bijections for several important classes of maps.
In particular, it is shown in [4] how to specialize the bijection Ψ in order to
count certain classes of triangulations and quadrangulations. Here we consider
yet another specialization, namely, we will show that the bijection Ψ special-
izes into the bijection by Bouttier, Di Francesco and Guitter [6] (for the planar
case) and its generalization to higher genus surfaces by Chapuy, Marcus and
Schaeffer [11, 9]. These bijections which generalize a previous bijection by Scha-
effer [30] are of fundamental importance for studying the metric properties of
random maps [12, 5, 8, 7, 26] and for defining and analyzing their continuous
limit, the Brownian map [25, 20, 22, 21].

The bijection Ψ has several enumerative corrolaries. The first corollaries con-
cern tree-rooted maps of genus 0 and 1. In [29], Mullin used the correspondence
between planar tree-rooted maps and shuffles of trees to prove that the num-
ber of planar tree-rooted maps with n edges is the product of two consecutive
Catalan numbers:

T0(n) = Cat(n)Cat(n+ 1), where Cat(n) =
(2n)!

n!(n+ 1)!
. (1)

and asked for a bijection between tree-rooted maps of size n and pairs of trees
of size n and n+ 1 respectively. This is precisely what our bijection Ψ gives in
the planar case. This planar case was originally described in [3] as an answer to
Mullin’s question. It was also proved there that this specialization is isomorphic
to a previous recursive bijection by Cori, Dulucq and Viennot [13].

In [24], Lehman and Walsh gave an expression for the number of tree-rooted
map of genus 1 with n edges:

T1(n) = Cat(n)
(2n− 1)!

12(n− 1)!(n− 2)!
. (2)

Again, no bijective proof was known explaining this simple formula involving
the Catalan number (and it was also noted in [24] that no clear pattern emerged
for higher genera). Our bijection Ψ gives a bijective explanation to Formula (2)
because a duality argument shows that exactly half of the covered maps of

genus 1 are tree-rooted maps, and (2n−1)!
6(n−1)!(n−2)! is the number of bipartite maps

of genus 1 with n+ 1 edges.
Another, more surprising, enumerative corollary of our bijection is a bijective

shortcut between two formulas concerning unicellular maps. In [16], Harer and
Zagier proved the following formulas concerning the number Ap(n) of unicellular
maps with n edges and p vertices (hence genus (n+ 1 − p)/2):

∑

p≥1

Ap(n)yp =
(2n)!

2nn!

∑

i≥1

2i−1

(

n

i− 1

)(

y

i

)

. (3)
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The original proof of Harer and Zagier involved the computation of a matrix
integral. Since then, a combinatorial interpretation was given by Lass [19],
which was further developed into fully bijective proof in [14]. An alternative
bijective approach to unicellular maps was recently given in [10]. A similar
formula for the number Bp,q(n) of bipartite unicellular maps with n edges, p
white vertices and q black vertices:

∑

p,q≥1

Bp,q(n+ 1)ypzq = (n+ 1)!
∑

i,j≥1

(

n

i− 1, j − 1

)(

y

i

)(

z

j

)

, (4)

was independently obtained by Jackson [17] and by Adrianov [1] by means of
characters computations. Bijective proofs were given in [31, 28]. We show that
our bijection Ψ establishes an equivalence between Formulas (3) and (4). In-
deed, our bijection gives a relation between the number of shuffles of unicellular
maps and the number of bipartite unicellular maps.

The paper is organized as follows. In Section 2, we recall some definitions
about maps. In Section 3, we show that covered maps can be seen as shuffles
of unicellular maps. In Section 4, we define the bijection Ψ between covered
maps with n edges and pairs made of a plane tree with n edges and a bipartite
unicellular map with n + 1 edges. In Section 5, we explore the enumerative
corollaries of our bijection. Section 6 contains the proofs of the bijectivity of Ψ.
In Section 7, we give three equivalent ways of describing pairs made of a plane
tree and a bipartite unicellular map and explicit the inverse mapping Ψ−1 for
these different descriptions. In Section 8, we use one of these descriptions in or-
der to recover the bijection of Bouttier et al. [6] as a specialization of Ψ. Lastly,
in Section 9, we explore the properties of the bijection Ψ with respect to duality.

2 Definitions

Maps. Maps can either be defined topologically (as graphs embedded in sur-
faces) or combinatorially (in terms of permutations). We shall prove our results
using the combinatorial definition, but resort to the topological interpretation
in order to convey intuitions.

We start with the topological definition of maps. Our surfaces are 2-dimen-
sional, oriented, compact and without boundaries. A map is a connected graph
embedded in surface, considered up to homeomorphism. By embedded, one
means drawn on the surface in such a way that the edges do not intersect and
the faces (connected components of the complement of the graph) are simply
connected. Loops and multiple edges are allowed. The genus of the map is the
genus of the underlying surface and its size is its number of edges. A planar map
is a map of genus 0. A map is unicellular if it has a single face. For instance, the
planar unicellular maps are the plane trees. A map is bipartite if vertices can
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be colored in black and white in such a way that every edge join a white vertex
to a black vertex. We denote by g(M) the genus of a map and by v(M), f(M),
e(M) respectively its number of vertices, faces and edges. The Euler formula
relates these quantities by

v(M) − e(M) + f(M) = 2 − 2g(M).

By removing the midpoint of an edge, one obtains two half-edges. Two con-
secutive half-edges around a vertex define a corner. A map is rooted if one
half-edge is distinguished as the root. The vertex incident to the root is called
root-vertex. In figures, the rooting will be indicated by an arrow pointing into
the root-corner, that is, the corner following the root in clockwise order around
the root-vertex. For instance, the root of the map in Figure 2 is the half-edge a1.

ā4

σ

a5a3

a1

ā3

ā5
a4

a2

ā1 φ

ā2

Figure 2: A unicellular map of genus 1.

Maps can also be defined in terms of permutations acting on half-edges. To
obtain this equivalence, observe first that the embedding of a graph in a surface
defines a cyclic order (the counterclockwise order) of the half-edges around each
vertex. This gives in fact a one-to-one correspondence between maps and con-
nected graphs together with a cyclic order of the half-edges around each vertex
(see e.g. [27]). Equivalently, a map can be defined as a triple M = (H,σ, α)
where H is a finite set whose elements are called the half-edges, α is an invo-
lution of H without fixed point, and σ is a permutation of H such that the
group generated by σ and α acts transitively on H . This must be understood
as follows: each cycle of σ describes the counterclockwise order of the half-
edges around one vertex of the map, and each cycle of α describes an edge,
that is, a pair of two half-edges. The transitivity assumption simply translates
the fact that the graph is connected. Figure 2 shows the map M = (H,σ, α),
where H = {a1, ā1, . . . , a5, ā5}, σ = (a1, ā2, a3)(ā1, a2, ā4)(ā3, a4, a5)(ā5) and
α = (a1, ā1) · · · (a5, ā5).

For a map M = (H,σ, α), the permutation σ is called vertex-permutation,
the permutation α is called edge-permutation and the permutation φ = σα is
called face-permutation. The cycles of σ, α, phi are called vertices, edges and
faces. Observe that the cycles of φ are indeed in bijection with the faces of the
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map in its topological interpretation. Hence, the genus of M can be deduced
from the number of cycles of σ, α and φ by the Euler relation. We say that a
half-edge is incident to a vertex or a face if this edge belongs to the correspond-
ing cycle. Again, a map is rooted if one of the half-edges is distinguished as the
root ; the incident vertex and face are called root-vertex and root-face.

The correspondence between topological and combinatorial map is one-to-
one if combinatorial maps are considered up to isomorphism (or, relabelling).
That is, two maps (H,σ, α) and (H ′, σ′, α′) are considered the same if there
exists a bijection λ : H → H ′ such that σ′ = λσλ−1 and α′ = λαλ−1 (for
rooted maps, we ask furthermore that λ(r) = r′). In this article all maps will
be rooted, and considered up to isomorphism.

We call pseudo map a triple M = (H,σ, α) such that α is a fixed-point free
involution, but where the transitivity assumption (i.e. connectivity assumption)
is not required. This can be seen as a union of maps and we still call φ = σα
the face-permutation, as its cycles are indeed in correspondence with the faces
of the union of maps. Lastly, we consider the case where the set of half-edges
H is empty as a special case of rooted unicellular map (corresponding to the
planar map with one vertex and no edge) called empty map.

Submaps, covered maps and motion functions. For a permutation π on
a set H , we call restriction of π to a set S ⊆ H and denote by π|S the per-
mutation of S whose cycles are obtained from the cycles of π by erasing the
elements not in S. Observe that (π−1)|S = (π|S)−1 so that we shall not use
parenthesis anymore in these notations. It is sometime convenient to consider
the restriction π|S as a permutation on the whole set H acting as the identity
on H \ S; we shall mention this abuse of notations whenever necessary.

A spanned map is a map with a marked subset of edges. In terms of per-
mutations, a spanned map is a pair (M,S), where S is a subset of half-edges
stable by the edge-permutation α. The submap defined by S, denoted M|S , is
the pseudo map (S, σ|S , α|S), where σ is the vertex-permutation of M . We un-
derline that the face-permutation φS = σ|Sα|S of the pseudo-map M|S is not
equal to (σα)|S . Observe also that the genus of M|S can be less than the genus
of M . For example, Figure 1(a) represents a submap of genus 1 of a map of
genus 2. A submap M|S is connecting if it is a map containing every vertex of
M , that is, S contains a half-edge in every vertex of M (except if M has a single
vertex, where we authorize S to be empty) and σ|S , α|S act transitively on S.
The submap represented in Figure 3 (right) is a map but is not connecting.
A covered map is a spanned map such that the submap M|S is a connecting
unicellular map. A tree-rooted map is a spanned map such that the submap
M|S is a spanning tree, that is, a connecting plane tree.

The motion function of the spanned map (M,S) is the mapping θ defined
on H by θ(h) = φ(h) ≡ σα(h) if h is in S and θ(h) = σ(h) otherwise. Note that
the motion function is a permutation of H since the stability of S by α implies
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that θ−1(h) = ασ−1(h) if σ−1(h) is in S and θ−1(h) = σ−1(h) otherwise. Ob-
serve also that, given M , the set S can be recovered from the motion function
θ. Topologically, the motion function is the permutation describing the tour
of the connected components of the submap M|S in counterclockwise direction:
we follow the border of the edges of the submap M|S and cross the edges not
in M|S. For instance, the submap represented in Figure 3 has motion function
θ = (a, c, e, n, d, k,m, h, i)(b, j, l)(f, g).

c d

e

f

k

l

n

m
j

a

b

h g
i

Figure 3: Motion function of the submap M|S defined by S = {a, b, c, d, i, j, k, l}.

Orientations. An orientation of a map M = (H,σ, α) is a partition H = I⊎O
such that the involution α maps the set I of ingoing half-edges to the set O of
outgoing half-edges. The pair (M, (I,O)) is an oriented map. A directed path is
a sequence h1, h2, . . . , hk of distinct ingoing half-edges such that hi, α(hi+1) are
incident to the same vertex (are in the same cycles of σ) for i = 1 . . . k−1. A
directed cycle is a directed path h1, . . . , hk such that hk and α(h0) are incident
to the same vertex. The half-edge hk is called the extremity of the directed path.
An orientation is root-connected if for any ingoing half-edge h is the extremity
of a directed path h1, . . . , hk = h such that α(h1) is incident to the root-vertex
of M .

Duality The dual map of a map M = (H,σ, α) is the map M∗ = (H,φ, α)
where φ = σα is the face-permutation of M . The root of the dual map M∗ is
equal to the root of M . Observe that the genus of a map and of its dual are
equal (by Euler relation) and that M∗∗ = M . Topologically, the dual map M∗

is obtained by the following two steps process: see Figure 4.

1. In each face f of M , draw a vertex vf of M∗. For each edge e of M
separating faces f and f ′ (which can be equal), draw the dual edge e∗ of
M∗ going from vf to vf ′ across e.

2. Flip the drawing of M∗, that is, inverse the orientation of the surface.

We now define duals of spanned maps and oriented maps. Given a subset
S ⊆ H , we denote S̄ = H \S. The dual of a spanned map (M,S) is the spanned
map (M∗, S̄); see Figure 4. We also say that M|S and M∗

|S̄
are dual submaps.

Observe that the motion functions of a spanned map (M,S) and of its dual
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(M∗, S̄) are equal. The dual of the oriented map (M, (I,O)) is (M∗, (I,O)).
Graphically, this orientation is obtained by applying the following rule at step
1: the dual-edge e∗ of an edge e ∈ M is oriented from the left of e to the right
of e; see Figure 14. Observe that duality is involutive on maps, spanned maps
and oriented maps.

(c)(b)(a)

a3
a1

ā3 b2

b3

b̄3

ā3

a4

ā4
b2

ā2

b1

a2

b̄1

ā1

b̄2

a4
ā4

a1

a3

b̄1

b3

ā1 a2

b1

b̄3

ā2

b̄2

Figure 4: (a) A spanned map (the submap is indicated by thick lines). (b)
Topological construction of the dual. (c) The dual covered map.

3 Covered maps as shuffles of unicellular maps.

In this Section, we establish some preliminary results about covered maps. In
particular we prove that covered maps are stable by duality and explicit their
decomposition as shuffles of two unicellular maps. Our first result should come
as no surprise: it simply states that a spanned map (M,S) is a covered map if
and only if turning around the submap M|S (that is following the border of its
edges) starting from the root allows one to visit every half-edge of M .

Proposition 3.1. A spanned map (M,S) is a covered map if and only if its
motion function is a cyclic permutation.

The following lemma relate the cycles of the motion function to the faces of
the submap; see Figure 3 for the topological intuition.

Lemma 3.2. Let (M,S) be a spanned map, and let σ, α and φ = σα be the
vertex-, edge-, and face-permutations of M . The motion function θ satisfies
θ|S = σ|Sα|S and θ|S̄ = φ|S̄α|S̄. That is, the restriction θ|S is the face permuta-
tion of the pseudo map M|S, while the restriction θ|S̄ is the face-permutation of
the dual pseudo map M∗

|S̄
.

Proof of Lemma 3.2. We first prove that θ|S = σ|Sα|S . Let h be in S and
let l = θ|S(h). By definition of restrictions, there exists a sequence h0 =
h, h1, h2 . . . , hk+1 = l such that h1, h2, . . . , hk ∈ S̄ and hi+1 = θ(hi) i = 0 . . . k.
By definition of θ, one gets h1 = σ(α(h)) and hi+1 = σ(hi) for i = 1 . . . k.
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Moreover, the half-edge α(h) is in S since h is in S which is stable by α.
Thus, by definition of restriction α|S(h) = α(h) and σ|S(α|S(h)) = l. Thus
θ|S(h) = l = σ|S(α|S(h)), that is, the permutations θ|S and σ|Sα|S coincide on
h. The relation θ|S̄ = φ|S̄α|S̄ follows from the preceding point by duality (since
the motion function of a spanned map and its dual are equal).

Proof of Proposition 3.1. Suppose first that (M,S) is a covered map. Since
M|S is connecting, each cycle of the motion function θ contains an element of S.
Hence, the number of cycles of θ and θ|S is the same. Moreover, by Lemma 3.2,
θ|S = σ|Sα|S is the face-permutation of M|S. Since M|S is unicellular, θ|S =
σ|Sα|S is cyclic and θ is also cyclic.

Conversely, suppose that the motion function θ is cyclic. In this case, the
pseudo map M|S has a face-permutation which is cyclic by Lemma 3.2. Hence
it is a unicellular map.

Proposition 3.1 immediately gives the following corollary concerning duality.

Corollary 3.3. If a spanned map (M,S) is a covered map, then the dual
spanned map (M∗, S̄) is also a covered map. Moreover the genus of M is the
sum of the genera of the unicellular maps M|S and M∗

|S̄
:

g(M) = g(M|S) + g(M∗
|S̄).

Corollary 3.3 is illustrated by Figure 4.

Proof. The fact that (M∗, S̄) is a covered map is an immediate consequence of
Proposition 3.1 since the motion function of a submap and of its dual are always
equal. The fact the genus add up is obtained by writing the Euler relation for
the maps M , M|S and M∗

|S̄
.

Let (M,S) be a covered map. By Lemma 3.2, the restrictions θ|S and θ|S̄ of
the motion function θ correspond respectively to the face-permutations of the
unicellular maps M|S and M∗

|S̄
. This inclines to say, somewhat vaguely, that the

covered map (M,S) is a shuffle of the unicellular maps M|S and M∗
|S̄

. Making

this statement precise requires introducing codes of unicellular maps and cov-
ered maps.

A unicellular code on the alphabet An = {a1, ā1, . . . , an, ān} is a word on
An such that every letter of An appears exactly once, and for all 1 ≤ i < j ≤ n,
the letter ai appears before āi and before aj . Let T = (H,σ, α) be a unicellular
map with n edges. By definition, the face-permutation φ = σα is cyclic. Hence,
there exists a unique way of relabelling the half-edges on the set An in such a
way that α(ai) = āi for all i = 1 . . . n and φ = (w1, w2, . . . , w2n), where w1 is
the root and w = w1w2 · · ·w2n is a unicellular code. We call w the code of the
unicellular map T .
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Topologically, the code of a unicellular map is obtained by turning around
the face of the map in counterclockwise direction starting from the root and
writing ai when we discover the ith edge and writing āi when we see this edge
for the second time. For instance the code of the unicellular map in Figure 2
is w = a1a2a3a4ā1ā2ā4a5ā5ā3. We also mention that the unicellular map T is
a plane tree if and only if its code w does not contain a subword of the form
aiaj āiāj . In this special case, replacing all the letters ai, i = 1 . . . n of the code
w by the letter a and all the letters āi, i = 1 . . . n by the letter ā results in no
loss of information. One thereby obtains the classical bijection between plane
trees and parenthesis systems on {a, ā}.
Lemma 3.4 (Folklore). The mapping which associates its code to a unicellular
map is a bijection between unicellular map with n edges and unicellular code on
the alphabet An.

Proof. The mapping is injective since the root and the edge-permutation α
and vertex-permutation σ = φα can be recovered from the code. It is also
surjective since starting from any code one obtains a pair of permutation α, σ
which indeed gives a unicellular map T = (An, α, σ) (the only non-obvious
property is the transitivity condition, but this is granted by the fact the face-
permutation φ = σα is cyclic).

A word on Ak ⊎ Bl (where Bl = {b1, b̄1, . . . , bl, b̄l}) is a code-shuffle if the
subwords w|A and w|B made of the letters in Ak and Bl respectively are unicel-
lular codes on Ak and Bl. Let (M,S) be a covered map, where M = (H,σ, α)
and let k = |S|/2, l = |S̄|/2. By Lemma 3.1, the motion function θ is cyclic.
Hence, there exists a unique way of relabelling the half-edges on the set Ak ⊎Bl

in such a way that S = Ak, S̄ = Bl, α(ai) = āi for all i = 1 . . . k, α(bi) = b̄i
for all i = 1 . . . l, and φ = (w1, w2, . . . , w2n), where w1 is the root of M and
w = w1w2 · · ·w2n is a code-shuffle. We call w the code of the covered map
(M,S).

Topologically, the code of a covered map (M,S) is obtained by turning
around the submap T = M|S in counterclockwise direction starting from the root
and writing ai (resp. bi) when we discover the ith edge in S (resp. S̄) and writing
āi (resp. b̄i) when we see this edge for the second time. For instance, the code of
the unicellular map in Figure 7(a) is w = a1b1a2b2ā2b3ā1b̄1a3b4a4a5b̄3ā5b̄2ā4b̄4ā3.
We now state the main result of this preliminary section.

Proposition 3.5. The mapping φ which associates its code to a covered map
is a bijection between covered maps with n edges and code-shuffles of length 2n.
Moreover, if w is the code of the covered map (M,S), then w|A is the code of
the unicellular map M|S (on the alphabet A|S|/2) and w|B is the code of the dual
unicellular map M∗

|S̄
(on the alphabet B|S̄|/2).

Proof. To see that φ is injective, observe first that the code-shuffle allows to
recover the root of the map M = (H,σ, α), the subset S = Ak, the edge-
permutation α and the motion function θ = (w1, . . . , w2n). From this, the
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vertex-permutation σ is deduced by σ(h) = θα(h) if h ∈ S and σ(h) = θ(h)
otherwise. We now prove that φ is surjective. For this, it is sufficient to prove
that starting from any shuffle-code, the pair (M,S) defined as above is a covered
map. First note that the permutations σ and α clearly act transitively on H
since θ is cyclic, hence M is a map. Now, the fact that (M,S) is a a covered
map is a consequence of Lemma 3.1 since θ is the motion function of (M,S)
and is cyclic.

We now prove the second statement. Let wA = w′
1, . . . , w

′
2k and wB =

w′′
1 , . . . , w

′′
2l. By definition of restrictions, θ|S = (w′

1, . . . , w
′
2k) and θ|S̄ = (w′′

1 , . . . , w
′′
2l).

Moreover, by Lemma 3.2, these restrictions θ|S and θ|S̄ correspond respectively
to the face-permutations of M|S and M∗

|S̄
. Recall also that the root r1 of M|S

is σi(r), where r is the root of M and i is the least integer such that σi(r) ∈ S.
Equivalently, r1 = θi(r) where i is the least integer such that θi(r) ∈ S, hence
r1 = w′

1. Similarly, the root r2 of M∗
|S̄

is φj(r) where j is the least integer such

that φj(r) ∈ S̄, or equivalently r2 = θj(r) where j is the least integers such that
θj(r) ∈ S̄, hence r1 = w′′

1 . Thus, the words w|A and w|B are the codes of the
unicellular maps M|S and M∗

|S̄
respectively.

We now explore the enumerative consequence of Proposition 3.5. Let Ag(n)
be the number of unicellular maps of genus g with n edges. Let Cg1,g2

(n1, n2)
(resp. Cg1,g2

(n)) be the number of covered maps (M,S) such that the unicellular
maps M|S and M∗

|S̄
have respectively n1 and n2 edges (resp. a total of n edges)

and genus g1 and g2. Since there are
(

2n1+2n2

2n1

)

ways of shuffling unicellular
codes of length 2n1 and 2n2, Proposition 3.5 gives

Cg1,g2
(n1, n2) =

(

2n1 + 2n2

2n1

)

Ag1
(n1)Ag2

(n2), (5)

and

Cg1,g2
(n) =

n
∑

m=0

(

2n

2m

)

Ag1
(m)Ag2

(n−m). (6)

An alternative equation (used in Section 5) is obtained by fixing the number
of vertices of M|S and M∗

|S̄
instead of their genus. Let Av(g) be the number

of unicellular maps with v vertices and n edges (Av(g) = A(n−v+1)/2(n) by

Euler relation and this number is 0 if n − v + 1 is odd). Let also Cv,f (n) be
the number of covered maps with v vertices, f faces and n edges (and genus
g = (n− v − f + 2)/2). Proposition 3.5 gives

Cv,f (n) =
n

∑

m=0

(

2n

2m

)

Av(m)Af (n−m). (7)

Equation (6) generalizes the results used by Mullin [29] and by Lehman and
Walsh [24] in order to count tree-rooted maps. Indeed, the number of tree-rooted
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maps of genus g with n edges is

Tg(n) = C0,g(n) =

m
∑

n=0

(

2n

2m

)

Cat(m)Ag(n−m), (8)

where Cat(m) = 1
m+1

(

2m
m

)

is the mth Catalan number. In [29], Mullin proved
Equation (1) by applying the Chu-Vandermonde identity to (8) (in the case
g = 0). Similarly, in [24], Lehman and Walsh proved Equation (2) by applying
the Chu-Vandermonde identity to (8) (in the case g = 1). In [2], Bender et al.
used the asymptotic formula

Ag(n) ∼n→∞
n3g− 3

2

12gg!
√
π

4n

(

1 +O

(

1√
n

))

which they derived from the expressions given in [23], together with (8) in
order to determine the asymptotic number of tree-rooted maps of genus g and
obtained:

Tg(n) ∼n→∞
4

πg!96g
n3g−316n.

Applying the same techniques as Bender et al. to Equation (6) gives the
asymptotic number of covered map:

Cg1,g2
(n) ∼n→∞

(

g1 + g2
g1

)

4

πg!96g
n3g−316n. (9)

In particular, the the total number of covered maps of genus g with n edges
satisfies:

Cg(n) =

g
∑

h=0

Ch,g−h(n) ∼ 4

πg!48g
n3g−316n. (10)

Hence the proportion of tree-rooted maps among covered maps of genus g tends
to 1/2g when the size n goes to infinity. We have no simple combinatorial in-
terpretation of this fact.

This concludes our preliminary exploration of covered maps. We now leave
the world of shuffles and concentrate on the main subject of this paper, that is,
the bijection Ψ between covered maps and pairs made of a tree and a unicellular
bipartite map.

4 The bijection.

We now define the mapping Ψ which associates to a covered map (M,S) a
pair (A,B) made of a tree A = Ψ1(M,S) and a bipartite unicellular map
B = Ψ2(M,S). The mapping Ψ has two steps that we first describe in a non-
formal way. The first step of the bijection associates an oriented map (M, (I,O))
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to the covered map (M,S). For instance, Figure 7(b) represents the oriented
map associated to the covered map of Figure 7(a). The second step of the bi-
jection, which we call unfolding, can be seen as a way of splitting each vertex
incident to k > 0 ingoing half-edges into k vertices. The rule of this splitting
process is represented in Figure 6. The map obtained after these splits is a
plane tree A and the information about the splitting process is encoded into a
bipartite unicellular map B called the mobile. The tree A = Ψ1(M,S) and the
mobile B = Ψ2(M,S) are represented in Figure 9.

Step 1: Orientation ∆. The orientation step is represented in Figure 7. One
starts with an covered map (M,S) and obtains an orientated map (M, (I,O)).
Topologically, the orientation (I,O) is obtained by turning around the submap
M|S (in counterclockwise direction starting from the root) and orient each edge
of M according to the following rule:

• each edge in M|S is oriented in the direction it is followed for the first time
during the tour,

• each edge not in M|S is oriented in such a way that the ingoing half-edge
is crossed before the outgoing half-edge during the tour.

Let us now make definitions precise in terms of the combinatorial definition
of maps. Let (M,S) be a covered map, let r be its root, and let θ be its
motion function. Recall from Proposition 3.1 that θ is a cyclic permutation
on the set H of half-edges. Therefore, one obtains a total order ≺S , named
appearance order, on the set H by setting r ≺S θ(r) ≺S · · · ≺S θ|H|−1(r).
Topologically, the appearance order is the order in which half-edges of M appear
when turning around the spanning submap T = M|S in counterclockwise order
starting from the root. For instance, the order obtained for the spanning submap
T in Figure 7(a) is a1 ≺S b1 ≺S a2 ≺S b2 ≺S ā2 ≺S b3 ≺S · · · ≺S ā3. We
now define the oriented map (M, (I,O)) = ∆(M,S) which is represented in
Figure 7(b).

Definition 4.1. Let (M,S) be a covered map with half-edge set H . The map-
ping ∆ associates to (M,S) the oriented map (M, (I,O)), where the set I of
ingoing half-edges contains the half-edges h ∈ S such that α(h) ≺S h and the
half-edges h /∈ S such that h ≺S α(h) (and O = H \ I).

We now characterize the image of the mapping ∆ by defining left-connected
orientations. Let M = (H,σ, α) be a map and let (I,O) be an orientation. Let
h0 denote the root of M . A left-path is a sequence h1, h2, . . . , hk of ingoing
half-edges such that for all i = 1 . . . k, there exists an integer qi > 0 such that
hi−1 = σqi (α(hi)) and σp(α(hi)) ∈ O for all p = 0 . . . qi − 1. In words, a left-
path is a directed path starting from the arrow pointing the root-corner and
such that no ingoing half-edges is incident to the left of the path. Clearly, for
any ingoing half-edge h, there exists at most one left-path h1, h2, . . . , hk whose
extremity is hk is h. We say that an oriented map (M, (I,O)) is left-connected
if every ingoing half-edge is the extremity of a left-path.
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h1

root h0

hkarrow pointing the root-corner

Figure 5: A left-path.

Theorem 4.2. The mapping ∆ is a bijection between covered maps and left-
connected maps.

The proof of Theorem 4.2 and of the following lemma are postponed to Section 6.

Lemma 4.3. If (M, (I,O)) is a left-connected map with root r, then every
non-root vertex of M is incident to a half-edge in I and every non-root face is
incident to a half-edge in O.

Remark on the planar case: It is shown in [3, Prop. 3] that the mapping ∆
is a bijection between planar covered maps (i.e. tree-rooted maps) and (planar)
oriented maps which are root-connected (there exists a directed path from the
root-vertex to any other vertex) and minimal (no directed cycle is oriented in
clockwise direction when the map is drawn in the plane with the root-face being
the infinite-face). Thus, in the planar case the left-connected orientations are
the minimal root-connected orientations. However, giving a direct proof of this
fact would lead us too far from our main subject.

Step 2: Unfolding Λ. The unfolding step is represented in Figures 8 and 9.
One starts with a left-connected map (M, (I,O)) and obtains two maps A =
Λ1(M, (I,O)) and B = Λ2(M, (I,O)). The map A is a plane tree and the map
B is a bipartite unicellular map (with black and white vertices) called mobile.
Let us start with the topological description of this step. Let v be a vertex
of the oriented map (M, (I,O)) and let h1, . . . , hd be the incident half-edges in
counterclockwise order around v (here it is convenient to think of the arrow
pointing the root-corner as an ingoing half-edge). If the vertex v is incident
to k > 0 ingoing half-edges, say hi1 , hi2 , . . . , hik

= hd, then the vertex v of M
will be split into k vertices v1, v2, . . . , vk of the tree A. The splitting rule is
represented in Figure 6: for j = 1 . . . k, the vertex vj of the trees A is incident
to the half-edges hij−1+1, hij−1+2, . . . , hij

.

Observe that the splitting of the vertex v can be written conveniently in
terms of permutations. Indeed, seeing the vertex v as the cycle (h1, . . . , hd)
of the vertex-permutation σ and the vertices v1 = (h1, . . . hi1), . . . , vk =
(hik−1+1, . . . , hik

) as cycles of the vertex-permutation τ of the tree A gives the
following relation between v and the product of cycles v′ = v1v2 . . . , vk (these
are both permutations on {h1, . . . , hk})

v = v′π◦,
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h3h1 h2

h8 h8

h7

h6 h5

h3

h2h1

h4

h5h7
h6

v
v3

h4

v2

v1

Figure 6: Splitting of a vertex v incident to 3 ingoing half-edges h4, h5, h8.

a1

a3

b̄3

ā3

b4 b̄2

b2

ā5

b1

ā2

a2

b3

a5

b̄4

a4
ā4

b̄1

ā1

b̄3

ā3

b4 b̄2

b2

ā5

b1

ā2

a2

b3

a5

a1

a4

b̄4

ā4

b̄1

ā1

a3

Figure 7: (a) A covered map of genus 1 (the unicellular submap is indicated by
thick lines) (b) The associated oriented map.

where π◦ is the permutation such that π◦(h) = h if h ∈ O and π◦(hij
) = hij+1

for j = 1, . . . , l. Hence, v′ = vπ−1
◦ , where π◦ = v|I (with the convention that the

restriction v|I acts as the identity on O). The cycle (hi1 , hi2 , . . . , hil
) of π◦ will

represent one of the (white) vertices of the bipartite unicellular map B. This
white vertex is represented in Figure 8(a).

We now describe the unfolding step in more details. Let r be the root of the
map M = (H,σ, α) and let φ = σα be its face-permutation . We consider two
new half-edges i and o not in H and define H ′ = H ∪ {i, o}, I ′ = I ∪ {i} and
O′ = O ∪ {o} (the half-edge i should be thought as this half-edge pointing to
the root-corner, while o should be thought as its dual). We define the involution
α′ on H ′ by setting α′(i) = o and α′(h) = α(h) for all h ∈ H . We also define
σ′ as the permutation on H ′ obtained from σ by inserting the new half-edge i
just before the root r in the cycle of σ containing r and creating a cycle made

15



v

(b)

(a)

π•

v2

v1

v3 π◦

(c)

Figure 8: Representation of the unfolding: (a) around one vertex; (b) around
one face; (c) on the map of Figure 7.

o i

(a) (b)
a1

a1

b1

ā2

b̄2

b3

b̄3

ā3 a3

b4

b̄4

b4

ā4

a5

ā5

ā5

a5

ā1

a4

b2

a2 ā3

a3

ā1 b3 b̄2 ā2

ā4
a4

b̄3

a2

b̄4

b̄1

b2
b1

b̄1

Figure 9: (a) The tree Ψ1(M,S). (b) The unicellular map Ψ2(M,S).

of o alone (that is, σ′(o) = o). Similarly we define φ′ as the permutation on H ′

obtained from φ by inserting the new half-edge o just before r in the cycle of
φ containing r and creating a cycle made of i alone. Recall that φ = σα and
observe that φ′ = (i, o)σ′α′. We consider the restrictions

π◦ = σ′
|I′ and π• = φ′|O′ . (11)
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In the example of Figure 7, one gets π◦ = (i)(ā1, b1, b3)(ā2, b2)(ā3, b4)(b3)(ā4)
and π• = (o, a1, a3)(b̄1, a2, b̄4, a4, a5, b̄3)(b̄2). We now define the permutation π
and τ ′ on H ′, and a permutation τ on H by setting

π = π◦π
−1
• , τ ′ = σ′π−1

◦ and τ = τ ′|H , (12)

where a slight abuse of notation is done by considering that π◦ = σ′
|I′ acts as

the identity on O′ and that π• = φ′|O′ acts as the identity on I ′. It is easily seen

that τ ′(o) = o. On the other hand, we will show (Lemma 6.9) that the half-edge
i is not alone in its cycle of τ ′. Hence, the half-edge t = τ ′(i) is distinct from i
and o. We now consider the pseudo maps A = (H, τ, α) with root t = τ ′(i) and
B = (H ′, π, α′) with root i.

Definition 4.4. We denote by Λ the mapping which to a left-connected map
(M, (I,O)) associates the pair (A,B). We also denote Ψ = Λ ◦ ∆. Lastly if
(M,S) denotes the covered map such that (M, (I,O)) = ∆(M,S), we denote
Ψ1(M,S) = Λ1(M, (I,O)) = A and Ψ2(M,S) = Λ2(M, (I,O)) = B.

The images (A,B) of the covered map in Figure 7(a) by the mappings Ψ1 and
Ψ2 are represented respectively in Figure 9(a) and (b). In terms of permutations,
one gets A = (H, τ, α) and B = (H ′, π, α′), where

τ = (a1, b̄1, ā3)(ā1)(b1)(ā3, a4, b̄4)(a4)(ā4, a5, b2)(ā5, b̄3)(b3, a2)(ā2)(b̄2)(b4)

and

π = (i)(ā1, b1, b3)(ā2, b2)(ā3, b4)(b3)(ā4)(o, a3, a1)(b̄3, a5, a4, b̄4, a2, b̄1)(b̄2).

Our main result is the following theorem which will be proved in Section 6.

Theorem 4.5. The mapping Ψ = Λ ◦ ∆ which to a covered map (M,S) asso-
ciates the pair (Ψ1(M,S),Ψ2(M,S)) is a bijection between covered maps of size
n and genus g and pairs made of a plane tree Ψ1(M,S) of size n and a bipar-
tite unicellular map Ψ2(M,S) of size n+1 and genus g. Moreover by coloring
the vertices of the bipartite map Ψ2(M,S) in two colors, say white and black,
with the root-vertex being white, one gets v(M) white vertices and f(M) black
vertices.

Remark (topological intuition). From Figures 8(a) and (b), the reader
should see that the mobile B = Λ2(M, (I,O)) has white vertices (the cycles of
π◦ made of half-edges in I ′) corresponding to the vertices of M and black ver-
tices (the cycles of π−1

• made of half-edges in O′) corresponding to the faces of
M . The topological intuition that the pseudo map A = Ψ1(M,S) is connected
is that left-paths are preserved during the unfolding step. From that, counting
vertices and edges show that A is a plane tree. The topological intuition that the
mobile B is a unicellular map comes from the fact that A can reach every white
corners of B (without crossing its edges). Indeed, this implies that the pseudo-
map B has no contractible cycles. From this, a counting argument involving the
Euler relation for pseudo-maps shows that B is a unicellular map of genus g(M).
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5 Enumerative corollaries and a shortcut between

Harer-Zagier and Jackson formulas.

Recall the notations of Section 3: Ag(n), Bg(n), Cg(n) are respectively the num-
ber of general unicellular maps, bipartite unicellular maps, and covered maps
with n edges and genus g. Similarly Av(n), Bv,f (n), Cv,f (n) are respectively
the number of general unicellular maps with v vertices, bipartite unicellular
maps with v white and f black vertices, and covered maps with v vertices and
f faces having n edges.

The first direct consequence of Theorem 4.5 is:

Theorem 5.1. The numbers Cg(n) and Cv,f (n) of covered maps, and the num-
bers Bg(n) and Bv,f (n) of bipartite maps are related by:

Cg(n) = Cat(n)Bg(n+ 1) (13)

Cv,f (n) = Cat(n)Bv,f (n+ 1) (14)

where Cat(n) = 1
n+1

(

2n
n

)

.

Using known closed-form expressions for the numbers Bg(n) (see [15]), we
obtain the following expressions for the numbers of covered maps of small genus:

C0(n) = Cat(n)Cat(n+ 1), C1(n) = Cat(n)
(2n− 1)!

6(n− 2)!(n− 1)!
.

We now examine the special case of the torus (genus 1). By Lemma 3.3, a
covered map on the torus is either a tree-rooted map (the submap has genus
0, that is, is a spanning tree) or the dual of a tree-rooted map. Since duality
is involutive, exactly half of toroidal covered maps of given size are tree-rooted
maps. This gives the first bijective proof to the following result:

Corollary 5.2 (Lehman and Walsh [24]). The number of tree-rooted maps with
n edges on the torus is:

T1(n) =
1

2
C1(n) =

(2n)!(2n− 1)!

12(n+ 1)!n!(n− 1)!(n− 2)!
.

Another enumerative byproduct of our bijection is a relation between the
numbers of general and bipartite unicellular maps. Indeed, by comparing the
expression of Cv,f (n) obtained by the shuffle approach (Equation (7)) with the
one of Theorem 5.1, we obtain the following:

Theorem 5.3. The numbers of bipartite and monochromatic unicellular maps
are related by the formula:

Bv,f (n+ 1) =
∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!
Av(n1)A

f (n2) (15)

In terms of generating series, the Harer-Zagier formula (3) implies the Jackson-
Adrianov formula (4).
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Proof. The first statement is obtained by comparing Equations (7) and (14).
We now show how to retrieve (4) from (3). One has:

∑

p,q≥1

Bp,q(n+ 1)ypzq

Eq. (15)
=

∑

p,q≥1

∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!
Ap(n1)A

q(n2)y
pzq

=
∑

n1+n2=n

n!(n+ 1)!

(2n1)!(2n2)!





∑

p≥1

Ap(n1)y
p









∑

q≥1

Aq(n2)z
q





Eq. (3)
=

∑

n1+n2=n

n!(n+ 1)!

2nn1!n2!

∑

i,j≥1

2i+j−2

(

n1

i− 1

)(

n2

j − 1

)(

y

i

)(

z

j

)

=
∑

i,j≥1

2i+j−n−2n!(n+ 1)!

(i− 1)!(j − 1)!

(

y

i

)(

z

j

)

∑

n1+n2=n

n1≥i−1, n2≥j−1

1

(n1 − i+ 1)!(n2 − j + 1)!

where the second and fourth equalities just correspond to rearrangements of
the summations. Moreover, the inner sum in the last equation is equal to
2n−i−j−2/(n− i − j + 2)! by Newton’s binomial theorem. This gives Jackson-
Adrianov formula.

Remark. Connoisseurs know that Harer-Zagier and Jackson’s formulas can be
interpreted in terms of unicellular maps with colored vertices (see e.g. [18, sec.
3.2.7]). For those readers, we point out that the equivalence between Harer-
Zagier and Jackson’s formulas can be seen in terms of colorings as well: Ψ is
a bijection between shuffles of two unicellular maps with vertices colored using
all colors respectively in {1, . . . , i} and {1, . . . , j} and pairs made of a plane
tree and a unicellular map with black and white vertices colored using all colors
respectively in {1, . . . , i} and {1, . . . , j}.

6 Proofs and inverse bijection.

This section is devoted to the proof of Theorems 4.2 and 4.5 concerning respec-
tively the orientation and unfolding steps of the bijection Ψ.

6.1 Proofs concerning the orientation step.

In this Subsection, we prove Theorem 4.2 about the orientation step ∆ and and
define the inverse mapping Γ. Given an oriented map (M, (I,O)) with vertex-
permutation σ and face-permutation φ, the backward function β is defined by
β(h) = σ(h) if h ∈ O and β(h) = φ(h) otherwise. We point out that the
backward function is not a permutation, since β(h) = β(α(h)) for any half-edge
h.
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Lemma 6.1. Let (M, (I,O)) be an oriented map with root h0 and let β be the
backward function. The oriented map (M, (I,O)) is left-connected if and only if
for any half-edge, there exists an integer q > 0 such that βq(h) = h0.

Proof. Suppose first that (M, (I,O)) is left-connected. Let h be a half-edge. If
h is ingoing, then it is the extremity of a left path h1, . . . , hk = h. By definition
of left-paths, there exist positive integers q1, . . . , qk such that hi−1 = βqi(hi) for
all i = 1 . . . k. Hence, βq(h) = h0 for q = q1 + · · · + qk. Now, if h is outgoing,
β(h) = β(α(h)), hence there exists q > 0 such that h0 = βq(α(h)) = βq(h).

Suppose conversely that for any half-edge h, there exists an integer q > 0
such that βq(h) = h0. In this case, for any ingoing half-edge h, the sequence
h1, h2, . . . , hk = h of ingoing half-edges appearing (in this order) in the sequence
βq−1(h), βq−2(h), . . . , β(h), h is a left-path. Hence (M, (I,O)) is left-connected.

Proposition 6.2. The image of any covered map by the mapping ∆ is left-
connected.

Proof. Let (M,S) be a covered map, where the map M = (H,σ, α) has root r,
and let (M, (I,O)) be its image by ∆. Our strategy is to prove that for any
half-edge h such that β(h) 6= r, one has h ≺S β(h). This will clearly prove that
the sequence β(h), β2(h), β3(h) . . . must contain the root r, and by Lemma 6.1,
that (M, (I,O)) left-connected.

We distinguish four cases, depending on the fact that h is in I or O, and
in S or S̄. In these four cases, we denote h′ the half-edge θ−1(β(h)), where θ
is the motion function of (M,S). Observe that h′ ≺S β(h) since by hypothesis
β(h) 6= r.
Case 1: h is in O and in S̄. In this case, one has β(h) = σ(h) = θ(h), hence
h′ = h. Thus h = h′ ≺S β(h).
Case 2: h is in O and in S. In this case, one has β(h) = σ(h) = θ(α(h)), hence
h′ = α(h). Moreover, by definition of ∆, one has h ≺S α(h) thus h ≺S h′ ≺S

β(h).
Case 3: h is in I and in S̄. In this case, one has β(h) = σ(α(h)) = θ(α(h)),
hence h′ = α(h). Moreover, by definition of ∆, one has h ≺S α(h), thus
h ≺S h

′ ≺S β(h).
Case 4: h is in I and in S. In this case, one has β(h) = σα(h) = θ(h), hence
h′ = h. Thus, h = h′ ≺S β(h).

We will now define a mapping Γ that we will prove to be the inverse of ∆.
Let us first give the intuition behind the injectivity of ∆ by considering a covered
map (M,S) with motion function θ and its image (M, (I,O)) by ∆. Observe
from the definition of ∆ that the root r of M is in S if and only if it is in O.
Thus, it is possible to know from the orientation (I,O) whether r belongs to
S or not, and thereby deduce the next half-edge h1 = θ(r) around the submap
M|S. The same reasoning will allow to determine, from the orientation (I,O),
whether the half-edge h1 belongs to S and deduce the next half-edge h2 = θ(h1)
around M|S and so on. . . This should convince the reader that the mapping ∆
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is injective and highlight the definition of Γ given below.

It is convenient to define Γ as a procedure which given an oriented map
(M, (I,O)) with root r returns a subset S of half-edges. This procedure visit
some half-edges of M starting from the root r, and decide at each step whether
the current half-edge h belongs to the set S or not.

Definition 6.3. The mapping Γ associates to an oriented map (M, (I,O)) the
spanned map obtained by the following procedure.
Initialization: Set S = ∅, R = ∅ and set the current half-edge h to be the root
r.
Core:

• If h /∈ S ∪R do:
If h is in O then add h and α(h) to S; otherwise add h and α(h) to R.

• Set the the current half-edge h to be σα(h) if h in S and σ(h) otherwise.
Repeat until the current half-edge h returns to be r.
End: Return the spanned map (M,S).

We first prove the termination of the procedure Γ.

Lemma 6.4. For any oriented map (M, (I,O)), the procedure Γ terminates and
returns a spanned map (M,S). Moreover, the list of all successive current half-
edges visited by the procedure is the cycle containing the root r of the motion
function θ associated to (M,S).

Proof. We first prove that the procedure Γ terminates. Observe that, at any
step of the procedure, the sets S and R are disjoint and stable by α. Moreover,
these sets are both increasing, hence they are constant after a while, equal to
some sets S∞ and R∞ which are disjoint. Let θ∞ be the motion function of the
submap M|S∞

. Then, at each core step of the procedure, the current half-edge
h becomes the half-edge θ∞(h). Indeed, if at the current step h is in S, then h
is in S∞ (since the set S cannot decrease) so that θ∞(h) = σα(h), while if h is
in R, then h is in R∞ (since the set R cannot decrease), hence it is not in S∞

so that θ∞(h) = σ(h).
Hence the sequence of all successive current half-edges form a cycle of the

permutation θ∞. Since the procedure starts with h equal to the root r, it follows
that r is reached a second time, and that the procedure terminates. Finally,
the spanned map returned by the algorithm is (M,S∞), which concludes the
proof.

Proposition 6.5. The image of a left-connected map by the mapping Γ is a
covered map.

Proof. Let (M, (I,O)) be a left-connected map. We denote by r the root of
M = (H,σ, α), by β the backward function of (M, (I,O)), and by θ the motion
function of (M,S) = Γ((M, (I,O))). Let K be the set of half-edges contained in
the cycle of the motion function θ containing the root r. In order to prove the
proposition, it suffices to prove that K = H . Indeed, in this case the motion
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function θ is cyclic which implies that (M,S) is a covered map by Proposi-
tion 3.1.

Moreover, since (M, (I,O)) is left-connected, for any half-edge h in H , there
exists a positive integer q such that βq(h) is the root r which belongs to K.
Hence, it suffices to prove that any half-edge h such that β(h) is in K, is also
in K.

Let h be an half-edge such that β(h) is in K and let h′ = θ−1(β(h)). Observe
that, by definition of K, the half-edge h′ is in K. We now distinguish four cases,
depending on the fact that h is in I or O, and in S or S̄.
Case 1: h is in O and in S̄. In this case, one has β(h) = σ(h) = θ(h), hence
h′ = h. Thus h = h′ is in K.
Case 2: h is in O and in S. In this case, by definition of Γ, the half-edge h
was the current half-edge when it was added to S. Thus, by Lemma 6.4, the
half-edge h is in K.
Case 3: h is in I and in S̄. In this case, one has β(h) = σ(α(h)) = θ(α(h)),
hence h′ = α(h). Since h′ is in K, Lemma 6.4 ensures that it was the current
half-edge at a certain step of the procedure Γ. Hence, since h′ = α(h) is in O
but not in S, it means that h and h′ were added to the set R at a step of the
procedure Γ, such that h was the current half-edge. Thus, by Lemma 6.4, the
half-edge h is in K.
Case 4: h is in I and in S. In this case, one has β(h) = σα(h) = θ(h), hence
h′ = h. Thus h = h′ is in K.

We now complete the proof of Theorem 4.2.

Proposition 6.6. The mappings ∆ and Γ are inverse bijections between covered
maps and left-connected maps.

Proof. We first prove that the mapping ∆ ◦ Γ is the identity on left-connected
maps. Observe that this composition is well-defined by Proposition 6.5. Let
(M, (I,O)) be a left-connected map and let (M,S) be its image by Γ. We want
to prove that (M, (Ĩ , Õ)) ≡ ∆(M,S) is equal to (M, (I,O)). For that, it suffices
to show that any half-edge h such that h ≺S α(h) is in O if and only if it is in
Õ. Let h be such a half-edge. By definition of ∆, it follows that h is in Õ if and
only if h is in S. Now, by Lemma 6.4, the sequence h1 = r, h2, . . . , h2n of current
half-edge visited during the procedure Γ satisfies h1 ≺S h2 ≺S · · · ≺S h2n, hence
h is visited before α(h) during the procedure Γ. Hence, by definition of Γ, the
half-edge h is in O if and only if h is in S.

We now prove that the mapping Γ ◦ ∆ is the identity on covered maps.
Observe that this composition is well-defined and returns a covered map by
Propositions 6.2 and 6.5. Let (M,S) be a covered map with root r and let
(M, (I,O)) be its image by ∆. Let also (M,S′) = Γ(M, (I,O)) and let θ and θ′

be respectively the motion function of (M,S) and (M,S′). In order to prove that
S = S′ it suffices to prove that θ = θ′ (indeed, the set S and S′ are completely
determined by θ and θ′). Suppose now that θ 6= θ′ and consider the smallest

integer k ≥ 0 such that θk+1(r) 6= θ′
k+1

(r) (such an integer exists since θ and θ′

are cyclic). Observe that for all 0 ≤ j < k, the half-edge θj(r) = θ′
j
(r) is
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in S if and only if it is in S′ (since θj+1(r) = θ′
j+1

(r)). On the other hand,

the half-edge h = θk(r) = θ′
k
(r) is in the symmetric difference of S and S′

(since θk+1(r) 6= θ′
k+1

(r)). This implies that h ≺S α(h) and h ≺S′ α(h). Since
h ≺S α(h), the definition of ∆ shows that the half-edge h is in S if and only if
h is in O. Since h ≺S′ α(h), Lemma 6.4 proves that h is the current half-edge
before α(h) in the procedure Γ on (M, (I,O)). Hence, by definition of Γ, the
half-edge h is in S′ if and only if h is in O. This proves that h = θk(r) is not in
the symmetric difference of S and S′, a contradiction.

Before leaving the world of left-connected maps, we prove Lemma 4.3.

Proof of Lemma 4.3. If a cycle of the vertex-permutation σ contains no edge in
I, then β(h) = σ(h) for every half-edge h in this cycle. By Lemma 6.1, this
implies that the root r belongs to this cycle. Similarly, if a cycle of the face-
permutation φ contains no edge in O, then β(h) = φ(h) for every half-edge h in
this cycle. By Lemma 6.1, this implies that the root r belongs to this cycle.

6.2 Proofs concerning the unfolding step.

In this Subsection we prove Theorem 4.5. We fix a left-connected map (M, (I,O)),
where the map M = (H,σ, α) has n edges, genus g, root r and face-permutation
φ. We denoteA = (H, τ, α) = Λ1(M, (I,O)) andB = (H ′, π, α′) = Λ2(M, (I,O))
and adopt the notation of Section 4 for the sets H ′, I ′, O′ and the permutations
σ′ φ′, τ ′, π◦ and π•.

Lemma 6.7. The permutations τ, α act transitively on H, thus A is a map.

As mentioned above, the intuition behind the connectivity of A is that left-
paths are preserved by the unfolding. This can be formalized as follows.

Proof. Let β be the backward function of the oriented map (M, (I,O)) defined
by β(h) = σ(h) if h is in O and β(h) = σα(h) otherwise. Let β̃ be the backward
function of the oriented map (A, (I,O)) defined by β̃(h) = τ(h) if h is in O and
β̃(h) = τα(h) otherwise.

We first prove that β(h) = β̃(h) for any half-edge h ∈ H such that β(h) 6= r.
If h is in O (and β(h) 6= r), then

β(h) ≡ σ(h) = σ′(h) = τ ′(h) = τ(h) ≡ β̃(h),

since the permutations σ′ and τ ′ coincide on O′. If h is in I (and β(h) 6= r),
then

β(h) ≡ σ(α(h)) = σ′(α(h)) = τ ′(α(h)) = τ(α(h)) ≡ β̃(h),

since again the permutations σ′ and τ ′ coincide on O′.
Since the oriented map (M, (I,O)) is left-connected, Lemma 6.1 ensures that

for any half-edge h, there exists an integer q > 0 such that βq(h) = r. Taking
the least such integer q, and using the preceding point shows that for any half-
edge h, there exists an integer q > 0 such that β̃q−1(h) = βq−1(h) = l, where
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l is a half-edge such that β(l) = r. Moreover, the relation β(l) = r shows that
l is either equal to u = σ−1(h) or to α(u). Therefore, any half-edge h can be
sent to one of the half-edges u, α(u) by applying the function β̃, hence by acting
with the permutations τ and α. This proves the lemma.

We call root-to-leaves orientation of a plane tree the unique orientation such
that each non-root vertex is incident to exactly one ingoing half-edge.

Proposition 6.8. The map A is a tree. Moreover, (I,O) is the root-to-leaves
orientation of A.

We start with an easy lemma.

Lemma 6.9. The half-edge u = σ−1(r) is in O and τ ′(u) = i. In particular,
the half-edge i is not alone in its cycle of τ ′.

Proof. Consider the backward function β of the oriented map (M, (I,O)). Since,
(M, (I,O)) is left-connected, Lemma 6.1 ensures that there exists a half-edge
h such that β(h) = r. Since β(h) = β(α(h)) we can take h in O and get
h = σ−1(r) = u. This proves that u = σ−1(r) is in O. It is then obvious from
the definition of τ ′ that τ ′(u) = i.

Proof of Proposition 6.8. Recall that n = |H |/2 denotes the number of edges of
M , hence of A. We first prove that the map A has (at least) n+ 1 vertices. By

construction, the permutation τ ′ = σ′π−1
◦ = σ′σ′−1

|I has at most one element of
I ′ in each of its cycle. Hence it has at least n+ 1 cycles beside the cycle made
of o alone. Moreover, by Lemma 6.9, the half-edge i is not alone in its cycle of
τ ′, thus the vertex-permutation τ = τ ′|H has at least n+ 1 cycles.

The (connected) map A has n edges and (at least) n+ 1 vertices hence it is
a tree. Moreover, each non-root vertex of A is incident to exactly one half-edge
in I. Thus, (I,O) is the root-to-leaves orientation of A.

We prove a last easy lemma about the tree A = (H, τ, α).

Lemma 6.10. The permutation τ ′ = σ′π−1
◦ is obtained from the vertex-permutation

τ by inserting the half-edge i before the root t of A in the cycle of τ containing
t and creating a cycle made of o alone. The permutation ϕ′ = (i, o)τ ′α′ is ob-
tained from the face-permutation ϕ = τα by inserting the half-edge o before t in
the cycle of ϕ containing t and creating a cycle made of i alone.

Proof. By definition, τ ′(i) = t and τ ′|H = τ . Moreover, it is easy to check that

τ ′(o) = σ′π−1
◦ (o) = o. This proves the statement about τ ′. We now denote

u = τ ′
−1

(i). By definition, ϕ(α(u)) = τ(u) = t and one can check ϕ′(α(u)) = o,
ϕ′(o) = t, ϕ′(i) = i, and ϕ′(h) = ϕ(h) for all h /∈ {i, o, α(u)}. This proves the
statement about ϕ′.

We will now prove that the mobile B = (H ′, π, α′) = Λ2(M, (I,O)) is a
unicellular bipartite map. We introduce some notations for the half-edges in
H . From Proposition 6.8, the tree (A, (I,O)) is oriented from root to leaves.
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In particular, the root t of A is outgoing. We denote o1 = t, o2, . . . , on the out-
going half-edges as appearing during a counterclockwise tour around the tree
A, that is to say, ϕ|O = (o1, o2, . . . , on) where ϕ = τα is the face-permutation
of A. This labelling is indicated in Figure 10(a). Observe that Lemma 6.10
implies ϕ′

|O′ = (o, o1, o2, . . . , on). For j = 1, . . . , n, we denote ij = α(oj), so
that α′ϕ′

|Oα
′ = (i, i1, i2, . . . , in).

i
i5

i2o1

o4

i4
i3

o3

i1

o2

o5

o

i6

o6o2

i2

i5
o5

i6

i3

i1

o3

i4

o6

o1

o4

Figure 10: A pair (A,B) coherently labelled on the alphabet
{i, i1, . . . , i6, o, o1, . . . , o6}: the face-permutation ϕ of the tree A satisfies
ϕ′
|O′ = (o, o1, . . . , o6), while the face-permutation ψ of the mobile B satisfies

ψ|I′ = (i, i1, . . . , i6).

Proposition 6.11. The mobile B = Λ2(M, (I,O)) is a bipartite unicellular
map of genus g(M). Moreover, if we color the vertices of B in two colors,
say white and black, with the root-vertex being white, then it has v(M) white
vertices and f(M) black vertices. Lastly, the half-edges incident to white vertices
are i, i1, i2, . . . , in and appear in this order during a clockwise tour around B,
that is to say, ψ−1

|I′ = (i, i1, . . . , in) = α′ϕ′
|Oα

′, where ψ = πα′ is the face-

permutation of B and ϕ′ = (i, o)τ ′α′.

Lemma 6.12. The permutation ψ = πα′ and ϕ′ = (i, o)τ ′α′ are related by
ψ−1
|I′ = (i, i1, . . . , in) = α′ϕ′

|O′α′.

Proof. Since the involution α′ maps I ′ to O′, one gets α′ϕ′
|O′α′ = (α′ϕ′α′)|I′ .

Hence, α′ϕ′
|O′α′ = (α′(i, o)τ ′)|I′ ≡ (α′(i, o)σ′σ′−1

|I′ )|I′ . Consider now a half-
edge h in I ′. By definition of restrictions, one gets

α′ϕ′
|O′α′(h) = (α′(i, o)σ′)|I′σ′−1

|I′ (h),

since σ′−1
|I′ acts as the identity on O′. We now determine ψ−1

|I′ (h). Observe

that the sets I ′ and O′ are stable by the permutation π = π◦π
−1
• . Thus the

permutation ψ−1 ≡ α′π−1 maps I ′ to O′. This gives

ψ−1
|I′ (h) = α′π−1α′π−1(h) = α′π•α

′π−1
◦ (h) = α′φ′|O′α′σ−1

|I′ (h),
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since π• ≡ φ′|O′ = π−1
|O′ and π◦ ≡ σ′

|I′ = π|I′ . Moreover, α′φ′|O′α′ = (α′φ′α′)|I′ =

(α′(i, o)σ′)|I′ since φ′ = (i, o)σ′α′ (and the sets I ′ and O′ are exchanged by α′).
Thus, for any half-edge h in I ′,

ψ−1
|I′ (h) = (α′(i, o)σ′)|I′σ−1

|I′ (h)

which concludes the proof.

Proof of Proposition 6.11. By Lemma 6.12, every half-edge in I ′ belongs to the
same cycle C of the permutation ψ = πα′. Now, if h is a half-edge in O′,
ψ(h) = πα(h) is in I ′ (since I ′ is stable by π) hence it belongs to the cycle
C. Thus, the permutation ψ is cyclic. Hence, the permutations π and α act
transitively on H ′, that is, B is a map. Moreover, its face-permutation ψ is
cyclic, that is, B is unicellular.

Moreover, since the sets I ′ and O′ are stable by the vertex-permutation
π and exchanged by the edge-permutation α′, the map B is bipartite. Let us
therefore consider the bipartite coloring where the vertices incident to half-edges
in I ′ are white while the vertices incident to the half-edges in O′ are black. By
Lemma 4.3, each of the cycles of σ′ except the cycle made of o alone contains
at least one half-edge in I ′. Therefore, the number of cycles of the permutation
π◦ = σ′

|I′ on I ′ is the number v(M) of cycles of the vertex-permutation σ.

Similarly, the number of cycles of the permutation π• = φ′|O′ on O′ is the

number f(M) of cycles of the face-permutation φ. Thus, the map B has v(M)
white vertices and f(M) black vertices. Now, Euler relation gives

2g(B) = 2+e(B)−f(B)−v(B) = 2+(e(M)+1)−1−(v(M)+f(M)) = 2g(M).

Thus, the genus of B is g(M). This concludes the proof of Proposition 6.11.

Topological description of the folding step (Figure 11). We now define
a mapping Ω, the folding step, which we will prove to be the inverse of the
unfolding step Λ. Before defining Ω in terms of permutations, let us explain the
topological interpretation of Proposition 6.11. We denote by v0, v1, . . . , vn the
vertices of A in counterclockwise order around A (starting from the root-corner)
and by c0, c1, . . . , cn the first corners of these vertices; see Figure 11(a). Equiv-
alently, v0 is the root-vertex and c0 is the root-corner, while for j = 1 . . . n, vj

is the vertex incident to the ingoing half-edge ij and cj is the corner follow-
ing ij in counterclockwise order around vj ; see Figure 10. We also denote by
x0, . . . , xn the white corners of B in clockwise order around B (starting from
the root-corner x0); see Figure 11(a). By Proposition 6.11, for j = 0 . . . n, xj

is the corner of B following the half-edge ij in clockwise order around the inci-
dent vertex. Therefore this proposition indicates how the folding step Ω = Λ−1

should be defined topologically: for j = 0, . . . , n the first-corner cj of the vertex
vj (the jth vertex of A in counterclockwise direction) is glued to the corner xj

(the jth white corner of B in clockwise direction). This gives a map containing
edges of both A and B that we call partially folded map which is represented
in Figure 11(b). The oriented map (M, (I,O)) = Ω(A,B) is obtained from the
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partially folded map by keeping the half-edges of A with their cyclic ordering
around the white vertices of B (while the edges and black vertices of B are
deleted).

(b)

v0

v5
v1

v3

v6
v4

(a)

x6

v2 x4

(c)
x0

x5

x2x1

x3

Figure 11: Topological representation of the folding step. Figure (b) represents
the partially folded map.

We now defines the mapping Ω in terms of permutations. Let Ã = (H, τ̃ , α)
be a rooted plane tree with n = |H |/2 edges, and B̃ = (H ′, π̃, α′) be a rooted
bipartite unicellular map with n + 1 = |H ′|/2 edges. We consider the usual
black-and-white coloring of B̃ (with the root-vertex being white). The pair
(Ã, B̃) is said coherently labelled if the following conditions are satisfied:

(i) H ′ = H ∪ {i, o}, where i is the root of M and o = α′(i).

(ii) α = α′
H .

(iii) The root-to-leaves orientation (I,O) of Ã is such that the half-edges in
I ′ = I ∪ {i} are incident to white vertices of B̃, while half-edges in O′ =
O ∪ {o} are incident to black vertices of B.

(iv) If the half-edges o1, o2, . . . , on in O appear in this order in counterclock-
wise direction around Ã with o1 being the root of Ã, then the half-edges
i, i1, . . . , in defined by ij = α(oj) for j = 1 . . . n appear in this order

in clockwise direction around B̃. Equivalently, ψ−1
|I′ = (i, i1, . . . , in) =

α′ϕ′
|Oα

′, where ψ = πα′ is the face-permutation of B and ϕ′ = (i, o)τ ′α′.

For example, the pair (A,B) represented in Figure 10 is coherently labelled.
Observe that Proposition 6.11 precisely states that the image by Λ of a left-
connected map (M, (I,O)) is coherently labelled. We now prove (the somewhat
obvious fact) that any pair (Ã, B̃) can be relabelled coherently.

Lemma 6.13. Let Ã = (H, τ̃ , α) be a rooted plane tree with n = |H |/2 edges,
and B̃ = (H ′, π̃, α′) be a rooted bipartite unicellular map with n + 1 = |H ′|/2
edges. Then, there is a unique way of relabelling B̃ in such a way that the pair
(Ã, B̃) is coherently labelled.
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Proof. We denote by (I,O) the root-to-leaves labelling of A. We denote by I ′

and O′ respectively the set of half-edges incident to white and black vertices of
B̃ and observe that these sets are exchanged by α′ (since B̃ is bipartite). We
denote ϕ̃ = τ̃α and ψ̃ = π̃α′ are the face-permutation of Ã and B̃ respectively.
Lastly, we denote (o1, o2, . . . , on) the cycle ϕ̃|O with o1 being the root of Ã and

(i′, i′1, . . . , i
′
n) the cycle ψ̃−1

|I′ with i′ being the root of B̃. Now we consider the

relabelling of B̃ given by the bijection λ from H ′ to H ∪ {o, i} (where i, o are
half-edges not in H) given by λ(i′) = i, λ(α(i′)) = o and for all j = 1 . . . n,
λ(i′j) = α(oj) and λ(α(i′j)) = oj . Clearly λ is a bijection and it is the unique

bijection making the pair (Ã, B̃) coherently labelled.

We denote by Pn the set of pairs (Ã, B̃) made of a tree of size n and a
unicellular bipartite map of size n + 1. We now consider such a pair (Ã, B̃),
where Ã = (H, τ̃ , α) and B̃ = (H ′, π̃, α′). By Lemma 6.13, we can assume that
the pair (Ã, B̃) is coherently labelled and we adopt the notations i, o, I, O, I ′,
O′ introduced in the conditions (i- iv) (in particular, (I,O) is the root-to-leaves
orientation of A). We then define τ̃ ′ as the permutation on H ′ obtained from
τ by inserting i before the root t of Ã in the cycle containing it and creating a
cycle made of o alone. We also define the permutations π̃◦ and σ̃′ on H ′ and
the permutation σ̃ on H by

π̃◦ = π̃|I′ , σ̃′ = τ̃ ′π̃◦ and σ̃ = σ̃′
|H , (16)

(where a slight abuse of notation is done by considering π̃◦ as a permuta-
tion on H ′ acting as the identity on O′). With these notations, we define
Ω(Ã, B̃) = (M̃, (I,O)), where M̃ = (H, σ̃, α).

We now complete the proof of Theorem 4.5 by proving the following propo-
sition.

Proposition 6.14. The mappings Λ and Ω are inverse bijections between left-
connected maps of size n and pairs in Pn.

Proof. • We first prove that the mapping Ω ◦Λ is the identity on left-connected
maps.
Let (M, (I,O)) be a left-connected map, where M = (H,σ, α). Let (A,B) =
Λ(M, (I,O)), where A = (H, τ, α) and B = (H ′, π, α′) (recall that (A,B) is
coherently labelled by Proposition 6.11). Let also (M̃, (Ĩ , Õ)) = Ω(A,B), where
M̃ = (H, σ̃, α). We want to prove that (I,O) = (Ĩ , Õ) and M = M̃ (or equiva-
lently, σ = σ̃).

By definition of Ω, (Ĩ , Õ) is the root-to-leaves orientation of A. Moreover,
by Proposition 6.8, (I,O) is also the root-to-leaves orientation of A. Hence,
(I,O) = (Ĩ , Õ).

By definition, σ = σ′
|H , where σ′ = τ ′π◦ = τ ′π|I′ (see (12)). Similarly,

σ̃ = σ̃′
|H and σ̃′ = τ̃ ′π̃◦ = τ̃ ′π|I′ (see (16)). Moreover, Lemma 6.10 ensures that

τ ′ = τ̃ ′ (since the permutations τ ′ and τ ′′ are obtained from τ by the same
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procedure). Thus, σ′ = σ̃′ and σ = σ̃.

• We now prove that the mapping Λ ◦ Ω is the identity on Pn.
We must first prove that this mapping is well-defined, that is, the image of any
pair (Ã, B̃) ∈ Pn by Ω is a left-connected map. Let us denote Ã = (H, τ̃ , α)
and B̃ = (H ′, π̃, α′). By Lemma 6.13, we can assume that the pair (Ã, B̃) is
coherently labelled and we adopt the notations i, o, I, O, I ′, O′ of conditions (i-
iv) and the notations π̃◦, σ̃

′, σ̃ introduced in (16). Lastly, we denote Ω(Ã, B̃) =
(M̃, (I,O)), where M̃ = (H, σ̃, α).

Let β̃ be the backward function of the tree Ã defined on H by β̃(h) = τ̃ (h)
if h is in O and β̃(h) = τ̃α(h) otherwise. Let β be defined on H by β(h) = σ̃(h)
if h is in O and β(h) = σ̃α(h) otherwise. Let t be the root of Ã and let
u = τ−1(t). It is easy to show (as is done in the proof of Lemma 6.7) that
β(h) = β̃(h) as soon as β̃(h) 6= t. The tree (A, (I,O)) is oriented from-root-to
leaves, hence it is left-connected. Thus, by Lemma 6.1, for any half-edge h ∈ H
there exists an integer q > 0 such that βq(h) = t. By taking the least such
integer q, one gets β̃q−1(h) = βq−1(h) ∈ {u, α(u)}. Since u is in O, one gets
β̃(α(u)) = β̃(u) = σ̃(u) = r. Hence, β̃q(h) = r. By Lemma 6.1, this implies
that (M̃, (I,O)) is left-connected.

We now study the restrictions π̃◦ ≡ π̃|I′ and π̃• ≡ π̃−1
|O′ . Recall that the map

B̃ is bipartite with white vertices incident to half-edges in I ′ and black vertices
incident to half-edges in O′. Hence, π̃ = π̃◦π̃

−1
• .

We first prove that the permutation π̃◦ is equal to σ̃′
|I′ . We consider a half-

edge h in I ′. By definition of restrictions, σ̃′
|I′(h) = σ̃′k

|I′(h) for a positive integer

k such that for all 0 < j < k, the half-edge σ̃′j
|I′(h) is in O′. Moreover, the

permutations τ̃ ′ and σ̃′ coincide on O′. Thus, σ̃′
|I′(h) = τ̃ ′k−1(σ̃′(h)). By (16),

σ̃′ = τ̃ ′π̃◦, hence σ̃′
|I′(h) = τ̃ ′

k
(π̃◦(h)). Therefore, σ̃′

|I′(h) is a half-edge in I ′

contained in the cycle of τ̃ ′ containing the half-edge π◦(h) (which is in I ′). Since
(I,O) is the root-to-leaves orientation of Ã, every cycle of τ̃ ′ contains exactly
one half-edge in I ′ (except for the cycle made of o alone). Thus, σ̃′

|I′(h) = π̃◦(h).

We now prove that the permutation π̃• is equal to φ̃′|O′ , where φ̃′ = (i, o)σ̃′α′.

We consider the face-permutation ψ̃ = π̃α′ of B̃. Since π̃ = π̃◦π̃
−1
• one gets

ψ̃−1 = α′π̃•π̃
−1
◦ , hence ψ̃−1

|I′ = α′π̃•α
′π̃−1

◦ and finally, π̃• = α′ψ̃−1
|I′ π̃◦α

′. We now

use the property (iv) of the coherently labelled pair (Ã, B̃). This property reads
ψ̃−1
|I′ = α′ϕ̃′

|O′α′, where ϕ̃′ = (i, o)τ̃ ′α′. Thus, π̃• = ϕ̃′
|O′α′π̃◦α

′. We now con-

sider a half-edge h in O′. By definition of restrictions, π̃•(h) = ϕ̃′k(α′π̃◦α
′(h)),

where k is the least positive integer k such that ϕ̃′k(α′π̃◦α
′(h)) is in O′. More-

over, the permutations ϕ̃′ = (i, o)τ̃ ′α′ and φ̃′ = (i, o)σ̃′α′ coincide on I ′ (since

σ̃′ and τ̃ ′ coincide on O′). Thus, π̃•(h) = φ̃′
k−1

(ϕ̃′α′π̃◦α
′(h)) , where k is

the least positive integer k such that φ̃′
k−1

(ϕ̃′α′π̃◦α
′(h)) is in O′. Moreover,

ϕ̃′α′π̃◦α
′(h) = (i, o)σ̃′α′(h) ≡ φ̃′(h) since ϕ̃′ = (i, o)τ̃ ′α′ and π̃◦ = τ̃ ′−1σ̃′
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by (16). Thus, π̃•(h) = φ̃′
k
(h) = φ̃′|O′ (h).

Given that π̃◦ ≡ π̃|I′ = σ̃′
|I′ and π̃• ≡ π̃|O′ = φ̃′|O′ , it is clear from the

definition of the mapping Λ that Λ(M̃, (I,O)) = (Ã, B̃). This concludes the
proof of Proposition 6.14.

7 Alternative descriptions of the unfolding step

In this section we present two alternative ways of encoding the pairs (A,B)
made of a tree and a mobile. We also give the description of the folding and
unfolding steps in terms of these encodings. These alternative descriptions are
particularly useful for studying the specializations of the bijection Ψ. In par-
ticular we will use them in the next section in order to prove that Ψ specializes
to a classical bijection by Bouttier et al [6]. These descriptions are also used in
the planar case in [4] for handling specializations of Ψ allowing for a bijective
counting of certain classes of triangulations and quadrangulations.

We first define the degree-code and height-code of a tree. Let A be a (rooted
plane) tree with n edges. Let v0, v1, . . . , vn be the vertices in counterclockwise
order of appearance around the tree (with v0 being the root). The height-code of
the tree A is the sequence c0, . . . , cn, where cj is the height of the vertex vj (the
number of edges on the path from v0 to vj). The degree-code (or Lukasiewicz
code) is the sequence d0, . . . , dn, where dj is the number of children of vj . The
height- and degree-code for the tree A represented in Figure 12 are respectively
0123212 and 2210010. It is well-known that the height-code or degree-code both
determine the tree A. Moreover, a sequence of non-negative integers c0, . . . , cn
is a height-code if and only if

c0 = 0 and ∀i < n, 0 < ci+1 ≤ ci + 1,

and a sequence of non-negative integers d0, . . . , dn is a degree-code if and only
if

n
∑

i=0

(di − 1) = −1 and ∀k < n,
k

∑

i=0

(di − 1) ≥ 0.

We can now give alternative descriptions of a pair (A,B) by encoding the tree
A as some decorations added to the mobile B (the decorations corresponding
either to the height- or degree-code of A). We consider the usual black and white
coloring of the mobile B (with the root-vertex being white). We say that the
mobile B is corner-labelled if a non-negative number called label is attributed
to each of the n + 1 white corners. The mobile B is corner-well-labelled if the
root-corner has label 0, all other corners have positive labels and the labels
do not increase by more than 1 from a corner to the next one in clockwise
direction around B. Equivalently, B is corner-well-labelled if the sequence of
corners encountered in clockwise order around the mobile starting from the
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root-corner is the height-code of a tree. A corner-well-labelled mobile is shown
in Figure 12(b). We now consider mobiles with buds, that is, dangling half-
edges. A blossoming mobile is a mobile B together with some outgoing buds
glued in each white corners. The sequence of buds encountered in clockwise
order around the mobile is the sequence d0, d1, . . . , dn where di is the number
of buds in the ith corner of B (in clockwise order starting from the root). The
blossoming mobile is balanced if its sequence of buds is the degree-code of a tree.
A balanced blossoming mobile is shown in Figure 12(c). Since both the height-
and degree-code (made of n+ 1 integers) determine a plane tree (with n edges)
the following result is obvious.

Lemma 7.1. The three following sets are in bijection:

• pairs (A,B) made of a plane tree A and a mobile B with respectively n
and n+ 1 edges,

• corner-well-labelled mobiles with n+ 1 edges,

• balanced blossoming mobiles with n+ 1 edges.

The correspondences between the three sets considered in Lemma 7.1 are
represented in Figure 12 (top part). By Theorem 4.5, these sets are all in
bijection with left-connected maps (and covered maps) with n edges. In the rest
of this section we describe the folding and unfolding step in terms of corner-
well-labelled mobiles and balanced blossoming mobiles.

Ω

v5

v3

v6
v4

v2

v1

v0

(a)

2
31

1

2

0

2

Ω′

(c)(b)

1
2

Ω′′

Figure 12: Three equivalent representations of a pair (A,B) and descriptions of
the folding step.

Let (A,B) be a pair made of a plane tree A and a mobile B with respectively
n and n+1 edges. Recall from Section 6 the topological description of the folding
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step Ω = Λ−1 for (A,B): if the vertices of the tree A are denoted v0, v1, . . . , vn

in counterclockwise order around A and the white corners of B are denoted
x0, x1, . . . , xn in clockwise order around B, then the partially folded map N
is obtained by gluing the first-corner of the vertex vj to the corner xj (see
Figure 11). The oriented map (M, (I,O)) = Ω(A,B) is then obtained from the
partially folded map N by deleting the edges and black vertices of B.

This description implies that endowing A with its root-to-leaf orientation
(for which the vertex vj is incident to a unique ingoing half-edge ij) results in
having exactly one ingoing half-edge of A in each white corner of B (except
in the root-corner); see Figure 8(a). More precisely, around a white vertex of
N , one has in clockwise order between the half-edges of B defining the corner
xj : first the ingoing half-edge ij of A (or the arrow pointing the root-corner if
j = 0), and then the outgoing half-edges of A leading to the children of vj .

Description of the folding step in terms of corner-labelled mobiles. Let
(B, ℓ) be a corner-well-labelled mobile, where ℓ is the function associating a label
to each white corner of B. For j = 1 . . . n, we denote by x′j be the last corner of
B having label ℓ(xj) − 1 appearing before xj in clockwise direction around B.
Because (B, ℓ) is well-labelled, the corner x′j always exists and appears between
the root-corner and the corner xj in clockwise order around B. The partially
folded map N ′ associated to (B, ℓ) is defined as the map obtained from B by
adding n edges sequentially: for j = 1 . . . n a directed edge ej of N ′ is created
from the corner x′j to the corner xj . More precisely, at each step the newly
created edge is between the corner xj and the corner of N ′ inside the corner x′j
of B which is incident to the root-face. The result is represented in Figure 12(b).

Clearly, the procedure Ω′ described above is well-defined if and only if at
each step j there exists a unique corner of N ′ incident to the root-face inside
the corner x′j of B. The fact that there is at most one such corner is clear by
induction (and this is the corner of N ′ following the ingoing half-edge inside
the corner x′j). The fact that there is such a corner is also obtained by using
the following induction hypothesis: after step j the white corners of B appear-
ing before xj and containing a corner of N ′ incident to the root-face are, in
clockwise order around B, the last corners of B before xj with respective labels
0, 1, . . . , ℓ(xj). It remains to prove that the procedure Ω′ is indeed equivalent
to the folding step Ω.

Proposition 7.2. If (B, ℓ) is the corner-well-labelled mobile corresponding with
the pair (A,B) (i.e. ℓ(w0)ℓ(w1) . . . ℓ(wn) is the height-code of A), then the
partially folded maps N and N ′ coincide.

Proof. It suffices to show that the edges e1, . . . , en created by the procedure Ω′

are the edges that would have been obtained by gluing the tree A on the mobile
B. Let j be in {1 . . . n} and let uj be the parent of vj in A. The edge of A joining
v′′j and vj gives an edge e′′j of N from a corner x′′j to the corner xj of the mobile
B. We need to show that x′′j = x′j . First observe that ℓ(x′′j ) = ℓ(xj)− 1 because
the labels ℓ(xj) and ℓ(x′′j ) correspond to the height of vj and v′′j in A. Moreover,
the vertex v′′j (which is the parent of vj) is the last vertex with height ℓ(xj)− 1
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appearing before vj in counterclockwise order around A. Thus, by definition of
N , the corner x′′j is the last corner with label ℓ(xj) − 1 appearing before xj in
clockwise order around B, that is, x′′j = xj . This shows that the edges ei and
e′′i are incident to the same corners of B. Moreover, for both N and N ′ the
clockwise order of the half-edges inside a white corner xj of B coincide with the
clockwise order of appearance of their other half around B. Thus, N = N ′.

Description of the folding step in terms of blossoming mobiles. Let ~B
be a balanced blossoming mobile. Let ~B′ be the fully blossoming mobile with
ingoing and outgoing buds obtained from ~B by inserting an ingoing bud in each
white corner of ~B following an edge of B (and not a outgoing bud) in clockwise

order around the white vertex ( ~B′ is represented in solid lines in the bottom part

of Figure 12(c)). Because the blossoming mobile ~B is balanced, the sequence

of outgoing and ingoing buds in clockwise order around the ~B′ (starting from
the root-corner) is a parenthesis system (if outgoing and ingoing buds are seen
respectively as opening and closing parentheses). Hence, there is a unique way
of pairing each outgoing bud to an ingoing bud following it without creating
any crossings. The partially folded map N ′ associated to the blossoming mobile
B̄ is the map obtained from ~B′ by performing these pairings. The result is
represented in Figure 12(c).

Proposition 7.3. If ~B is the blossoming mobile associated with the pair (A,B)
(i.e. the sequence of buds of B̄ is the degree-code of A), then the partially folded
maps N and N ′ coincide.

Proof. It suffices to show that the paired edges of N ′ are the edges that would
have been obtained by gluing the tree A on the mobile B. First observe that
around a white vertex of N ′, one has in clockwise order between the half-edges
of B defining the corner xj : first an ingoing half-edge and then dj outgoing
half-edges, where dj is the number of children of vj in A (because the sequence

of buds of ~B is the degree-code of A). Thus, ~B′ is the map obtained from N
by cutting each edge of A at their midpoint. Moreover, for both N and N ′ the
clockwise order of the half-edges inside a white corner of B coincide with the
clockwise order of appearance of their other half around B. Thus, N = N ′.

8 Link with the bijection of Bouttier, Di Francesco

and Guitter.

In [6] Bouttier, Di Francesco and Guitter defined a bijection between bipartite
maps and vertex-well-labelled mobiles2 (see definition below). The goal of this
section is to show the bijection of Bouttier et al. can be obtained as a special-
ization of the unfolding mapping Λ′ = Ω′−1 associating a corner-labelled mobile

2Strictly speaking, the bijection in [6] only describes the planar case. But is was explained
in [9] how to extend it to higher genera.
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to a left-connected map (Figure 12(b)).

We first recall some definitions. The distance between two vertices of a map
is the minimum number of edges on paths between them. We denote by d(v)
the distance of a vertex v from the root-vertex. Clearly, any pair of adjacent
vertices u, v satisfies |d(u) − d(v)| ≤ 1. An orientation is geodesic if any edge
with origin u and end v satisfies d(u) ≤ d(v) (i.e. edges are oriented away from
the root-vertex). For a bipartite map any pair of adjacent vertices u, v satisfies
|d(u) − d(v)| = 1 (since every cycle has even length), hence there is a unique
geodesic orientation. The geodesic orientation is indicated in Figure 13(b).

A vertex-well-labelled mobile is a corner-well-labelled mobile such that the
labels coincide around each white vertices, that is, any two corners incident
to the same vertex have the same label. An example is given in Figure 13(c).
Observe that vertex-well-labelled mobile are equivalently defined as mobiles with
a label ℓ(v) associated to each vertex v satisfying:

• the root-vertex has label 0 and degree 1, while other white vertices have
positive labels,

• the increase between the labels of two consecutive white vertices in clock-
wise order around a black vertex is at most 1.

Proposition 8.1. The geodesic orientation of a bipartite map is left-connected.
Moreover, the unfolding mapping Λ′ induces a bijection between the set of bipar-
tite maps (with n edges and genus g) endowed with their geodesic orientation
and the set of vertex-well-labelled mobiles (with n+ 1 edges and genus g). This
induced bijection is exactly the bijection described by Bouttier et al. in [6].

Proof. Let (M, (I,O)) be a bipartite map endowed with its geodesic orientation.
We first prove that the geodesic orientation is left-connected by using Lemma 6.1
concerning the backward function β. Clearly, for any half-edge h incident to a
non-root vertex v, there exists an integer p > 0 such that the half-edge βp(h)
is incident to a vertex u satisfying d(u) = d(v) − 1 (because there are ingoing
edges incident to v, and they all join v to a vertex u satisfying the property).
Thus, there exists q > 0 such that the half-edge βq(h) is incident to the root-
vertex. Moreover, for any half-edge h′ incident to the root-vertex there exists
an integer r > 0 such that the half-edge βr(h′) is the root (because the root-
vertex is only incident to outgoing half-edges). Therefore, by Lemma 6.1, the
geodesic orientation is left-connected. We now show that the corner-labelled
mobile (B, ℓ) = Λ′(M, (I,O)) is vertex-well-labelled. Let v be a vertex of M
and let v1, . . . , vk be the vertices of the tree A = Λ1(M, (I,O)) resulting from
unfolding the vertex v. Clearly, any directed path from the root-vertex to v in
M has length d(v). Hence, for all i ∈ {1, . . . , k} every directed paths from the
root-vertex to vi in A has length d(v). Hence, the label ℓ of every corner of
the white vertex v of the mobile B is equal to d(v). Thus, the corner-labelled
mobile (B, ℓ) is vertex-well-labelled.

Conversely, let (B, ℓ) be a vertex-well-labelled mobile, let (M, (I,O)) =
Ω′(B, ℓ) be the corresponding left-connected map. We want to prove that M
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is bipartite and (I,O) is the geodesic orientation. By definition of the folding
Ω′ any edge of M goes from a white vertex u to a white vertex v satisfying
ℓ(v) = ℓ(u)+1. Hence, reasoning on the parity of labels shows that M is bipar-
tite. In order to prove that (I,O) is the geodesic orientation, it suffices to prove
that the label function ℓ is equal to the distance function d. Let v be a non-root
vertex. On one hand, one gets d(v) ≥ ℓ(v) from the fact that labels cannot
decrease by more than one when following an edge of M (hence the root-vertex
cannot be reached by following less than ℓ(v) edges). On the other hand, one
gets d(v) ≤ ℓ(v) from the fact that any non-root vertex of M is adjacent to a
vertex having a smaller label (by definition of the folding step Ω′). Thus d = ℓ
and the orientation is geodesic.

(a) (b) (c)

2 1 2

321

0 1 2

Figure 13: (a) The rightmost BFS tree. (b) The geodesic orientation. (c) The
associated vertex-well-labelled mobile.

In the remaining of this section, we complete the picture by characterizing
the unicellular submap of a bipartite map which corresponds to the geodesic ori-
entation (by the orientation step ∆). A spanning tree is said BFS (for Breadth-
First-Search) if for any vertex v, the distance d(v) is equal to the height in the
spanning tree.

Definition 8.2. The rightmost BFS tree is the spanning tree T obtained by
the following procedure:
Initialization: Set every vertex to be alive. Set the tree T as the tree containing
the root-vertex of M and no edge.
Core: Consider the alive vertex v which has been in the tree T for the longest
time and set it dead. Inspect the half-edges incident to v in counterclockwise
order (starting from the root if v is the root-vertex, and starting from the half-
edge following the edge of T leading v to its parent otherwise) and whenever a
half-edge leads to a vertex not in the tree T add this vertex and the edge to T .
Repeat until all vertices are dead.
End: Return the spanning tree T .

The rightmost BFS tree is indicated in Figure 13(a). We omit the proof of
the following easy result.

Lemma 8.3. The procedure terminates and returns a BFS spanning tree. More-
over, the order in which the set of half-edges incident to vertices at a given dis-
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tance from the root-vertex are inspected coincide with the order of appearance
during the counterclockwise tour of the tree.

Proposition 8.4. Let (M,S) be a bipartite covered map, and let (M, (I,O)) =
∆(M,S) be the associated left-connected map. The orientation (I,O) is geodesic
if and only if M|S is the rightmost BFS tree of M .

Proof. We suppose that M|S is the rightmost BFS tree and consider the ori-
entation (M, (I,O)) = ∆(M,S). We need to prove that (I,O) is the geodesic
orientation. Let e be an edge in M|S . By definition of ∆, the edge e is oriented
from parent to child. Since the tree M|S is BFS, this orientation coincide with
the geodesic orientation of e. Let now e be an edge not in M|S with origin u
and end v. We want to prove that d(v) = d(u) + 1. Suppose the contrary:
d(u) = d(v) + 1. Let v′ be the parent of u and let e′ be the edge from v′ to
u. Let h and h′ be respectively the half-edges of e and e′ incident to v and
v′. By definition of ∆, the edge e is oriented in such a way that the ingoing
half-edge h is encountered before the outgoing half-edge during the counter-
clockwise tour of M|S. This implies that h is encountered before h′ during the
counterclockwise tour of M|S. By Lemma 8.3, this implies that the half-edge
h is inspected before h′ during the procedure constructing the rightmost BFS.
Hence, when the half-edge h is inspected, the vertex u is not in the tree T and
should be added together with the edge e. We reach a contradiction. Thus, we
have shown that the orientation (I,O) associated to the rightmost BFS is the
geodesic orientation of M .

9 Duality.

Recall from Section 3 that the dual of a covered map is a covered map. In
this section, we explore the properties of the bijection Ψ with respect to duality.
Throughout this section, we consider a covered map (M,S), where the mapM =
(H,σ, α) has root r and face-permutation φ = σα. We denote (M, (I,O)) =
∆(M,S) and (A,B) = Ψ(M,S).

Lemma 9.1 (Duality at the orientation step). The oriented map associated
to the dual covered map is the dual oriented map, that is to say, ∆(M∗, S̄) =
(M∗, (O, I)).

Lemma 9.1 is illustrated in Figure 14.

Proof. Recall that the the submaps M|S and M∗
|S̄

have the same motion func-

tions, hence define the same appearance order on H . Thus, Lemma 9.1 imme-
diately follows from the definition of the mapping ∆.

We now explore the properties of the unfolding step with respect to duality.
We denote A = (H, τ, α) = Ψ1(M,S) and B = (H ′, π, α′) = Ψ2(M,S), where
H ′ stands for H ∪ {i, o} and i is the root of the mobile B. We also denote by
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ā3 b2

b3

b̄3

ā3
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Figure 14: (a) The oriented map (M, (I,O)) = ∆(M,S) associated to the cov-
ered map represented in Figure 4(a). (b) Topological construction of the dual:
each oriented edge of M is crossed by the the dual oriented edge of M∗ from
left to right. (c) The oriented map (M∗, (O, I)).

A⋆ = (H, τ⋆, α) = Ψ1(M
∗, S̄) and B⋆ = (H ′, π⋆, α′) = Ψ2(M

∗, S̄), the plane
tree and mobile associated to the dual covered map (M∗, S̄). We shall prove
the existence of two independent mappings Υ and Ξ such that A⋆ = Υ(A) and
B⋆ = Ξ(B). In words, the duality acts component-wise on the plane tree and
the mobile.

(b)

Figure 15: Simultaneous unfolding of the oriented map of Figure 14 and of its
dual.

Proposition 9.2 (Duality and the mobile). Let (M,S) be a covered map and
let (M∗, S̄) be the dual covered map. If the mobile B = Ψ2(M,S) is de-
noted (H ′, π, α′) and has root i, then the mobile B⋆ = Ψ2(M

∗, S̄) is the map
(H ′, π−1, α′) with root o = α(i).

Proposition 9.2 is illustrated in Figure 16. It implies that the mobile B⋆ is
entirely determined by the mobile B.

37



Proof. The map M has vertex-permutation σ and face-permutation φ, while the
map M∗ has vertex-permutation σ⋆ = φ and face-permutation φ⋆ = σ. We de-
note ∆(M,S) = (M, (I,O)), so thatB = Λ(M, (I,O)) andB = Λ(M∗, (I⋆, O⋆)),
where I⋆ = O and O⋆ = I by Lemma 9.1. We adopt the notations i, o, I ′, O′,
σ′, φ′, π◦, π•, π of Section 4 for defining B and adopt the corresponding nota-
tions i⋆, o⋆, I ′

⋆
, O′⋆, σ′⋆, φ′

⋆
, π◦

⋆, π•
⋆, π⋆ for defining B⋆. We choose i⋆ = o

and o⋆ = i, so that I ′
⋆ ≡ I⋆ ∪ {i⋆} = O′, O′⋆ ≡ O⋆ ∪ {o⋆} = I ′, σ′⋆ = φ′

and φ′⋆ = σ′. From this, it follows that π⋆
◦ ≡ σ′⋆

|I′⋆ = φ′|O′ = π• and

π⋆
• ≡ φ′

⋆
|O′⋆ = σ′

|I′ = π◦ and finally π⋆ ≡ π⋆
•π

⋆
◦
−1 = π◦π

−1
• = π−1. Lastly, the

root of B⋆ is i⋆ = o.

Ξ

Figure 16: The mapping Ξ between the mobile B = Ψ2(M,S) associated to the
covered map (M,S) of Figure 14 and the mobile B⋆ = Ψ2(M

∗, S̄) associated to
the dual covered map.

We now explicit the relation between the trees A and A⋆ in terms of their
codes.

Proposition 9.3 (Duality and the tree). If the height-code of A = Ψ1(M,S) is
c0, . . . , cn, then the degree-code of A⋆ = Ψ1(M

∗, S̄) is d0, . . . , dn, where dn−j =
cj + 1 − cj+1 for j = 1, . . . , n−1 and d0 = cn.

Recall that a tree is completely determined by its height-code or by its
degree-code. Hence, Proposition 9.3 shows that the tree A⋆ is entirely deter-
mined by the tree A. Observe that the mapping A 7→ A⋆ is an involution since
duality of covered map is an involution. A topological version of this mapping
is illustrated in Figure 17(b), where the two trees A and A⋆ are represented
simultaneously in the way they interlace around the mobile’s face. The rest of
this section is devoted to the proof of Proposition 9.3.

We denote by t the root of the tree A = (H, τ, α) and by t⋆ the root of
the tree A⋆ = (H, τ⋆, α). We also adopt the notations σ′, φ′, π◦, π•, π, τ ′

of Section 4 for the tree A and adopt the corresponding notations σ′⋆, φ′
⋆
,

π◦
⋆, π•

⋆, π⋆, τ ′⋆ for the tree A⋆. Lastly, we denote ϕ = τα, ϕ′ = (i, o)τ ′α′,
ϕ⋆ = τ⋆α and ϕ′⋆ = (i, o)τ ′⋆α′. Recall that Lemma 6.10 describes the (simple)
link existing between the permutations τ and τ ′ and between ϕ and ϕ′.

Lemma 9.4. The permutations ϕ′ and ϕ′⋆ are related by ϕ′
|O′ = (α′ϕ′⋆α′)−1

|O′ .

38



a1

ā1
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Figure 17: (a) The plane tree A = Ψ1(M,S) associated to the covered map of
Figure 14. (b) Topological construction of the tree A⋆ = Ψ1(M

∗, S̄): in the
mobile face, the trees A and A⋆ interlace in such a way that each edge of A is
crossed by exactly one edge of A⋆. (c) The plane tree A⋆.

For the example in Figure 17, one gets ϕ′
|O′ = (o, a1, b̄2, a2, b̄1, a3, a4, b̄3) and

ϕ′⋆
|I′ = (b3, ā4, ā3, b1, ā2, b2, ā1, i).

Proof. By Proposition 6.11, the face-permutation ψ = πα of the mobile B
satisfies ϕ′

|O′ = α′ψ−1
|I′ α

′. The same property applied to the mobile B⋆ gives

ϕ′⋆
|I′ = α′ψ⋆−1

|O′α′, where ψ⋆ = π⋆α′ is the face-permutation of B. This gives

(α′ϕ′⋆α′)−1
|O′ = α′(ϕ′⋆)−1

|I′ α
′ = ψ⋆

|O′ .

Moreover, by Proposition 9.2, π⋆ = π−1, so that ψ⋆ = π−1α′ = α′ψ−1α. Hence,

(α′ϕ′⋆α′)−1
|O′ = ψ⋆

|O′ = (α′ψ−1α)|O′ = α′ψ−1
|I′ α

′ = ϕ′
|O′ .

Lemma 9.5. The permutations ϕ′ and τ ′
⋆

are related by τ ′
⋆

= ϕ′ϕ′−1
|O′ .

Proof. By definition, τ ′
⋆

= σ′⋆π⋆
◦
−1 = φ′φ′−1

|O′ , where φ′ = (i, o)σ′α′. We want

to prove φ′φ′
−1
|O′ = ϕ′ϕ′−1

|O′ , or equivalently, φ′|O′φ′−1 = ϕ′
|O′ϕ′−1

(by taking the

inverse). Observe that the permutations φ′ = (i, o)σ′α′ and ϕ′ = (i, o)τ ′α′

coincide on I ′ (since σ′ and τ ′ coincide on O′). We now consider a half-edge

h in H ′. Suppose first that φ′−1(h) is in I ′. In this case, φ′
−1

(h) = ϕ′−1
(h)

(since φ′ and ϕ′ coincide on I ′), hence φ′|O′φ′−1(h) = φ′
−1

(h) = ϕ′−1
(h) =

ϕ′
|O′ϕ′−1

(h). Suppose now that φ′
−1

(h) is in O′. Observe that ϕ′−1
(h) is also

in O′ (since φ′ and ϕ′ coincide on I ′). Moreover, by definition of reductions,

φ′|O′φ′−1(h) = φ′
k
(h), where k ≥ 0 is such that φ′

k
(h) ∈ O′ and φ′

j
(h) ∈ I ′

for all 0 ≤ j < k. Since φ′ and ϕ′ coincide on I ′, we get φ′
j
(h) = ϕ′j(h)
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for 0 ≤ j ≤ k. Thus, φ′|O′φ′−1(h) = ϕ′k(h) and where k ≥ 0 is such that

ϕ′k(h) ∈ O′ and ϕ′j(h) ∈ I ′ for all 0 ≤ j < k. Hence, by definition of reductions,

φ′|O′φ′−1(h) = ϕ′
|O′ϕ′−1

(h).

Proof of Proposition 9.3.
We denote by o0 = o, o1, . . . , on the half-edges in O′ in such a way that ϕ′

|O′ =
(o, o1, . . . , on) and we denote ij = α(oj) for j = 0 . . . n. We denote by v0, v1, . . . , vn

the vertices of A in counterclockwise order around A. By definition (and be-
cause (I,O) is the root-to-leaves orientation of A), this means that vj is in-
cident to the ingoing half-edge ij for j = 1 . . . n. Therefore, the height-code
of A is c0c1 · · · cn, where c0 = 0 and for j = 0 . . . n−1, cj+1 = cj + 1 − δj
where δj is the number of half-edges in I between the half-edge oj and oj+1 in
the face-permutation ϕ (hence, also in the permutation ϕ′). Equivalently, for
j = 0 . . . n−1, δj ≡ cj + 1 − cj+1 is the number of half-edges in I ′ in the cycle

of the permutation ϕ′ϕ′−1
|O′ containing oj . We also denote δn = cn and observe

that this is the number of half-edges in I ′ in the cycle of the permutation ϕ′ϕ′−1
|O′

containing on.
We now consider degree-code d0d1 · · · dn of A⋆ and want to prove that δj =

dn−j for j = 0 . . . n. Let v⋆
0 , v

⋆
1 , . . . , v

⋆
n be the vertices of A⋆ in counterclockwise

order around A⋆. By Lemma 9.1, the root-to-leaves orientation of A⋆ is (O, I)
and by Lemma 9.4, ϕ′⋆

|I′ = (i, in, . . . , i2, i1). Therefore, for j = 1 . . . n−1 the
vertex v⋆

n−j of A⋆ is incident to the half-edge oj . Thus, for j = 0 . . . n−1, the
number of children dn−j of v⋆

n−j is the number of half-edges in I ′ in the cycle of
the vertex-permutation τ⋆ containing oj (hence, also in the permutation τ ′⋆).
For j = n also, we observe that dn−j is the number of half-edges in I ′ in the

cycle of the permutation τ ′⋆ containing oj . By Lemma 9.5, τ ′⋆ = ϕ′ϕ′−1
|O′ , hence

δj = dn−j for j = 0 . . . n. This concludes the proof of Proposition 9.3.
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