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The enumeration of maps and the study of uniform random maps have been classical topics of
combinatorics and statistical physics ever since the seminal work of Tutte in the sixties. Following
the bijective approach initiated by Cori and Vauquelin in the eighties, we describe a bijection
between rooted maps, or rooted bipartite quadrangulations, on a surface of genus g and some
simpler objects that generalize plane trees. Thanks to a rerooting argument, our bijection allows
to compute the generating series of rooted maps on a surface of genus g with respect to the number
of edges, and to recover the asymptotic numbers of such maps.

Our construction allows to keep track in a bipartite quadrangulation of the distances of all
vertices to a random basepoint. This is an analog for higher genus surfaces of the basic result
on which were built the recent advances in the comprehension of the intrinsec geometry of large
random planar maps, hopefully opening the way to the study of a model of continuum random
surfaces of genus g.

Categories and Subject Descriptors: Combinatorics [G.2.1]: Enumeration; Graph theory

Additional Key Words and Phrases: Graphs on surfaces, trees, random discrete surfaces

1. INTRODUCTION

This article is concerned with the enumerative and probabilistic study of maps on
orientable surfaces: rougly speaking a map of genus g is a proper embedding of
a graph in Sg, the compact oriented surface of genus g without boundary. Maps
on the sphere S0, also known as planar maps, have been studied in enumerative
combinatorics ever since the seminal papers of William T. Tutte in the sixties
[Tut63], and our primary motivation is still to explore the unexpected enumerative
properties of these objects: For instance, the number of rooted planar maps having
n edges is given by the simple formula

~q0,n =
2 · 3n(2n)!

(n+ 2)!n!
, (1)

and the number of rooted maps of genus g having n edges satisfies

~qg,n ∼ cg · n 5
2
(g−1) · 12n, (2)

when n goes to infinity with g fixed. The remarkable linear dependency in g of
the polynomial growth exponent of this asymptotic formula has been observed
as a common pattern of many classes of maps in combinatorics [BC91; Gao93].
Formula (1) for the planar case was recovered also in the physics literature by
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Fig. 1. A rooted planar map, a graph drawing on S1 and a map of genus 1.

mean of the so-called genus expansions of matrix integrals [BIPZ78], which also led
in the 90’s to independant derivations of the asymptotic formula (2) [DGZJ95, and
reference therein]. Until now however it has remained an open problem to give a
combinatorial explanation of the linear dependency in the genus [Ben91].

The aim of this paper is to describe a bijection (Theorem 1) which reformulates
and extends to higher genus surfaces an earlier bijection of Cori and Vauquelin
[CV81] between planar maps and well labelled trees. In the planar case, a reroot-
ing argument then immediately leads to Formula 1 (Corollary 4). In higher genus,
the combination of our bijection with a decomposition inspired from Wright’s works
on labeled graphs with fixed excess [Wri77; Wri78] leads to a simple combinatorial
derivation of Formula (2) (Corollary 9), and to a new expression of the generat-
ing series for maps of genus g with respect to the number of edges (Theorem 2).
Classical results of singularity analysis allow then to recover easily the asymptotic
formula (2), and provides a new expression to the constant cg in front of the formula
(Corollary 9).

One motivation for the study of maps in statistical physics is the interpretation
of random maps as discrete models of surfaces in the context of two-dimensional
euclidean quantum gravity [ArDJ97]. From a probabilistic point of view, it is
natural to wonder about the geometry of these random discrete surfaces. In the
planar case our bijection was already used in [CS04] to show that the distance
between two random vertices in a uniform random planar quadrangulation with
n faces is of order n1/4, and more generally to study the process describing the
number of vertices at distance k of a vertex. This line of research has lead to
remarkable progress in our understanding of the geometry of large random planar
maps [BDFG04] and of their continuum limit [MM06; LG07; LGP07]. From this
perspective we provide here the basic building block for the study of higher genus
random discrete surfaces.

2. MAPS, QUADRANGULATIONS AND G-TREES

In this section we make precise our use of the graph terminology.

2.1 Graph drawings and maps

Let Sg denote the compact oriented surface of genus g without boundary. A graph
drawing on Sg is a proper embedding (without edge crossings) of a graph into Sg.
Multiple edges and loops are allowed. A graph drawing on Sg is a map of genus g if
moreover each face is homeomorphic to a disc, or equivalently, if the complement of
the graph in Sg is a union of disjoint simply connected components. In particular
the graph underlying a map is necessarily connected. Maps of genus 0 are called
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Fig. 2. The quadrangulation of a map: local construction and an exemple in the plane

planar maps. For enumerative purpose it is convenient to consider rooted maps, that
is, pairs ~m = (m, e) where ~e is an arc of m (an arc is an edge with an orientation).
The arc ~e is called the root of ~m, its origin is the root vertex of m and the face on
its right is the root face.

In the rest of this text, two maps are considered the same if there exists an
orientation preserving homeomorphism of the embedding surface that sends one
map onto the other (carrying roots if there are some). These (equivalence classes
of) maps can also be defined in a purely combinatorial way: for instance a rooted
map can be described by listing the local arrangement of arcs around each vertex
using any numbering of these arcs. A modern account of the equivalence between
topological and combinatorial descriptions of maps can be found in [MT01, Ch. 3].

To any rooted map ~m we associate an arbitrary fixed numbering of its edges
(respectively arcs, vertices, corners, or faces) that starts with the root edge, which
we call the canonical order of the edges (respectively arcs, vertices, corners, or
faces) of ~m. This numbering can for instance be given by the first visit in a depth
first search turning counterclockwise around each vertex, or by any other fixed
procedure: in what follows we will only need to invoke this canonical order to fix
notations.

A fundamental result of the theory of surfaces is the Euler characteristic formula:

Lemma 1. If a map of genus g has v vertices, f faces and n edges then

v − n+ f = 2 − 2g.

The quantity χ = 2 − 2g is called the Euler characteristic of the map.

2.2 Maps and bipartite quadrangulations

The degree of a vertex is the number of edges incident to it, with the convention
that a loop counts for two. The degree of a face is the number of edges incident
to it, with the convention that an edge incident to the same face on both sides
counts for two. A quadrangulation is a planar map having all faces of degree 4. A
map is bipartite if its vertices are colored in two colors in such a way that adjacent
vertices have different colors (say black and white). By convention the color of the
root vertex of a rooted bipartite map is always taken to be black. We recall two
standard results of graph and map theory:

(1) All planar quadrangulations admit a bipartition.

(2) For all n, v, f ≥ 1 and g ≥ 0 with v − n + f = 2 − 2g, there is a bijection
between maps of genus g with n edges, v vertices and f faces, and bipartite
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Fig. 3. A quadrangulation and its distance labeling

quadrangulations of genus g with n faces, v black and f white vertices, and 2n
edges. Idem between rooted maps and rooted bipartite quadrangulations.

The first result will not be used but is recalled to stress the fact that, a contrario,
a similar statement does not hold for quadrangulations of genus g: there exist non
bipartite quadrangulations of genus g for all g ≥ 1.

The second result is based on a classical construction which we now briefly recall:
Given a map m with black vertices, triangulate each face from a new white vertex;
the new bipartite edges form with black and white vertices a quadrangulation q,
which is the bipartite quadrangulation associated to m. Conversely given a bipartite
quadrangulation q create inside each face f a new edge connecting the two black
vertices incident to f ; these new edges form with the black vertices a map m whose
bipartite quadrangulation is q. To get a correspondence in the rooted case, a
rerooting convention must be chosen: if m has a root edge e, then let the root of
q be the arc of q with origin the origin of e and with the face containing e on its
right hand side. This correspondence is the reason why, although we concentrate
in the rest of this text on bipartite quadrangulations, our results have implications
for all maps.

2.3 Quadrangulations, distance labelling and g-trees

A pointed quadrangulation is a pair q• = (q, v0), where v0 is a vertex of q, called
the basepoint. The distance labelling of (q, v0) is a labelling of the vertices of q by
their distance to v0 in the underlying graph: the label of a vertex v is the minimum
number of edges of a path returning from v to v0. Observe that in a pointed
bipartite quadrangulation the vertices with the same color as the basepoint are
exactly the vertices at even distance of it. In particular two adjacent vertices have
labels that differ by one in the distance labelling, and the faces are of two types
depending whether the cycle of incident labels is of the form (i − 1, i, i − 1, i) or
(i− 1, i, i+ 1) for some i ≥ 1.

A plane tree is a planar map with only one face. In particular a planar tree
contains no simple cycle of edges, and the definition of rooted planar trees agrees
with the usual recursive combinatorial definition of ordered trees: a rooted plane
tree can be uniquely decomposed into a root vertex and a (possibly empty) ordered
sequence of rooted planar trees. By extension, we call g-tree a map of genus g
with one face. Observe however that for g ≥ 1, any g-tree contains simple cycles of
edges.
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Fig. 4. The mapping φ: local rules and an example

3. EMBEDDED G-TREES AND THE OPENING BIJECTION

A map is called embedded if its vertices are given integer labels that differ at most
by one along every edge, the root vertex (if the map is rooted) having label 1. A
map is well labeled if moreover the support of labels is an interval of the form (1,m).
In other terms a well labeled map is an embedded map with minimum label 1.

3.1 The opening of a pointed bipartite quadrangulation

Given a pointed bipartite quadrangulation (q, v0) of genus g having n faces, we
define a mapping φ, the opening, which we will later claim produces a well labeled
g-tree with n edges (see Figure 4):

—Label vertices of q according to their distance to v0. Recall that the extremities
of each edge have labels that differ by one, so that the labels of vertices on the
border of a face form either a cycle (i− 1, i, i− 1, i) or a cycle (i− 1, i, i+ 1, i).

—Create a graph drawing φ(q, v0) on Sg with vertex set the vertices of q except
v0 and with one edge ef for each face f of q, which connects the two corners
of f that have a vertex label larger than their predecessor in clockwise direction
around f : in a face with border (i−1, i, i−1, i) the resulting edge has label (i, i),
while in a face with border (i− 1, i, i+ 1, i) it has label (i, i+ 1).

Obviously the labels of the vertices of φ(q, v0) are positive and the variations along
its edges belong to {+1, 0,−1}, so that φ(q, v0) is well labelled. More interesting is
the following lemma, which proves that φ(q, v0) is a well labelled g-tree.

Lemma 2. The graph drawing φ(q, v0) on Sg has a unique and simply connected
face.

Proof. We give here a quick proof which requires some familiarity with graph on
surfaces, and postpone a more explicit proof to the appendix. The graph drawing
q′ = q ∪ φ(q, v0) is obviously a map: each face of q is divided in q′ into 2 smaller
simply connected faces by an edge of φ(q, v0) (see Figure 4). Draw a fake vertex vf

in each face f of q′, label it by the smallest label on the border of f , and connect
these fake vertices by one fake edge for each edge of q: an edge e of q with label
(i, i+ 1) that separates faces f (on its right hand side)
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Fig. 5. The orientation of dual old edges in q′: local configurations and an example.

Let us prove that the fake edges form a forest of oriented trees attached to a
unique oriented cycle around v0. Consider the 3 types of faces of q′ as represented
on Figure 5: There is exactly one outgoing fake edge in each face, that is, from each
fake vertex, and all oriented fake edges are weakly decreasing. Hence an oriented
cycle of fake edges connects fake vertices with equal labels. But such a cycle turns
counterclockwise around a unique vertex v of q, which must be v0 since all its
neighbors have larger labels.

To conclude the proof of the lemma, observe that there can be only one face in
φ(q, v0) since the fake edges connect all faces of q′, and that any loop in this face
can be retracted along the tree like structure of fake edges.

3.2 Well labelled polygons, chords diagrams, and the closure of a well labelled g-tree

We now describe a mapping ψ which we later claim to be the inverse of φ. The
construction of ψ(t) will take place in the unique face of t, which is homeomorphic to
a disk by definition of maps: in particular the actual genus of Sg will be somewhat
irrelevant for this reverse construction, which will reveal to be a simple adaptation
of the construction used in [Sch98; CS04; MM06] for the planar (g = 0) case. More
precisely, given a labelled g-tree t with n edges, we decompose it into a rooted
g-tree ~t0 (forgetting the labels) and a well labelled rooted 2n-gon ~p (describing the
sequence of labels along the border of the unique face of t).

We will use the following folklore combinatorial result:

Lemma 3. Let ~p be a rooted labelled m-gon with labels a1, . . . , am in clockwise
order starting after the root edge, and assume that the labels satisfy the Lukasiewicz
condition ai+1 − ai ≥ −1, and ai > am for all i.
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Fig. 6. The dissection of a polygon and the two types of faces of ψ(t)

Let π : {1, . . . ,m− 1} → {2, . . . ,m} be the application that maps i to its prede-
cessor, that is the smallest j > i such that aj = ai − 1.

Then there exists a unique way to draw all the edges (i, π(i)) inside ~p so that the
resulting graph drawing is a planar map. In this map, each inner face is incident
exactly once to the polygon, along an edge (ai, ai+1), and the labels on the border of
this face are then, in clockwise direction, (ai, ai+1, ai+1 − 1, ai+1 − 2, . . . , ai+1 − δ)
where δ = ai+1 − ai + 1 (in particular δ ≥ 0 and the face incident to (ai, ai+1) has
degree δ + 2).

Proof. See [Sta99], or the detailed discussion of the appendix.

The closure of a well labeled g-tree t with n edges is the graph drawing ψ(t)
constructed as follows: Let p be the labelled 2n-gon describing the face f of t, and
let k be the number of vertices with label 1 in p: these vertices corresponds to
corners with label 1 of f . Let t′ be the map obtained by adding a vertex v0 with
label 0 in f and k edges that join this vertex to each of the corners with label
1 of f : the map t′ has k faces and the border of each face is a polygon ~pi with
minimal label 0 (taken as root) and labels that satisfies the Lukasiewicz condition
(the variations are even in {+1, 0,−1}). In each face of the map t′ (on Sg), that is
in each polygon ~pi, the above lemma can thus be used to add all the edges between
corners with positive labels and their predecessor, in the unique way that provides
a map t′′ on Sg. The closure ψ(t) of t is the graph drawing t′′ − t on Sg obtained
by removing the edges of t from t′′.

Lemma 4. The graph drawing ψ(t) is a quadrangulation of genus g with n edges.

Proof. According to Lemma 3 each face of t′ is incident exactly once to an
edge of t. Each edge e of t thus separates two different faces, which are otherwise
incident only to edges of t′ − t. Moreover since the variation of labels are opposite
±δ on the two sides of e, the removal of e creates a simply connected face of degree
δ + 2 + (−δ + 2) − 2 = 4, as illustrated by Figure 6. The removal of the n edges of
t thus creates n quadrangular faces.
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3.3 The main theorem

The main combinatorial result of this paper is the following theorem, that states
that not only φ(q, v0) is a well labelled map on Sg but the mapping φ is more
precisely a bijection.

Theorem 1. The opening φ is a bijection between

—pointed bipartite quadrangulations of genus g that have n faces, 2n edges, and
n+ 2 − 2g vertices (i of which are at odd distance of the basepoint), and

—well labeled g-trees that have n edges, and n+ 1 − 2g vertices (i of them having
odd labels),

such that the labels of the g-tree associated to a bipartite quadrangulation q with
basepoint v0 give the distances of vertices of q to v0.

Proof. The fact that φ(ψ(t)) = t follows from the comparison of Figure 6 and
Figure 4: for the two types of faces created in ψ(t), the edge e is indeed recovered
correctly by the opening rules. The fact that ψ(φ(q, v0)) = (q, v0) follows from
the fact that in q′ = q ∪ φ(q, v0), each edge of q joins a corner of φ(q, v0) to
its predecessor, and from the unicity in Lemma 3. An alternative direct proof is
proposed in the appendix.

In the enumerative context one usually prefers to deal with rooted maps to avoid
the discussion of symmetries. The opening is readily extended to rooted bipartite
quadrangulations: define the image of a rooted quadrangulation (q, ~e) with root

vertex v0, to be (φ(q, v0), ~e′) where e′ is the edge created in the root face of (q, ~e),
oriented so that its origin is the endpoint of ~e (observe that, according to the rules
and the definition of the root face, the endpoint of ~e is indeed incident to e′).

Corollary 1. The opening φ extends to a bijection between

—rooted bipartite quadrangulations with genus g that have n faces, and

—rooted well labeled g-trees that have n edges.

Proof. By construction the origin of ~e′ has label 1 so that (φ(q, v0), ~e′) is indeed

a rooted well labeled tree. Conversely given a rooted well labeled tree ~t = (t, ~e′)
with root vertex v, taking as root edge of ψ(~t) the edge ~e of t′ with origin v0 which

follows ~e′ in counterclockwise direction around v immediately yields the unique
possible preimage of ~t.

It turns out that for our purpose an even better variant consists in taking a
basepoint and a root independently. Define the image of a rooted pointed bipartite
quadrangulation (q, ~e, v0) to be (φ(q, v0), ~e′, s) where ~e′ is the new edge created in
the root face of q, oriented so that its origin is the extremity of ~e with largest
label, and where s ∈ {+1,−1} is a sign recording the orientation of ~e (say + if ~e is
increasing with respect to the labeling). Let moreover ν be the relabeling mapping
that simultaneously translates all labels of an embedded map so that the root vertex
label is 1. Then

Corollary 2. Opening followed by relabelling is a bijection ν ◦ φ between

—rooted pointed bipartite quadrangulations with genus g that have n faces, and
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—pairs consisting of a rooted embedded g-tree that has n edges and a sign ±1.

Proof. In view of Theorem 1, φ can be used to map bijectively rooted pointed
bipartite quadrangulations (q, v0, ~e) of genus g with n faces onto almost well labelled
rooted g-trees (φ(q, v0), ~e) with n edges (almost well labeled means the minimum
label is 1 but the root vertex has not necessarily label 1). Now ν is bijective between
almost well labelled g-trees with n edges and embedded rooted g-trees with n edges:
indeed given a rooted embedded map (with root vertex label 1 by definition), there
is a unique way to translate its labels so that the minimum becomes 1.

The point of this last corollary is that, as we shall see in Section 4, embedded
g-trees are much easier to count than well labeled g-trees.

4. THE ENUMERATION OF QUADRANGULATIONS VIA SCHEMES

In view of Theorem 1 and Corollary 2, the enumeration of maps of genus g according
to the number of vertices, faces and edges can be reduced to the enumeration of
rooted well labeled or embedded g-trees. It turns out that rooted embedded g-
trees are easier to deal with, so that we shall rely on the following transposition of
Corollary 2 in terms of generating series:

Corollary 3. The generating series

−→
Qg

•
(z) =

∑

n≥2g

~q •
g,nz

n, and Tg(z) =
∑

n≥2g

ag,nz
n

of rooted pointed bipartite quadrangulations of genus g (with respect to the number
of faces) and of rooted embedded g-trees (with respect to the number of edges) are
related by the following equation:

−→
Qg

•
(z) = 2Tg(z).

Since a quadrangulation with genus g and n faces has n + 2 − 2g vertices, ~q •
g,n =

(n + 2 − 2g) ~qg,n, and the previous equation can also be rewriten in terms of the
generating series of rooted bipartite quadrangulations of genus g as

Qg(z) =
∑

n≥2g

~qg,nz
n = z2g−2

∫
−→
Qg

•
(y) y1−2g dy (3)

with the initial condition Qg(z) = O(z2g).

4.1 Planar maps and embedded trees

Let T ≡ T (z) = T0(z) be the generating series of rooted embedded trees with
respect to the number of edges. A rooted embedded tree ~t which has at least 1
edge can be decomposed into two rooted trees ~t1 and ~t2 by deleting its root edge
e. The subtree ~t1 rooted at the origin of e has root label 1, so that it is again a
rooted embedded tree. The subtree ~t2 rooted at the endpoint of e has root label
δ ∈ {+1, 0,−1} but, up to a translation of labels by 1 − δ, it is also a rooted
embedded tree. This decomposition is a bijection~t 7→ (δ,~t1,~t2) between non empty
rooted embedded trees with n edges and triples consisting of an edge variation and
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two rooted embedded trees with a total of n− 1 edges. Hence the equation

T (z) =
∑

~t

z|
~t| = 1 + 3

∑

(~t1,~t2)

z1+|~t1|+|~t2| = 1 + 3zT (z)2.

The unique formal power series root of this quadratic equation T = 1 + 3zT 2 is

T (z) =
1 −

√
1 − 12z

6z
.

In particular an = [zn]T (z) = 3n

n+1

(
2n
n

)
is the number of embedded trees with n

edges. For future reference, let us also observe the relations

z =
T − 1

3T 2
, zT ′ =

T 2 − T

2 − T
, and 1 +

2zT ′

T
=

T

2 − T
. (4)

The enumeration of planar quadrangulations then directly follows from Corollary 3.

Corollary 4. The generating series of planar rooted pointed quadrangulations
satisfies

−→
Q0

•
(z) = 2T (z),

and the number of planar rooted quadrangulations with n faces is

~q0,n =
~q •
0,n

n+ 2
=

2

n+ 2
· 3n

n+ 1

(
2n

n

)
.

4.2 Reduced g-trees and tree grafting

We say that a g-tree is reduced if it has no vertices of degree one. Upon deleting
vertices of degree 1 iteratively, a reduced g-tree can be extracted from any g-tree.

Lemma 5. There is a bijection between rooted embedded g-trees with n edges
and pairs consisting of a rooted embedded reduced g-tree ~r with k edges and a forest
(~t1, . . . ,~t2k), where,

—~t2, . . . ,~t2k are rooted embedded planar trees.

—~t1 is either a rooted or a doubly rooted embedded planar tree,

and the total number of edges in (~r;~t1, . . . ,~t2k) is n.

Proof. Given a g-tree t, a unique reduced g-tree r is obtained by iteratively
deleting in t the vertices of degree 1 until none is left. At the end of this process,
the deleted edges form a forest of rooted embedded planar trees: one (possibly
trivial) rooted tree is attached to each corner of r (see Figure 7). The root ~e of ~t,
then provides a root for ~r: if ~e was not deleted it becomes the root of ~r, otherwise
~e belongs to one of the deleted trees ~t1 and the root of ~r is taken to be the arc of r

on the right hand side of which ~t1 is attached.
Once ~r is rooted, its corners are canonically ordered starting with the corner on

the right hand side of the root, and the deleted trees can be arranged into an ordered
list: the g-tree t can then be recovered from ~r and the ordered list (~t1, . . . ,~t2k) of
trees. Finally, when the root of ~t is not an edge of ~r it must be recorded as a
secondary root of ~t1.
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Fig. 7. A 1-tree and its decomposition into a reduced 1-tree and a collection of rooted planar trees
attached on its corners (only planar trees which are not reduced to a single vertex are represented).

Lemma 5 immediately yields the following corollary.

Corollary 5. The generating series of rooted embedded g-trees Tg and of rooted
embedded reduced g-trees Rg are related by:

Tg(z) = Rg(zT (z)2) ·
(
1 +

2zT ′(z)

T (z)

)
= Rg(zT 2) · T

2 − T
.

In terms of the primitive R̂g(t), satisfying t∂
∂t R̂g(t) = Rg(t), the previous formula

reads:

Tg(z) =
z∂

∂z

(
R̂g(zT 2)

)
.

Proof. The decomposition of a rooted g-tree t in a pair (~r;~t1, . . . ,~t2k) where k
is the number of edges of k is a combinatorial composition operation that results
in the composition of generating series:

Tg(z) =
∑

~t

z|
~t| =

∑

~r;~~t1,~t2...,~t2k | k=|~r|

z|~r|+|~~t1|+|~t2|+...+|~t2k|

=
∑

~r

z|~r|




∑

~t

(1 + 2|~t|)z|~t|






∑

~t

z|
~t|




2|~r|−1

= Rg(zT (z)2) · (1 +
2zT ′

T
),

where the notation ~~t1 stresses the fact that the first tree can be doubly rooted:
given a tree t there are 2|t| ways to introduce a double root and one way not to.
The multiplicative factor 1 + 2zT ′(z)/T (z) can also be understood directly, saying
that the first rooted tree (with generating series T (z)) can be replaced by a doubly
rooted tree (with generating series 2zT ′(z)).

The second expression can be checked by a direct comparison with the first
formula:

z∂

∂z

(
R̂g(zT 2)

)
= z(T 2 + 2zTT ′)R̂′

g(zT 2)
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= (zT 2)R̂′
g(zT 2)(1 + 2zT ′/T ) = Rg(zT 2) ·

(
1 +

2zT ′

T

)
.

By definition the series R̂g is a generating series of rooted maps in which rooted
maps with e edges are counted with a weight 1/e: it is tempting to think about it
as a generating series of unrooted maps, but then each unrooted map is counted
with a weight proportional to the inverse of the size of its automorphism group
(because maps with non trivial automorphisms have less than 2e distinct rootings).
In these terms the second expression of Corollary 5 could be understood directly
as follows: rooted g-trees are first constructed as unrooted by grafting trees in an
unrooted reduced g-tree, and then rooted. However a rigourous proof along these
lines requires a careful discussion of symmetries, which is circumvented by working
directly with rooted objects.

4.3 The standard scheme of a reduced g-tree

A labeled scheme is a rooted g-tree without vertices of degree 1 and 2 that has
integer labels on vertices. A scheme is standard if its labels form an integer interval
with minimum 0. Observe that the labels of a scheme are not required to vary
at most by one along edges, and that in a standard scheme all the integers of the
interval must appear as labels.

Let~r be a rooted reduced g-tree. By definition the map~r has no vertices of degree
1. Its vertices of degree 2 are organized into maximal paths, connected together at
vertices of degree at least 3. Let ~s0 and ~s be the maps obtained from ~r as follows:

—To get ~s0 from ~r, replace each maximal path made of vertices of degree 2 by an
edge, the path containing the root of ~r providing a rooted edge for ~s0.

—To get ~s from ~s0, standardize the labels of the vertices, so that they form an
integer interval with minimum label 0: if the labels appearing on vertices of
degree at least 3 in ~r are ℓ0 < ℓ1 < . . . < ℓp then the corresponding labels in ~s
are 0, 1, . . . , p (a given label can appear on several vertices of ~s0, so that p may
be smaller than the number of vertices of ~s.).

The maps ~s0 and ~s are labeled schemes, and ~s is standard: it is called the standard
scheme of ~r. By extension, ~s is called the standard scheme of ~q if ~r was itself
extracted from the g-tree ~t associated to a quadrangulation ~q. Finally, given a
rooted standard scheme~s with labels {0, . . . , p} and p positive integers ℓ1 < . . . < ℓp
let ~s(ℓ1, . . . , ℓp) be the rooted labeled scheme obtained by replacing labels i by ℓi
in ~s.

Observe that on every maximal degree 2 path of ~r, the labels perform a sequence
of small variations taken from {+1, 0,−1}. A Motzkin walk w of length ℓ is defined

as a finite sequence w1 . . . wℓ with wi ∈ {+1, 0,−1}. The quantity
∑ℓ

i=0 wi is called
the increment of w. A Motzkin walk of increment 0 is called a Motzkin bridge. In
these terms, on every maximal path of r, the sequence of variations of labels forms a
Motzkin walk: hence, if the standard scheme ~s of~r has k edges, a k-uple of Motzkin
walks (m1, . . . ,mk) can be extracted from ~r, with mi the Motzkin walk read along
the path of ~r corresponding to ith edge of ~s in the canonical order.

A k-uple of Motzkin walks is said to be compatible with a rooted standard scheme
with k edges if there exists an embedded rooted reduced g-tree from which they
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Fig. 8. A reduced 1-tree and its rooted scheme.

can be both extracted. Observe that the g-tree is unique up to translation of all
labels, since it is recovered by replacing the ith edge of the scheme by a chain of
vertices with variations given by the ith Motzkin walk.

Lemma 6. There is a bijection between embedded rooted reduced g-trees with n
edges such that the root vertex has degree at least 3, and pairs formed of a rooted
standard scheme of genus g with k edges, and a compatible k-uple of non empty
walks with a total of n steps.

Proof. In view of the definition of compatible k-uples of walks, it suffices to
show that if the pair (~s; (m1, . . . ,mk)) is extracted from embedded rooted reduced
g-tree t then t can be recovered from the pair: this is immediate upon replacing the
ith edge of ~s by a path with labels given by mi, and choosing the root to be the
first edge of the first path.

In particular, given a rooted standard scheme ~s and a compatible k-uple of
Motzkin walks (m1, . . . ,mk) let ~r(~s; m1, . . . ,mk) be the unique corresponding rooted
reduced g-tree, and ~s0(~s; m1, . . . ,mk) be the rooted labeled scheme extracted from
~r(~s; m1, . . . ,mk) before standardization.

Lemma 7. Let ~s be a rooted standard scheme with k edges and labels {0, 1, . . . , p},
and let ℓ1 < . . . < ℓp be positive integers.

Then the set of compatible k-uples such that ~s0(~s; m1, . . . ,mk) = ~s(ℓ1, . . . , ℓk)
is exactly the set of k-uples (m1, . . . ,mk) such that, for all i, mi has increment
ℓe+

i
− ℓe−

i
, where e−i and e+i are the labels of the origin and endpoint of the ith edge

~ei of ~s.

Proof. If a k-uple is compatible with ~s and induces ℓ0 . . . ℓp then the labels of
the corresponding reduced g-tree satisfy the conditions of the lemma. Conversely,
given ℓ0, . . . , ℓp, a corresponding embedded reduced g-tree is obtained by replacing,
for i = 1, . . . , k, the ith edge ~ei of ~s by a labelled path constructed as follows: if
mi = w1 . . . wℓ and e−i is the label of the origin of ~ei then the inserted path has

length ℓ and its jth vertex has label ℓe +
∑j

m=1 wm, for j = 0, . . . , ℓ. The condition
on increments ensures that each vertices of ~s get the same label from all its incident
edges. A root can be chosen arbitrarily on the first path and labels simultaneously
translated to obtain an embedded rooted reduced g-tree.

Let ~s be a rooted standard scheme with v vertices, k edges and labels {0, . . . , p}.
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We define the weight of ~s as the following power series:

W~s(t) =
1

k

∑

0<ℓ1<...<ℓp

k∏

i=1

M|ℓ
e
+
i

−ℓ
e
−
i

|(t),

where e−i and e+i denote the label of the extremities of the ith edge ~ei of ~s, and, for
all j ≥ 0, Mj(t) is the generating series of non-empty Motzkin walks of increment
j with respect to the length: Mj(t) =

∑
m
t|m|, where the sum is over all Motzkin

walks with increment j and length at least 1.

Lemma 8. The primitive R̂g(t) of the generating series of embedded rooted re-
duced g-trees satisfies

R̂g(t) =
∑

~s

W~s(t)

where the sum is taken over all rooted standard schemes of genus g.

Proof. Let us group together in a series Rg,k(t) the contributions to the gen-
erating series Rg(t) of the embedded reduced g-trees whose standard scheme has
k edges, so that Rg(t) =

∑
k Rg,k(t). Then 2kRg,k(t) is the generating series of

rooted embedded reduced g-trees whose standard scheme has k edges and carries
a secondary root-edge leaving a vertex of degree at least 3: indeed, each maximal
path of a given reduced g-tree provides 2 choices of such a secondary root.

Now, these rooted embedded reduced g-trees having a secondary root can also be
obtained by considering first a rooted reduced g-tree with a root vertex of degree
at least 3 (and whose standard scheme has k edges), and then choosing a root edge.
Hence we have:

2kRg,k(t) = 2
td

dt

∑

|~s|=k

R̃~s(t) (5)

where the sum is taken over rooted standard schemes of genus g with k edges, and
where R̃~s(t) is the generating series of embedded reduced g-trees of scheme ~s with
a root vertex of degree at least 3 (the derivative accounts for the choice of the root
edge, and the factor 2 for the choice of its orientation).

Now, in view of Lemmas 6–7, for each scheme ~s with k edges, the generating
series R̃~s(t) is obtained by summing over all relabellings and compatible k-uples of
Motzkin paths. Therefore:

R̃~s(t) =
∑

0<ℓ1<...<ℓp

k∏

i=1

M|ℓ
e
+
i

−ℓ
e
−
i

|(t). (6)

Putting Equations 5 and 6 together and using the definition of W~s gives:

Rg,k(t) =
td

dt

∑

|~s|=k

W~s(t).

Summing on k and comparing with the definition of R̂g(t) yields the result.
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4.4 The algebra of Motzkin walks

A Motzkin walk is primitive if it has increment −1 but none of its prefix has
increment −1. In other terms a Motzkin walk w = w1 . . . wℓ is primitive if it
satisfies the  Lukasiewicz property:

∑ℓ
i=1 wi = −1 but for all j < ℓ,

∑ℓ
i=1 wi ≥ 0.

Let U ≡ U(t) =
∑

w t
|w| be the generating series of primitive Moztkin walks

according to the length, and B ≡ B(t) = M0(t) be the generating series of non-
empty bridges. Using a decomposition at the first step for U , and at the first return
to the x-axis for B, one gets:

U = t(1 + U + U2)

B = t(1 + 2U)(1 +B) =
t(1 + 2U)

1 − t(1 + 2U)
.

Then the explicit value of U and B are

U =
1

2t
(1 − t− ((1 − 2t− 3t2)1/2), and 1 +B =

1

(1 − 2t− 3t2)1/2
.

In terms of U , the series B satisfies

B =
U(1 + 2U)

1 − U2
, and 1 +B =

1 + U + U2

1 − U2
.

Decomposing walks at their last passage time at each positive integer, one obtains
the generating function of Motzkin walks of increment i > 0:

Mi(t) = (1 +B)U i

The algebra of Laurent power series generated by the series U contains t since

t =
U

1 + U + U2
=

1

U−1 + 1 + U
.

More generally we would like to characterize rational expressions in U that are
in fact rational expressions in t. Obviously these expressions are symmetric in
the exchange U ↔ U−1. This is also a sufficient condition since the polynomials
(U+1+U−1)k form a base of the set of polynomials in {U,U−1} that are symmetric
in these two indeterminates.

Lemma 9. A rational series in U is a rational series in t if and only if it is
symmetric in the exchange U ↔ U−1.

4.5 The torus

Let r be a reduced 1-tree with k edges, and let di be the number of vertices of
degree i in r. Then the vertex-edge incidence relation and Euler’s formula give the
following 2 relations:

{
2k =

∑
i≥1 idi,

k = 1 +
∑

i≥1 di.

Eliminating k and recording that d1 = 0 since r is reduced, this yields
∑

i≥2

(i− 2)di = 2.
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Hence, apart from vertices of degree 2, there can be only one vertex of degree 4
(d3 = 0, d4 = 1) or two vertices of degree 3 (d3 = 2, d4 = 0). Let us compute the
standard schemes and weights associated to these two types of reduced 1-trees:

1 vertex of degree 4. If the 1-tree consists of 1 vertex of degree 4 and vertices of
degree 2, its standard scheme has just 1 vertex of degree 4 and 2 edges that are
loops. There is a unique rooted 1-tree~t1 with one vertex of degree four, and giving
label 0 to its unique vertex we obtain the unique rooted standard scheme ~s1 with
1 vertex. The associated weight is therefore

W~s1
=

1

2
M2

0 =
1

2
B2 =

1

2

(1 + 2U)2U2

(1 − U)2(1 + U)2
.

2 vertices of degree 3. If instead the 1-tree consists of two vertices of degree 3
and vertices of degree 2, its standard scheme has two vertices of degree 3 and 3
edges connecting them. There is again a unique rooted 1-tree with 2 vertices of
degree 3 but the choice of a label a for the root vertex and b for the second vertex
yields three different rooted standard schemes ~s2,~s3,~s4:

—a = b = 0: in this case the endpoints of all three edges have label 0, so that the
associated weight is

W~s2
=

1

3
B3 =

1

3

(1 + 2U)3U3

(1 − U)3(1 + U)3
.

—a = 0, b = 1: in this case the associated weight is

W~s3
=

1

3

∑

ℓ1>0

(
(1 +B)U ℓ1

)3
=

1

3
(1 +B)3

U3

1 − U3
=

2

3

(1 + U + U2)2U3

(1 − U)4(1 + U)3

—a = 1, b = 0: this case yields the same weight as the previous one, W~s4
= W~s3

.

Summing over the different cases, we get

R̂1 = W~s1
+W~s2

+W~s3
+W~s4

=
U−1 + 4 + U

2((1 − U)(1 − U−1))2(1 + U)(1 + U−1)
.

We thus obtained R̂1 as a rational function of U . Its symmetry w.r.t. the exchange
U ↔ U−1 shows that it is in fact a rational function of t: indeed one easily checks
that

R̂1 =
t2(1 + 3t)

2(1 − 3t)2(1 + t)
.

In view of Corollary 5 we obtain the generating function of rooted 1-trees as

T1(z) =
z∂

∂z
R̂1(zT (z)2)

and deduce from Corollary 3 an expression for the generating series of pointed

rooted bipartite quadrangulation on the torus as
−→
Qg

•
(z) = 2T1(z). However, in

view of Formula 3, one can derive directly the generating series of rooted bipartite
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quadrangulations on the torus from R̂1:

Q1(z) =

∫
dy

y

−→
Q1

•
(y) = 2

∫
dy

y

yd

dy
R̂1(yT (y)2)

= 2R̂1(zT (z)2) = 2R̂1(T (z)−1
3 ) =

(T − 1)2T

3(2 − T )2(2 + T )
,

in agreement with the result of [BC91].

4.6 General surfaces

In general the incidence and Euler relations for reduced g-trees with k edges and
di vertices of degree i are

{
2k =

∑
i≥1 idi,

k = 2g − 1 +
∑

i≥1 di.

Eliminating k and using d1 = 0, this yields
∑

i≥2

(i− 2)di = 4g − 2.

There is thus again a finite number of possible combinations for the di with i ≥ 3:
in particular the two extremal possibilities in terms of number of edges are:

—d4g = 1, and di = 0 otherwise, which leads to schemes with 1 vertex of degree 4g
and 2g edges, the minimal number of edges for a scheme of genus g.

—d3 = 4g− 2, and di = 0 otherwise, which leads to schemes with 4g− 2 vertices of
degree 3 and 6g− 3 edges, the maximal number of edges for a scheme of genus g.

Let ~s be a rooted standard scheme with q vertices and k edges (k = 2g − 1 + q),
Let us call p the number of distinct nonzero labels in ~s (in particular 0 ≤ p ≤ q),
e the set of edges with equal extremities, and e′ its complement. Then we have by
definition:

W~s =
1

k
B|e|

∑

0<ℓ1<...<ℓp

∏

e∈e′

M|ℓe−
−ℓe+

|,

where e− and e+ denote the vertex labels of the extremities of the edge e of e′.
Observe that for 0 ≤ i < i′ ≤ v6=, we have ℓi < ℓi′ and

Mℓi′−ℓi
= (1 +B)U ℓi′−ℓi = (1 +B)

i′∏

j=i+1

U ℓj−ℓj−1 ,

so that

W~s =
1

k
B|e|(1 +B)|e

′|
∑

0<ℓ1<...<ℓp

∏

e∈e′

e+∏

j=e−+1

U ℓj−ℓj−1 .

Since the expression summand only involves the differences δj = ℓj − ℓj−1, the sum
can be rewritten in terms of these p new variables:

W~s =
1

k
B|e|(1 + B)|e

′|
∑

δ1,...,δp

∏

e∈e′

e+∏

j=e−+1

U δj ,
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where the δj are independant summation indices over positive integers. Now for
each couple (j, e) such that e− < j ≤ e+ a contribution U δj is obtained. Let
d(j) denote the number of edges e such that the couple (j, e) satisfies the previous
condition. Observe that the d(j) only depend on ~s, not on the δj . Then

W~s =
1

k
B|e|(1 +B)|e

′|
∑

δ1,...,δvp

p∏

j=1

Ud(j)δj

=
1

k
B|e|(1 +B)|e

′|

p∏

j=1

Ud(j)

1 − Ud(j)
.

Setting e= = |e| and e 6= = |e′|, and expressing B in terms of U we obtain

W~s =
1

k

Ue=(1 + 2U)e=(1 + U + U2)e6=

(1 − U2)k

p∏

j=1

Ud(j)

1 − Ud(j)
.

In view of Lemma 8, the generating series of reduced labeled g-trees is obtained
upon summing these individual contributions for all rooted standard schemes of
genus g.

Theorem 2. Let Wg denote the (finite) set of rooted standard schemes of genus
g. Given such a standard scheme ~s with k edges and labels {0, 1, . . . , p}, let e=
denote the number of edges with equal labels at both ends, and e 6= = k − e=. For
j = 1, . . . , p, denote moreover by d(j) the number of edges e with endpoint labels
satisfying e− < j ≤ e+, and d =

∑p
j=1 d(j). Then

R̂g(t) =
∑

~s∈Wg

1

k

Ud+e=(1 + 2U)e=(1 + U + U2)e6=

(1 − U)k+p(1 + U)k

p∏

j=1

1

1 + U + . . .+ Ud(j)−1
(7)

where U is the formal power series in t satisfying U = t(1 + U + U2). Moreover

Tg(z) =
z∂

∂z
R̂g(zT 2),

−→
Qg

•
(z) = 2Tg(z)

where T is the formal power series in z satisfying T = 1 + 3zT 2.

In particular we expressed
−→
Qg

•
(z) as a rational function of U(zT 2), which is an

algebraic function of degree 4. It is proved however in [BC91] that Qg(z) is in
fact a rational function in z and

√
1 − 12z. One can verify that this result implies

that our series R̂g(t) is in fact a rational function in t, or in other terms that the

expression of R̂g(t) in terms of U is in fact symmetric in the exchange U ↔ U−1.
We are currently unable to give a combinatorial proof of this fact.

4.7 Asymptotics

In Equation (7), there are a finite number of critical values of U , all being roots
of unity, and U = 1 is one of them. As a fuction of t, U reaches the value U = 1
at its singularity t = 1/3. Moreover, U being a power series in t with positive
coefficients, one has |U(t)| ≤ 1 for every complex number t with |t| ≤ 1/3, with
equality only at t = 1/3. This implies that t = 1/3 is the only dominant singularity
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of Rg(t). Finally, U(t) is an algebraic function, which admits a Puiseux expansion
at its singularity:

U = 1 −
√

3
√

1 − 3t+O(1 − 3t).

This implies the following corollary:

Corollary 6. The dominant singularity of the algebraic function R̂g(t) is at
t = 1/3, around which the following Puiseux expansion holds:

R̂g(t) =
∑

~s∈Wg

1

k

(
3

2

)k (
1√

3
√

1 − 3t

)k+p p∏

j=1

1

d(j)
· (1 +O(

√
1 − 3t)),

where for each ~s in the summation, k is the number of edges and {0, 1, . . . , p} the
set of distinct labels.

The dominant terms in this sum are given by the standard schemes ~s with k + p
maximal: p is at most q − 1 if ~s has q vertices and all labels are distinct. Then
k + q − 1 = 2q + 2g − 2, which is maximal for q = d3 = 4g − 2, resulting in
k + q − 1 = 10g − 6.

Corollary 7. Let Wm
g denote the set of rooted standard schemes of genus g

with 4g − 2 vertices of degree 3 that are labelled by distinct integers. Then

R̂g(t) =
1

6g − 3

3g

26g−3




∑

~s∈Wm
g

4g−3∏

i=1

1

d(i)




(

1

1 − 3t

)5g−3

· (1 +O(
√

1 − 3t)).

In order to obtain the asymptotic behavior of
−→
Qg

•
(z), we need to consider the

behavior of T : this algebraic series has a unique dominant singularity at z = 1/12
and

T = 2 − 2
√

1 − 12z +O(1 − 12z),

so that

zT 2 =
T − 1

3
=

1

3
− 2

3

√
1 − 12z +O(1 − 12z).

Since T is a power series in z with positive coefficients, one has
∣∣zT 2

∣∣ < 1/3 for every
z 6= 1/12 such that |z| ≤ 1/12, so that we can compose the singular expansions of

T and R̂g in the expression
−→
Qg

•
(z) = zd

dz R̂g(zT 2) of Corollary 3 to obtain:

Corollary 8. The algebraic series
−→
Qg

•
(z) has a unique dominant singularity

at z = 1/12, around which the following Puiseux expansion holds:

−→
Qg

•
(z) =

5g − 3

6g − 3

3g

211g−6




∑

~s∈Wm
g

4g−3∏

i=1

1

d(i)




(
1√

1 − 12z

)5g−1

· (1 +O((1 − 12z)1/4)

It is a well known fact that algebraic functions are amenable to singularity anal-
ysis (see [FO90; FS08]). In other words, classical transfer theorems apply to the
previous expansion, leading to:
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Corollary 9. The number ~q •

g,n of rooted pointed bipartite quadrangulations of
genus g with n faces satisfies:

~q •
g,n ∼ 1

Γ
(

5g−1
2

) 5g − 3

6g − 3

3g

211g−6




∑

~s∈Wm
g

4g−3∏

i=1

1

d(i)


 · n 5g−3

2 · 12n.

Recalling that q•g,n = (n+ 2− 2g)~q •
g,n and using the product relation Γ

(
5g−1

2

)
=

5g−3
2 Γ

(
5g−3

2

)
, we finally have:

Corollary 10. The number of rooted bipartite quadrangulations of genus g with
n faces satisfies

qg,n ∼ 3g

(6g − 3)211g−7Γ
(

5g−3
2

)




∑

~s∈Wm
g

4g−3∏

i=1

1

d(i)


 · n 5

2
(g−1) · 12n.

Observe that the maps in Wm
g are vertex labeled rooted maps with 4g−2 vertices

of degree 3, one face and degree g. Their number is (4g − 2)!εg where εg is the
number of cubic maps of genus g with one face (or dually triangulations with one
vertex), known to be [WL72]:

εg =
2

12g

(6g − 3)!

g!(3g − 2)!
.

In particular this allows to give bounds on the constant
∑

~s∈Wm
g

∏
i

1
d(i) . For fixed

g, this constant is in principle a computable finite sum. However, in practice, since
the number of maps in Wm

g grows superexponentially in g, the computation is
difficult to perform in a reasonable time. In particular we were able to obtain in
this way the explicit value of the constants only for g = 1, 2, leading to the following
asymptotics, in agreement with [BC91]:

q1,n ∼ 1

24
· 12n and q2,n ∼ 7

4320
√
π
· n5/2 · 12n.

Several different explicit non linear recursions are known for these constants (see
[BC91; DGZJ95; Wit91]), but we were unable to derive them from our expressions.

5. CONCLUSION

As in the planar case, our main bijection maps the distances to the basepoint of a
quadrangulation onto the labels of vertices of the associated g-tree. In particular
it allows to prove that the distances of a random vertex to the basepoint in a
uniform random quadrangulation with n faces is again of order n1/4: a detailed
analysis in this direction was recently done in [Mie07] for the Bolzmann distribution
on quadrangulations of genus g. A natural problem, partially considered there, is
more generally to construct a continuum limit of large quadrangulations in this n1/4

scaling: in view of the results of [LG07; LGP07] in the planar case, a continuum
limit of quadrangulations of genus g is expected to have the topology of Sg.

We conjecture that the resulting continuum random quadrangulation of genus g
would be universal enough to describe the continuum limit of all models of uniform
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random maps with simple face degree or connectivity constraints, but also the
continuum limit of uniform random graphs with n vertices and minimum genus g.

As we have seen the dominant terms in the asymptotic of the number of maps
on a surface of genus g arises from maps with schemes that have the maximum
number of vertices and edges. More precisely with probability going to 1 as n goes
to infinity, a random map of genus g has a scheme with 4g− 2 vertices of degree 3.

The asymptotic behavior appears to have an interesting structure. As shown in
[Cha] the more general construction of Bouttier et al [BDFG04] in terms of labeled
mobiles extends to higher genus in a similar way as our original quadrangular
construction. As a result one obtains a more general class of labeled g-trees, say
g-mobiles. The decomposition of [Cha] is more involved but leads to the same
dominant standard schemes, with weights involving, instead of U and T , a finite
number of algebraic series depending on the set of allowed degrees. In particular
the same constant

τg =
∑

~s∈Wm
g

4g−3∏

i=1

1

d(i)

drives the multiplicative constant in the asymptotic behavior, in agreement with
the pattern that was observed by [Gao93], and with the universality described in
the physics literature [DGZJ95].
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A. ELEMENTARY MAP SURGERY

A.1 Corners, edge addition and deletion

Let v be a vertex of degree k of a map m. The k arcs with origin v in m form
a cycle around v and the corner caa′ between two successive arcs a and a′ in
counterclockwise order around v is the sector of a small neighborhood of v between
these arcs. The corner caa′ is said to be incident to v and to the face which is on
the left hand side of a (and on the right hand side of a′). A corner c is incident to a
unique vertex v and a unique face f , so we sometime simply say that c is a corner
of v or a corner of f .

Given a map m and two (possibly identical) corners c1 and c2 incident to a same
face f , there is a unique way to create a map m′ by adding inside f an edge e that
connects the vertices incident to c1 and c2 at these corners: by this operation the
face f of m is naturally divided in m′ into two faces f ′ and f ′′ separated by the
edge e, and the corners c1 and c2 are respectively divided into c′1 and c′′1 and c′2 and
c′′2 accordingly. Observe that if m is a map of genus g with n edges, v vertices and
f faces, then m′ is a map of genus g with n+ 1 edges, v vertices and f + 1 faces, in
accordance with Euler’s formula.
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Given a map m and a subset e of its edge set, we now consider the problem of
deleting e from m. Let us denote by m− e the graph drawing obtained by ignoring
the edges of e in the map m. A priori, m − e can only be considered as a graph
drawing because the removal of some edges from m can disconnect the underlying
graph or more generally it can create non simply connected faces. The following
lemma gives sufficent conditions on e that garanty that m − e is a map. From a
topological point of view, it is an elementary application of Van Kampen theorem.

Lemma 10. Let f1 and f2 be 2 adjacent faces of a map m on Sg, and e an edge
separating f1 and f2. Then m − {e} is a map on Sg.

Let v0 be a vertex of degree d of a map m on Sg such that v0 is incident to d dif-
ferent faces, and let e1, . . . , ed be the edges incident to v0. Then m−{v0, e1, . . . , ed}
is a map on Sg.

Proof. For the first alinea, Van Kampen theorem can be applied directly: the
union of two simply connected regions with a simply connected intersection is simply
connected. The second alinea follows by iteration.

Implicitely in the previous discussion and in the rest of the text we use the
fact that the deletion or adjunction of edges and vertices to a graph drawing that
preserve the surface and the map structure commute to the homeomorphisms of the
surface, so that these operations make sense up to homeomorphisms. As already
said, the interested reader can refer to [MT01] for a purely combinatorial treatment
of these questions.

A.2 Duality and spanning trees

Given a map m, the dual map is obtained by exchanging the role of vertices and
faces and keeping incidence relations: more precisely to construct the dual map m∗

of m, put a vertex in each face of m and connect these vertices by a dual edge e∗

across each edge of m. Given a map m and a set of edges e of m, let e∗ denote the
subset {e∗ | e ∈ e} of the set of edges of the dual map m∗. In terms of dual edges,
the first alinea of Lemma 10 admits an immediate extension:

Lemma 11. Let e be a set of edges of a map m such that e∗ is a forest (that is,
the edges of e∗ do not form any cycle in m∗). Then m − e is a map on Sg.

Proof. Let e ∈ e. We wish to apply Lemma 10 to show that m− {e} is a map
and conclude by induction since (e \ {e})∗ is a forest with less edges. The only
problem could be that e is incident twice to the same face f : but this would mean,
in dual terms, that e∗ is incident twice to the same vertex, a contradiction with the
assumption that the edges of e∗ form no cycle.

We shall use the following immediate corollary of the previous lemma.

Corollary 11. If e∗ is a spanning tree of m∗ (that is, the edges of e∗ do not
form any cycle, and any two vertices of m∗ can be joined by a path made of edges
of e∗), then m − e is a g-tree.

Proof. By Lemma 11, m−e is a map on Sg. Let f1 and f2 be two faces of m−e.
Each of them contains at least one vertex of m∗, and since e∗ is a spanning tree
these two vertices are connected by a path made of edges of e∗. By definition of
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dual edges this path does not cross the graph m− e: it stays in the same connected
component of Sg \ (m − e), so that f1 = f2.

Observe that in the planar case g = 0, this is the classical duality result: if e∗ spans
m∗ then m − e spans m.

B. THE CORRECTNESS OF THE MAIN BIJECTION

B.1 The mapping φ produces a well defined map

Our first aim is to prove Lemma 2: the graph drawing created by the opening φ is
a map on Sg with one face. This will essentially be done by applying Lemma 11.

Let (q, v0) be a pointed bipartite quadrangulation of genus g with n faces, and let
q′ = q ∪ φ(q, v0): q′ is the graph drawing obtained from q by adding n new edges,
one in each face of q as in the construction of φ(q, v0). The edges of q remain in
q′ and are called the old edges. Clearly, in view of the discussion of edge addition
in Section A, q′ is a map of genus g: each face of q is divided into two faces in q′,
either both of degree 3, or one of degree 4 and one of degree 2. Then φ(q, v0) is
obtained from q′ by deleting the old edges and the vertex v0. We have to check
that deleting these old edges do not create a non simply connected face.

Since q′ is a map, we can consider its dual q′′ = (q′)∗. Let us orient the edges of
q′′ that are duals of the old edges of q′: an old edge of q′′ whose dual edge has label
(i, i+ 1) is oriented so that it has the largest label i+ 1 on its right hand side (see
Figure 5). The fake edges of the proof after Lemma 2 are exactly these oriented
dual edges.

Lemma 12. There is a unique outgoing edge leaving each vertex of q′′, so that
any cycle of oriented edges in q′′ is in fact an oriented cycle. The only oriented
cycle in q′′ consists of the duals of the edges incident to v0 in q′.

Proof. The first property follows immediately upon comparing our choice of
orientation with the three types of faces of q′, as represented on Figure 5.

Now label each face of q′ by the minimum of the labels of its incident vertices.
The three cases represented in Figure 5 show that an oriented edge of q′′ that
crosses an edge of q′ with label (i, i + 1) originates in a face with label i and ends
in a face with label i or i − 1: hence an oriented cycle of edges of q′′ must visit
faces with non increasing labels, which are thus all equal. A closer look at the
three cases furthermore shows that the only way to keep constant labels consists
in turning counterclockwise around a fixed vertex of q′. An oriented cycle visiting
faces with label i in q′′ must therefore enclose exactly one vertex. This vertex has
then label i and all incident edges have label (i, i + 1). But, by definition of the
distance labeling, there is only one vertex not incident to a vertex with a smaller
label, the basepoint v0.

Lemma 12 implies that the oriented edges of q′′ form around v0 an oriented cycle,
to each vertex of which is attached a tree of edges oriented toward the cycle (see
Figure 5).

Let us now consider the deletion of the old edges from q′. Since the possible labels
around a face of q′ are (i, i+1), (i, i+1, i+1) or (i, i+1, i+2, i+1) for some i ≥ 0,
no face of q′ can be incident twice to v0. Hence, according to the second alinea of
Lemma 10, removing the (old) edges incident to v0 yields a simply connected face.
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Keeping track of this operation on the dual q′′ amounts to the contraction of the
oriented cycle into a single vertex: the remaining oriented edges of this modified
dual then form a tree. According to Lemma 11, removing these remaining old edges
from q′ yields again a simply connected face. This proves that φ(q, v0) is a well
defined map on Sg, and that it has exactly one face: φ(q, v0) is a g-tree with n edges.
Finally, the labels are positive integers and the new edges satisfy by construction
the small variation condition so that φ(q, v0) is a well labelled g-tree.

B.2 The closure of a well labeled g-tree

We describe here a mapping ψ′, a priori different from ψ, but which we shall later
prove to be the inverse of φ. While the description of ψ relied on Lemma 3, we
explicitely describe how to add edges to a well labeled tree t to produce its image
ψ′(t). In particular the forthcoming discussion implicitely contains a constructive
proof of Lemma 3, and shows that ψ′ = ψ.

Given a well labeled map, let c be a corner with label ℓ of a face f , and assume
the minimal label around f is ℓ0 < ℓ. The predecessor of c is then defined as the
first corner with label ℓ − 1 encountered after c when going clockwise around the
face f : this definition makes sense as soon as the labels can decrease at most by
one around any face, as is the case for well labeled maps. In particular in a well
labeled g-tree, the predecessor is defined for any corner with label at least 2, since
there is a unique face with minimum label 1.

Let us now define the image ψ′(t) of a g-tree t with n edges, and for this, assume
that t has k corners with label 1:

Phase 1. Add a new vertex v0 in the unique face of t, and draw an edge between
each corner of label 1 of t and v0, so that the unique face of t is divided into k
simply connected faces, each incident once to v0. The result is a map t′ of genus g
with k faces, denoted f1, . . . , fk in clockwise order around v0. Let also ~ei denote
the arc with origin v0 that has fi on its right-hand side.

By construction, each face fi of t′ is incident once to v0, it has one corner with
label 0. All corners of t′ thus have a predecessor, except those incident to v0.

Phase 2. In each face fi of t′, insert iteratively a edge between each corner and its
predecessor, in the counterclockwise order of corners around fi, starting with the
first corner after v0. The result is a map t′′ of genus g, containing the n edges of
t and 2n new edges.

As soon as an edge is added in fi, this face is divided in the current map m into
smaller faces, and some corners are divided into smaller corners. However we will
check that, due to the order of insertions, the corner c of fi is still a corner of
m when it is considered, and that m remains well labeled during all the insersion
process. It thus makes sense to ask for the insertion of an edge between c and
its predecessor in m. Moreover the predecessor of c in m is a corner which can
be naturally identified with the predecessor of c in t′, allowing for the shorthand
statement at the beginning of Step 2.

Phase 3. Remove the edges of the map t′ from the map t′′ to get a pointed graph
drawing ψ′(t) = (t′′ − t′, v0).
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Lemma 13. The pointed graph drawing ψ′(t) is a pointed bipartite quadrangula-

tion on Sg with 2n edges, and:

φ(ψ′(t)) = t

Proof. Let us first check that the construction is well defined. Let fi be one of
the k faces of t′, let c0, c1, c2, . . . , cq be its corners in clockwise direction, starting
with the corner of v0, and let ℓi be the label of ci. At the pth step of the insertion in
fi, the edges associated with corners c1, . . . , cp−1 have been inserted and the current
map m satisfy the following property, which is the invariant of our construction:

—Let f be the face on the right hand side of the arc ~ei in m: the corners of f
in counterclockwise order starting at v0 are c′0, c

′
1, c

′
2, . . . , c

′
ℓp−1

, cp, cp+1, . . . , cq,

where each c′i is a corner with label i for i = 0, . . . , ℓp−1.

In particular the corner cp of fi is a corner of f in m and its predecessor is the
corner c′ℓp−1 (beware that c′ℓp−1 is different from c′ℓp−1

unless ℓp−1 = ℓp − 1). The
insertion of the edge e between cp and its predecessor divides f into 2 faces:

—On the right hand side of ~e (oriented from cp to c′ℓp−1), remains a face incident to

the edge ei with corners c′0, . . . , c
′
ℓp−2, c

′′, c′′′, cp+1. . . . , cq where c′′ and c′′′ have
respectively label ℓp − 1 and ℓp. This ensures the correctness of the invariant.

—On the left hand side of ~e, remains a face of degree 2, 3, or 4, depending on the
value of ℓp − ℓp−1 (that is, on the variation on the edge between corners p − 1
and p along fi). These 3 types of faces are illustrated by Figure 6.

This concludes the proof that the construction is well defined.
In view of the 3 types of faces of t′′, it is then clear that the edges of t with label

(i, i) lie in faces of ψ′(t) with labels i, i−1, i, i−1, and that the edges of t with label
(i, i+ 1) lie in faces of ψ′(t) with labels i+ 1, i, i− 1, i (see Figure 6). In particular
each edge of t lies in a face of ψ′(t) of degree 4. Hence ψ′(t) is a quadrangulation,
and it is bipartite because new edges always connect vertices of different parity.

Upon comparing the two cases in Figure 6 with the two cases for the creation of
edges by φ in Figure 4, it clearly appears that in any face of ψ′(t) the construction
rules of φ(ψ′(t)) recreates the original edge of t, so that φ(ψ′(t)) = t.

B.3 Proof of the main theorem

To complete the proof of Theorem 1, it is sufficient to show that for every pointed
bipartite quadrangulation (q, v0) and associated g-tree t = φ(q, v0), one has ψ′(t) =
(q, v0). The key step is the following lemma:

Lemma 14. Let (q, v0) be a pointed bipartite quadrangulation, let t = φ(q, v0) be
the associated g-tree. Let q′ = q ∪ t, that is q′ is the map in which the edges of t

have been added to q, and let t′′ = t ∪ ψ′(t), that is the map in which the edges of
ψ′(t) have been added to t. Both q′ and t′′ contain the g-tree t.

If there is an edge e of q that connects two corners of t in q′ (resp. a corner of
t and v0), then there is in t′′ an edge between the same corners of t (resp. between
the same corner of t and v0).

Proof. If e is adjacent to v0, then it is immediately replaced in ψ′(t) during the
first phase of the construction, and the conclusion of the lemma holds.
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Fig. 9. The proof of Lemma 14

Let us thus consider an edge e of q not adjacent to v0, and let us show that it
is recovered in t′′. Let t′ be the map obtained by adding to t the vertex v0 and all
the edges adjacent to v0 in q: t′ is a submap of q′, and each face of t′ is adjacent to
exactly one corner with label 0. Since t′ spans all the vertices of q′, e must lie in
some face f of t′, cutting it into two new faces. Call f1 the one of these two faces
which does not contains the corner labeled 0, and orient e = (c−, c+) in such a way
that it has f1 on its left. Here, c− and c+ are two corners of t, but up to a slight
abuse of notations, can be considered as corners of f1 as well.

We claim that c+ is the unique corner of minimal label in f1. Indeed, assume
that the minimal label in f1 is reached at some corner c 6= c+, and let ℓc be its
label. Let ǫ be the edge of t leaving c in clockwise direction around f1. By the rules
of construction of t, ǫ has been obtained from a face of q that contains a vertex c′ of
label ℓc − 1 on the right of ǫ. Since q′ is a well defined map, with no vertex strictly
inside f1, the vertex c′ must lie on the border of f1 (see Figure 9). This contradicts
the minimality of the label ℓc in f1.

Hence c+ is the unique corner of minimal label in f1. Since e is an edge of q this
implies that ℓc− = ℓc+

+ 1, and that c+ is the predecessor of c+ in t: c+ and c− are
linked by an edge in t′′.

From the lemma, the set of edges of q is naturally included in the set of edges of
ψ′(t). Now, by construction, the number of edges in ψ′(t) is equal to the number
of edges in q. Hence ψ′(t) and q have exactly the same set of edges, and thus are
equal. This completes the proof of Theorem 1.


