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Abstract

A unicellular map, or one-face map, is a graph embedded in an orientable surface such that
its complement is a topological disk. In this paper, we give a new viewpoint to the structure of
these objects, by describing a decomposition of any unicellular map into a unicellular map of
smaller genus. This gives a new combinatorial identity for the number ǫg(n) of unicellular maps
with n edges and genus g. Unlike the Harer-Zagier recurrence formula, this identity is recursive
in only one parameter (the genus).

Iterating the construction gives an explicit bijection between unicellular maps and plane
trees with distinguished vertices, which gives a combinatorial explanation (and proof) of the
fact that ǫg(n) is the product of the n-th Catalan number by a polynomial in n. The com-
binatorial interpretation also gives a new and simple formula for this polynomial. Variants of
the problem are considered, like bipartite unicellular maps, or unicellular maps with only cubic
vertices.

Keywords: Polygon gluings, Bijection, Harer-Zagier numbers.
Mathematics Subject Classification: 05A19, 05A15, 05C30, 05A10.

1 Introduction.

A unicellular map is a graph embedded in a compact orientable surface, in such a way that its
complement is a topological polygon. Equivalently, a unicellular map can be viewed as a polygon,
with an even number of edges, in which edges have been glued pairwise in order to create an
orientable surface (to ensure orientability, one must glue each pair of edges in opposite directions,
in any cyclic orientation of the polygon). The number of handles of this surface is called the genus
of the map.

These objects are recurrent in combinatorics, and have been considered in many different con-
texts. The numbers of unicellular maps of given size and genus appear in random matrix theory
as the moments of the Gaussian Unitary Ensemble (see [LZ04]). In the study of characters of the
symmetric group, unicellular maps appear as factorisations of cyclic permutations [Jac87, Zag95].

∗Supported by a CNRS/PIMS postdoctoral fellowship. This work was mainly done while the author was a PhD
student in LIX, Laboratoire d’Informatique de l’École Polytechnique (France). The author acknowledges support
from the grant ERC StG 208471 - ExploreMap.
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According to the context, unicellular maps are also called one-face maps, polygon gluings, or one-
border ribbon graphs. Sometimes, their duals, one-vertex maps, are considered. The most famous
example of unicellular maps is the class of plane unicellular maps, that is the class of plane trees,
enumerated by the Catalan numbers.

The first result in the enumeration of unicellular maps in positive genus was obtained by Lehman
and Walsh [WL72]. Using a direct recursive method, relying on formal power series, they expressed
the number ǫg(n) of unicellular maps with n edges on a surface of genus g as follows:

ǫg(n) =
∑

γ⊢g

(n+ 1) . . . (n+ 2− 2g − l(γ))

22g
∏

i ci!(2i+ 1)ci
Cat(n), (1)

where the sum is taken over partitions γ of g, ci is the number of parts equal to i in γ, l(γ) is the
total number of parts, and Cat(n) = 1

n+1

(
2n
n

)
is the n-th Catalan number. This formula has been

extended by other authors ([GS98]).
Later, Harer and Zagier [HZ86], via matrix integrals techniques, obtained the two following

identities1, known respectively as the Harer-Zagier recurrence and the Harer-Zagier formula:

(n+ 1)ǫg(n) = 2(2n− 1)ǫg(n− 1) + (2n− 1)(n− 1)(2n− 3)ǫg−1(n− 2), (2)
∑

g≥0

ǫg(n)x
n+1−2g =

(2n)!

2nn!

∑

i≥1

2i−1

(
n

i− 1

)(
x

i

)
. (3)

Formula (3) has been reproved by several authors, by various techniques. A combinatorial in-
terpretation of this formula was given by Lass [Las01], and the first bijective proof was given
by Goulden and Nica [GN05]. Generalizations were given for bicolored, or multicolored maps
[Jac87, Adr97, SV08].

The purpose of this paper is to give a new approach to the enumeration of unicellular maps of
fixed genus, at a level which is much more combinatorial than what existed before. Indeed, until
now no bijective proof (or combinatorial interpretation) of Formulas (1) and (2) are known. As for
Formula (3), its bijective proof given in [GN05] is concerned with colored unicellular maps, that is
to say, with unicellular maps whose vertices are arbitrarily colored with x colors for some integer x,
but whose genus is not fixed. Counting these colored unicellular maps for all x, which amounts to
putting a weight xn+1−2g on each unicellular map of genus g with n edges, is analytically equivalent
to enumerating unicellular maps by genus, as the number of maps of fixed genus can be extracted
by selecting the correct exponent of x in Formula (3). However, the genus itself does not appear
explicitly in the construction.

On the contrary, this article is concerned with the structure of unicellular maps themselves, at
fixed genus, and with no additional coloring. We investigate in details the way the unique face of
such a map intertwines with itself in order to create the handles of the surface. We show that,
in each unicellular map of genus g, there are 2g special ”places”, which we call trisections, that
concentrate, in some sense, the handles of the surface. Each of these places can be used to slice
the map to a unicellular map of lower genus. Conversely, we show that a unicellular map of genus
g can always be obtained in 2g different ways by gluing vertices together in a map of lower genus.

1Here and in the rest of the paper, the quantity
(

n

p

)

is defined as the number of p-element subsets of {1, 2, . . . , n},

and in particular
(

n

p

)

= 0 if p > n.
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In terms of formulas, this leads us to the new combinatorial identity:

2g · ǫg(n)=
(
n+ 1− 2(g − 1)

3

)
ǫg−1(n) +

(
n+ 1− 2(g − 2)

5

)
ǫg−2(n) + · · ·+

(
n+ 1

2g + 1

)
ǫ0(n) (4)

=

g−1∑

p=0

(
n+ 1− 2p

2g − 2p+ 1

)
ǫp(n). (5)

The main advantage of this identity is that it is recursive only in the genus: the size n is fixed. For
a given g, this enables one to compute directly the formula giving ǫg(n), by iteration. From the
combinatorial viewpoint, this enables one to construct maps of fixed genus and size very easily.

When iterated, our bijection shows that all unicellular maps can be obtained in a canonical way
from plane trees by successive gluings of vertices, hence giving the first explanation to the fact that
ǫg(n) is the product of a polynomial Rg(n) by the n-th Catalan number. More precisely, we obtain
the formula ǫg(n) = Rg(n)Cat(n) with:

Rg(n) =
∑

0=g0<g1<···<gr=g

r∏

i=1

1

2gi

(
n+ 1− 2gi−1

2(gi − gi−1) + 1

)
, (6)

which comes with a clear combinatorial interpretation. This interpretation gives the answer to
questions asked by Zagier [LZ04, p159].

In the paper [Cha10], we presented a less powerful bijection, that worked only for an asymptot-
ically dominating subset of all unicellular maps. The bijection presented here is really a generaliza-
tion of the bijection of [Cha10], in the sense that it coincides with it when specialized to maps in
the dominating set. However, new difficulties and structures appear in the general case, and there
is an important gap between the combinatorial results in [Cha10] and the ones of this paper.

An extended abstract of this paper was presented at the conference FPSAC’09 (Austria, July
2009).

2 Unicellular maps.

2.1 Permutations and ribbon graphs.

1

2

3

4

7

5

8

6

9

10

11

13

17

2021

14

19

15

18

16

22

12

H = J1, 22K

α = (1, 22)(2, 5)(3, 11)(4, 12)(6, 21)(7, 16)
(8, 9)(10, 15)(13, 18)(14, 19)(17, 20)

σ = (1, 5, 21)(2, 11, 4)(3, 12, 18, 14, 10)
(6, 16, 20)(7, 9, 15)(8)(13, 19, 17)(22)

γ = ασ = (1, 2, 3, . . . , 22)

Figure 1: A unicellular map with 11 edges, 8 vertices, and genus 2: (a) ribbon graph; (b) permu-
tations; (c) topological embedding.

Rather than talking about topological embeddings of graphs, we work with a combinatorial
definition of unicellular maps in terms of permutations. In this paper, permutations will always be
multiplied from right to left.
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Definition 1. A unicellular map m of size n is a triple m = (H,α, σ), whereH is a set of cardinality
2n, α is an involution of H without fixed points, and σ is a permutation of H such that γ = ασ
has only one cycle. The elements of H are called the half-edges of m. The cycles of α and σ are
called the edges and the vertices of m, respectively, and the permutation γ is called the face of m.

The graph-theoretic terminology used in Definition 1 comes from the correspondence between
unicellular maps as we just defined them and ribbon graphs, which we now describe. First, in this
paper, the word graph will always be used in the meaning of multigraph, i.e. we allow loops and
multiple edges. Given a unicellular map m = (H,σ, α), its associated graph G is the graph whose
edges are given by the cycles of α, vertices by the cycles of σ, and the natural incidence relation
v ∼ e if v and e share an element. Moreover, we draw each edge of G as a ribbon, where each
side of the ribbon represents one half-edge; we decide which half-edge corresponds to which side
of the ribbon by the convention that, if a half-edge h belongs to a cycle e of α and v of σ, then h
is the right-hand side of the ribbon corresponding to e, when considered entering v. Furthermore,
we draw the graph G in such a way that around each vertex v, the counterclockwise ordering of
the half-edges belonging to the cycle v is given by that cycle: we obtain a graphical object called
the ribbon graph associated to m, as in Figure 1(a). Note that the unique cycle of the permutation
γ = ασ is interpreted as the sequence of half-edges visited when making the tour of the graph,
keeping the graph on its left.

A rooted unicellular map is a unicellular map carrying a distinguished half-edge r, called the
root. These maps are considered up to relabellings of H preserving the root, i.e. two rooted
unicellular maps m and m

′ are considered the same if there exists a permutation π : H → H ′, such
that π(r) = r′, α = π−1α′π, and σ = π−1σ′π. In this paper, all unicellular maps will be rooted,
even if not stated explicitly.

Given a unicellular map m with root r and face γ = ασ, we define the linear order <
m
on H by

setting:
r <

m
γ(r) <

m
γ2(r) <

m
· · · <

m
γ2n−1(r).

In other words, if we relabel the half-edge set H by elements of J1, 2nK in such a way that the root is
1 and the tour of the face is given by the permutation (1, . . . , 2n), the order <

m
is the natural order

on the integers. However, since in this article we are going to consider maps with a fixed half-edge
set, but a changing permutation γ, it is more convenient (and prudent) to define the order <

m
in

this way.
Unicellular maps can also be interpreted as graphs embedded in a topological surface, in such

a way that the complement of the graph is homeomorphic to a disk. If considered up to homeo-
morphism, and suitably rooted, these objects are in bijection with ribbon graphs. See [MT01], or
the example of Figure 1(c). The genus of a unicellular map is the genus, or number of handles, of
the corresponding surface. If a unicellular map of genus g has n edges and v vertices, then Euler’s
characteristic formula states that

v = n+ 1− 2g.

From a combinatorial point of view, this formula can also be taken as a definition of the genus.

2.2 The gluing operation.

We let m = (H,α, σ) be a unicellular map of genus g, and a1 <m
a2 <m

a3 be three half-edges of m
belonging to three distinct vertices. Each half-edge ai belongs to some vertex vi = (ai, h

1
i , . . . h

mi

i ),
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Figure 2: (a) The gluing and slicing operations. (b) The ”proof” of Lemma 1.

for some mi ≥ 0. We define the permutation

v̄ := (a1, h
1
2, . . . h

m2

2 , a2, h
1
3, . . . h

m3

3 , a3, h
1
1, . . . h

m1

1 ),

and we let σ̄ be the permutation of H obtained by deleting the cycles v1, v2, and v3, and replacing
them by v̄. The transformation mapping σ to σ̄ is interpreted combinatorially as the gluing of the
three half-edges a1, a2, a3, as shown in Figure 2(a). We have:

Lemma 1. The map m := (H,α, σ̄) is a unicellular map of genus g + 1. Moreover, if we let

γ = ασ = (a1, k
1
1, . . . k

l1
1 , a2, k

1
2, . . . k

l2
2 , a3, k

1
3, . . . k

l3
3 )

be the face permutation of m, then the face permutation of m is given by:

γ̄ = (a1, k
1
2, . . . k

l2
2 , a3, k

1
1, . . . k

l1
1 , a2, k

1
3, . . . k

l3
3 )

Proof. In order to prove that m is a well-defined unicellular map, it suffices to check that its face is
given by the long cycle γ̄ given in the lemma. To check that this is true, it is enough to notice that
the only half-edges whose image is not the same in γ and in γ̄ are the three half-edges a1, a2, a3,
and that by construction γ̄(ai) = ασ̄(ai) = ασ(ai+1) = γ(ai+1). For a more “visual” explanation,
see Figure 2(b).

Now, by construction, m has two less vertices than m, and the same number of edges, so from
Euler’s formula it has genus g + 1 (the gluing operation has created a new “handle”).

2.3 Locating the intertwinings of the map, and the slicing operation.

In this paper, we will show that all unicellular maps of genus g+1 can be obtained from unicellular
maps of genus g by the gluing operation defined above, and that in some sense this operation can
be performed in a canonical way. Our first step in this direction is to observe that, in the map m

obtained after the gluing operation, the new vertex v̄ is not any vertex of the map: it satisfies some
very special properties. Namely, in the unicellular map m, the three half-edges a1, a2, a3 appear in
that order counterclockwise around the vertex v̄, whereas they appear in the inverse order in the
face γ̄. Note that this is very different from what we observe in the planar case: the tour of a plane
tree (performed with edges on the left) necessarily visits the different half-edges around each vertex
in counterclockwise order, as illustrated in Figure 3. This leads us to the intuition (which we will
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tour of the

face

1st

2nd
3rd

4th
1st

2nd

3rd
4th

(a) (b)

Figure 3: (a) In a plane tree, the tour of the face always visits the half-edges around one vertex in
counterclockwise order; (b) in positive genus (here in genus 1), things can be different.

soon make more precise) that, in a map of positive genus, those vertices where the vertex-order
does not coincide with the face-order hide some “intertwining” (some handle) of the map, and that
they may be used to inverse the gluing operation.

We let m = (H,α, σ̄) be a map of genus g + 1, and three half-edges a1, a2, a3 belong to a
same vertex v̄ of m. We say that a1, a2, a3 are intertwined if they do not appear in the same
order in γ̄ = ασ̄ and in σ̄. In this case, we write v̄ = (a1, h

1
2, . . . h

m2

2 , a2, h
1
3, . . . h

m3

3 , a3, h
1
1, . . . h

m1

1 ),
and we let σ be the permutation of H obtained from σ̄ by replacing the cycle v̄ by the product
(a1, h

1
1, . . . h

1
m1

)(a2, h
2
1, . . . h

2
m2

)(a3, h
3
1, . . . h

3
m3

). The transformation mapping γ̄ to γ can be inter-
preted as the slicing of the vertex v̄, as in Figure 2(a).

Lemma 2. The triple m = (H,α, σ) obtained after the slicing of the three intertwined half-edges
a1, a2, a3 is a unicellular map of genus g. If we let

γ̄ = (a1, k
1
2, . . . k

l2
2 , a3, k

1
1, . . . k

l1
1 , a2, k

1
3, . . . k

l3
3 )

be the unique face of m, then the unique face of m is given by:

γ = ασ = (a1, k
1
1, . . . k

l1
1 , a2, k

1
2, . . . k

l2
2 , a3, k

1
3, . . . k

l3
3 ).

The gluing and slicing operations are inverse one to the other.

Proof. The proof is the same as in Lemma 1: it is sufficient to check the expression given for γ in
terms of γ̄, which is easily done by checking the images of a1, a2, a3.

A priori it is not obvious that the slicing operation results in a connected graph, but the
previous lemma shows that it indeed does, since the underlying graph of a unicellular map is always
connected. Of course this property would not necessarily hold if the three half-edges a1, a2, a3 were
not intertwined in the original map m. It is possible to show (but of no use for the present paper)
that the slicing operation applied to three non-intertwined half-edges in a unicellular map of genus
g + 1 results either in a disconnected map, or in a map of genus g − 1 with three faces.

2.4 Around one vertex: up-steps, down-steps, and trisections.

Let m = (H,α, σ) be a map of face permutation γ = ασ. For each vertex v of m, we let min
m
(v) be

the minimal half-edge belonging to v, for the order <
m
. Equivalently, min

m
(v) is the first half-edge

from which one reaches v during the tour of the map, starting from the root. Given a half-edge
h ∈ H, we note V (h) the unique vertex it belongs to (i.e. the cycle of σ containing it).
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Definition 2. We say that a half-edge h ∈ H is an up-step if h <
m
σ(h), and that it is a down-step

if σ(h) ≤
m
h. A down-step h is called a trisection if σ(h) 6= min

m
V (h), i.e. if σ(h) is not the

minimum half-edge inside its vertex.

The fact that, in a plane tree, the vertex-order and the face-order always coincide (Figure 3(a))
implies that trisections are specific to the non-planar case: there are no trisections in a plane tree.
This observation is actually a very special case of the following lemma, which is the cornerstone of
this paper:

Lemma 3 (The trisection lemma). Let m be a unicellular map of genus g. Then m has exactly 2g
trisections.

Proof. We let m = (H,α, σ), and γ = ασ. We let n+ and n− denote the number of up-steps and
down-steps in m, respectively. Then, we have n− + n+ = 2n, where n is the number of edges of m.
Now, let i be a half-edge of m, and j = σ−1ασ(i). Note that we have σ(j) = γ(i), and γ(j) = σ(i).
Graphically, i and j lie in two ”opposite” corners of the same edge, as shown in Figure 4. On the
picture, it seems clear that if the tour of the map visits i before σ(i), then it necessarily visits σ(j)
before j (except if the root is one of these four half-edges) so that, roughly, there must be almost
the same number of up-steps and down-steps. More precisely, let us distinguish three cases.

First, assume that i is an up-step. Then we have i <
m
σ(i) = γ(j). Now, by definition of the

total order <
m
, i <

m
γ(j) implies that γ(i) ≤

m
γ(j). Hence, σ(j) ≤

m
γ(j), which, by definition of

<
m
again, implies that σ(j) ≤

m
j (here, we have used that σ(j) 6= γ(j) since α has no fixed point).

Hence, if i is an up-step, then j is a down-step.
Second, assume that i is a down-step, and that γ(j) is not equal to the root of m. In this case,

we have j <
m
γ(j), and γ(j) = σ(i) ≤

m
i = σ(j). Hence j <

m
σ(j), and j is an up-step.

The third and last case is when i is a down step, and γ(j) is the root r of m. In this case, j is
the maximum element of H for the order <

m
, so that it is necessarily a down-step.

Combining the three cases we have proved that each edge of m (more precisely, each cycle of
σ−1ασ) is associated to one up-step and one down-step, except the edge containing the root which is
associated to two down-steps. Consequently, there are exactly two more down-steps than up-steps
in the map m, i.e.: n− = n+ + 2. Recalling that n− + n+ = 2n, this gives n− = n+ 1.

Finally, each vertex of m carries exactly one down-step which is not a trisection (its minimal
half-edge). Hence, the total number of trisections equals n− − v, where v is the number of vertices
of m. Since from Euler’s characteristic formula, v equals n+ 1− 2g, the lemma is proved.

3 Making the gluing operation injective.

We have defined above an operation that glues a triple of half-edges, and increases the genus of a
map. In this section, we explain that, if we restrict it to certain types of triples of half-edges, this
operation can be made invertible.

3.1 A diagram representation of vertices.

We first describe a graphical way to visualize the order <
m
restricted to the half-edges belonging to a

given vertex. Let v be a vertex of m, with a distinguished half-edge h. We write v = (u0, u1, . . . , um),
with u0 = h. We now consider a grid with m + 1 columns and 2n rows. Each row represents an
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i

j
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σ(i)
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tour of the face

Figure 4: The main argument in the proof of the trisec-
tion lemma: the tour of the face visits i before σ(i) if
and only if it visits σ(j) before j, unless σ(i) or σ(j) is
the root of the map.

1
2

.

.

.

12

5
6

3

12

11

2

Figure 5: A vertex (6, 3, 12, 11, 2, 5)
in a map with 12-half-edges, and its
diagram representation (the distin-
guished half-edge is 6).

element of H, and the rows are ordered from the bottom to the top by the total order <
m
(for

example the lowest row represents the root). Now, for each i, inside the i-th column, we plot a
point at the height corresponding to the half-edge ui. We say that the diagram thus obtained is
the diagram representation of v, starting from h. In other words, if we identify J1, 2nK with H via
the order <

m
, the diagram representation of v is the graphical representation of the sequence of

labels appearing around the vertex v. If one changes the distinguished half-edge h, the diagram
representation of v is changed by a circular permutation of its columns. Figure 5 gives an example
of such a diagram (where the permutation γ is equal to γ = (1, 2, 3, . . . )).

The gluing operation is easily visualised on diagrams. We let as before a1 <m
a2 <m

a3 be three
half-edges belonging to distinct vertices in a unicellular map m, and we let ∆1,∆2,∆3 be their
corresponding diagrams, with ai in the first column of ∆i. We now consider the three horizontal
rows corresponding to a1, a2, and a3: they separate each diagram ∆i into four blocks (some of
which may be empty). We give a name to each of these blocks: Ai, Bi, Ci, Di, from bottom to top,
as in Figure 6(a).

We now attach ∆2,∆3,∆1 together, from left to right, and we rearrange the three columns
containing a1, a2, a3 so that these half-edges appear in that order: we obtain a new diagram (Fig-
ure 6(b)), whose columns represent the order of the half-edges around the vertex v̄. But the rows of
that diagram are still ordered according to the order <

m
. In order to obtain the diagram represent-

ing v̄ in the new map m, we have to rearrange the rows according to <
m
. We let A be the union of

the three blocks Ai (and similarly, we define B, C, and D). We know that the face permutation of m
has the form γ = (wA, a1, wB, a2, wC , a3, wD), where for each block F ∈ {A,B,C,D}, the word wF

consists of the list of the rows appearing in the block F , read from bottom to top. Now, from the
expression of γ̄ given in Lemma 1, the permutation γ̄ is given by γ̄ = (wA, a1, wC , a3, wB, a2, wD).
In terms of diagrams, this means that the diagram representing v̄ in the new map m can be ob-
tained by swapping the block B with the block C, and the row corresponding to a2 with the one
corresponding to a3: see Figure 6(c). To sum up, we have:

Lemma 4. The diagram of the vertex v̄ in the map m is obtained from the three diagrams ∆1,∆2,∆3

by the following operations, as represented in Figure 6:
- Attach the diagrams ∆2,∆3,∆1 in that order from left to right, and rearrange the columns con-
taining a1, a2, a3, so that they appear in that order from left to right.
- Exchange the blocks B and C, and swap the rows containing a2 and a3.

Note that, when read from right to left, Figure 6 gives the way to obtain the diagrams of the
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Figure 6: The gluing operation visualized on diagrams. (a) the diagrams before gluing; (b) a
temporary diagram, where the columns represent the counterclockwise turn around v̄, but the rows
still represent the original permutation γ; (c) the final diagram of the new vertex in the new map,
where the rows represent the permutation γ̄.

three vertices resulting from the slicing operation of three intertwined half-edges a1, a2, a3 in the
map m.

Remark 1. The slicing operation does not change the order <m for half-edges which appear strictly
between the root and the half-edge a1. Precisely if w1 <m w2 <m . . . <m wr are elements of H such
that wr <m a1, then Lemma 2 (or, more visually, Figure 6) implies that we have :

w1 <m w2 <m . . . <m wr <m a1

in the map m. The converse statement is also true.

3.2 Gluing three vertices: trisections of type I.

In this section, we let v1, v2, v3 be three distinct vertices in the map m. We let ai := min
m
vi, and,

up to re-arranging the three vertices, we may assume (and we do) that a1 <m
a2 <m

a3. We let ∆1,
∆2, ∆3 be the three corresponding diagrams. Since in each diagram the distinguished half-edge is
the minimum in its vertex, note that the blocks A1, A2, B2, A3, B3, C3 do not contain any point.
We say that they are empty, and we write: A1 = A2 = B2 = A3 = B3 = C3 = ∅.

We now glue the three half-edges a1, a2, a3 in m: we obtain a new unicellular map m, with a
new vertex v̄ resulting from the gluing. Now, let τ be the element preceding a3 around v̄ in the
map m. Since A3 = B3 = C3 = ∅, we have either τ ∈ D3 or τ = a2, so that in both cases a3 <m

τ .
Moreover, a3 in not the minimum inside its vertex (the minimum is a1). Hence, τ is a trisection of
the map m. We let Φ(m, v1, v2, v3) = (m, τ) be the pair formed by the new map m and the newly
created trisection τ .

It is clear that given (m, τ), we can inverse the gluing operation. Indeed, it is easy to recover
the three half-edges a1 (the minimum of the vertex), a3 (the one that follows τ), and a2 (note that,
since B2 and B3 are empty, a2 is the smallest half-edge on the left of a3 which is greater than a3).

9



Once a1, a2, a3 are recovered, it is easy to recover the map m by slicing v̄ at those three half-edges.
This gives:

Lemma 5. The mapping Φ, defined on the set of unicellular maps with three distinguished vertices,
is injective.

It is now natural to study the image of the mapping Φ: in particular, can we obtain all pairs
(m, τ) in this way? In order to answer this question, we need the following definition (see Figure 7):

Definition 3. Let m = (H,α, σ̄) be a map of genus g + 1, and τ be a trisection of m. We let
v̄ = V (τ), b1 = min

m
(v̄), and we let ∆ be the diagram representation of v̄, starting from the half-

edge b1. We let b3 = σ(τ) be the half-edge following τ around v̄, and we let b2 be the minimum
half-edge among those which appear before b3 around v̄ and which are greater than b3 for the
order <

m
. Note that b2 is well-defined because τ is one of these half-edges. The rows and columns

containing b1, b2, b3 split the diagram ∆ into twelve blocks, five of which are necessarily empty,
as in Figure 7. We let K be second-from-left and second-from-bottom block. We say that τ is a
trisection of type I if K is empty, and that τ is a trisection of type II otherwise.

τ

lowest half-edge

in the vertex

marked

trisection

b3 = σ(τ)
b1

b2

lowest point at the

left of b3 which is

above b3

”block-decomposition”

τ

b3b1

b2

*

*

*K

K = ∅ : τ is of type I,

K 6= ∅ : τ is of type II.

∅∅

∅ ∅ ∅

* *

*

Figure 7: Trisections of type I and II.

The following proposition is the half way to our main result:

Proposition 1. The mapping Φ is a bijection between the set U3
g (n) of unicellular maps of genus

g with n edges and three distinguished vertices, and the set DI
g+1(n) of unicellular maps of genus

g + 1 with n edges and a distinguished trisection of type I.

Proof. We already know that Φ is injective.
We let m be a unicellular map of genus g with three distinguished vertices v1, v2, v3, and m be

the map obtained, as above, by the gluing of M by the half-edges a1 = min
m
v1, a2 = min

m
v2,

a3 = min
m
v3 (we assume again that a1 <

m
a2 <

m
a3). We let ∆̄ be the diagram representation

of the new vertex v̄ obtained from the gluing in the map m, and we use the same notations for
the blocks as in Section 3.1. We also let τ = σ−1(a3) be the created trisection, and we use the
notations of Definition 3 with respect to the trisection τ , so that b3 = a3. Then, since a1 = min

m
v̄,

we have a1 = b1, and since the blocks B2, B3, are empty, we have b2 = a2. Hence, the block C3 of
Figure 6(c) coincides with the block K of Figure 7. Since C3 is empty, τ is a trisection of type I.
Therefore the image of Φ is included in DI

g+1(n).

10



Conversely, let m = (H,α, σ̄) be a map of genus g + 1, and τ be a trisection of type I in m.
We let b1, b2, b3 and K be as in Definition 3. First, since b1 <

m
b3 <

m
b2, these half-edges are

intertwined, and we know that the slicing of m by these half-edges creates a well-defined unicellular
map m of genus g (Lemma 2). Now, if we compare Figures 7 and 6, we see that the result of the
slicing is a triple of vertices v1, v2, v3, such that each half-edge bi is the minimum in the vertex vi:
indeed, the blocks A1, A2, A3, B2, B3 are empty by construction, and the block C3 = K is empty
since τ is a trisection of type I. Hence we have Φ(m, v1, v2, v3) = (m, τ), so that the image of Φ
exactly equals the set DI

g+1(n).

3.3 Trisections of type II.

Of course, it would be nice to have a similar result for trisections of type II. Let m = (H,α, σ̄)
be a map of genus g + 1 with a distinguished trisection τ of type II. We let b1, b2, b3 and K be
as in Definition 3 and Figure 7, and we let m be the result of the slicing of m at the three half-
edges b1, b2, b3. If we use the notations of Figure 6, with ai = bi, we see that we obtain three
vertices, of diagrams ∆1,∆2,∆3, such that A1 = A2 = B2 = A3 = B3 = ∅. Hence, we know
that a1 = min

m
(v1), that a2 = min

m
(v2), and that a2 < min

m
(v3). Note that, in contrast to what

happened in the previous section, the block C3 = K is not empty, therefore a3 is not the minimum
inside its vertex.

Now, we claim that τ is still a trisection in the map m. Indeed, by construction, we know that
τ belongs to D3 (since, by definition of a trisection, it must be above a3 in the map m, and since
B3 is empty). Hence we still have a3 <

m
τ in the map m. Moreover, we have clearly σ(τ) = a3 in

m (since τ is the rightmost point in the blocks C3 ∪D3), and it follows that τ is a trisection in m.
We let Γ(m, τ) = (m, v1, v2, τ) be the 4-tuple consisting of the new map m, the first two vertices

v1 and v2 obtained from the slicing, and the trisection τ . It is clear that Γ is injective: given
(m, v1, v2, τ), one can reconstruct the map m by letting a1 = min v1, a2 = min v2, and a3 = σ(τ),
and by gluing back together the three half-edges a1, a2, a3.

Conversely, we introduce the following notation:

Notation 1. We let Vg(n) be the set of 4-tuples (m, v1, v2, τ), where m is a unicellular map of
genus g with n edges, and where v1, v2, and τ are respectively two vertices and a trisection of M
such that:

min
m

v1 <m
min

m

v2 <m
min

m

V (τ). (7)

Given (m, v1, v2, τ) ∈ VG(n), we let m be the map obtained from the gluing of the three half-edges
min v1, min v2, and σ(τ), and we let Ψ(m, v1, v2, τ) := (m, τ).

We can now state the following proposition, that completes Proposition 1:

Proposition 2. The mapping Ψ is a bijection between the set Vg(n) of unicellular maps of genus
g with n edges and a distinguished triple (v1, v2, τ) satisfying Condition (7), and the set DII

g+1(n)
of unicellular maps of genus g + 1 with n edges and a distinguished trisection of type II.

Proof. In the discussion above, we have already given a mapping Γ : DII
g+1(n) → Vg(n), such that

Ψ ◦ Γ is the identity on DII
g+1(n).

Conversely, let (m, v1, v2, τ) ∈ Vg(n), and let a1 = min v1, a2 = min v2, and a3 = σ(τ). By
definition, we know that a2 < minV (τ), so that in the diagram representation of the three vertices

11



v1, v2, V (τ) (Figure 6(a)) we know that the blocks A1, A2, A3, B2, B3 are empty. Moreover, since
τ is a trisection, a3 is not the minimum inside its vertex, so the block C3 is not empty. Hence,
comparing Figures 6(c) and 7, and observing once again that the blocks C3 and K coincide, we
see that after the gluing, τ is a trisection of type II in the new map m. Moreover, since the slicing
and gluing operations are inverse one to each other, it is clear that Γ(m, τ) = (m, v1, v2, τ). Hence,
Γ ◦Ψ is the identity, and the proposition is proved.

4 Iterating the bijection.

Clearly Proposition 1 looks nicer than its counterpart Proposition 2: in the first one, one only asks
to distinguish three vertices in a map of lower genus, whereas in the second one, the distinguished
triple must satisfy a nontrivial constraint (Condition (7)). In this section we will work a little more
in order to get rid of this difficulty. We start by introducing the following notations.

Notation 2. We let Uk
g (n) be the set of unicellular maps of genus g with n edges and k distinct

distinguished vertices. Note that for k = 3 this is coherent with the previous notation.

Notation 3. We let Dg(n) = DI
g(n)∪DII

g (n) be the set of unicellular maps of genus g with n edges
and a distinguished trisection.

4.1 Examples: genera 1 and 2.

Note that the set V0(n) is empty, since there are no trisections in a plane tree. Hence, from
Proposition 2, there are no trisections of type II in a map of genus 1 (i.e. DII

1 (n) = ∅). Proposition 1
therefore implies:

Corollary 1. The set D1(n) of unicellular maps of genus 1 with n edges and a distinguished
trisection is in bijection with the set U3

0 (n) of rooted plane trees with n edges and three distinguished
vertices.

Since from the trisection lemma (Lemma 3) each unicellular map of genus 1 has exactly 2 trisections,
we obtain that the number ǫ1(n) of rooted unicellular maps of genus 1 with n edges satisfies:

2 · ǫ1(n) =
(
n+ 1

3

)
Cat(n),

which gives a clear combinatorial proof of the formula ǫ1(n) =
(n+1)n(n−1)

12 Cat(n) [WL72].

We now consider the case of genus 2. Let m be a unicellular map of genus 2, and τ be a trisection
of m. If τ is of type I, we know that we can use the mapping Φ−1, and obtain a unicellular map of
genus 1, with three distinguished vertices.

Similarly, if τ is of type II, we can apply the mapping Ψ−1, and we are left with a unicellular
map m

′ of genus 1, and a marked triple (v1, v2, τ), such that min
m
′ v1 <m

′ min
m
′ v2 <m

′ min
m
′ V (τ).

From now on, we use the more compact notation: v1 <m
′ v2 <m

′ V (τ), i.e. we do not write the min’s
anymore. The map (m′, τ) is a unicellular map of genus 1 with a distinguished trisection: therefore
we can apply the mapping Φ−1 to (m′, τ). We obtain a plane tree m

′′, with three distinguished
vertices v3, v4, v5 inherited from the slicing of τ inm

′; up to renaming the vertices we can assume that

12



v3 <
m
′′ v4 <

m
′′ v5. Note that in m

′′ we also have the two marked vertices v1 and v2 inherited from
the slicing of τ in m. Moreover the fact that v1 <m

′ v2 <m
′ V (τ) in m

′ implies that v1 <m
′′ v2 <m

′′ v3
in m

′′, as follows from Remark 1. Hence, we are left with a plane tree m
′′, with five distinguished

vertices v1 <
m
′′ v2 <

m
′′ v3 <

m
′′ v4 <

m
′′ v5. Conversely, given such a 5-tuple of vertices, it is always

possible to glue the three last ones together by the mapping Φ to obtain a triple (v1, v2, τ) satisfying
Condition (7), and then to apply the mapping Ψ to obtain a map of genus 2 with a marked trisection
of type II. This gives:

Corollary 2. The set DII
2 (n) is in bijection with the set U5

0 (n) of plane trees with five distinguished
vertices. The set D2(n) of unicellular maps of genus 2 with one marked trisection is in bijection
with the set U3

1 (n) ∪ U5
0 (n).

Now, from Euler’s formula, a unicellular map of genus 1 with n edges has n − 1 vertices, so that
|U3

1 (n)| =
(
n−1
3

)
ǫ1(n). Moreover, since from the trisection lemma each unicellular map of genus 2

has 4 trisections, we obtain the following formula for the number ǫ2(n) of unicellular maps of genus
2 with n edges:

4 · ǫ2(n) =
(
n− 1

3

)
ǫ1(n) +

(
n+ 1

5

)
Cat(n),

from which it follows that

ǫ2(n) =
(n+ 1)n(n− 1)(n− 2)(n− 3)(5n− 2)

1440
Cat(n).

4.2 The general case, and our main theorem.

In the general case, we will work as in the example of genus 2: starting with a map and a dis-
tinguished trisection, we apply recursively the opening operation on trisections of type II, and we
stop when we have opened the first encountered trisection of type I. We start with the description
of the inverse procedure, which goes as follows.

We let p ≥ 0 and q ≥ 1 be two integers, and (m, v∗) = (m, v1, . . . , v2q+1) be an element of

U2q+1
p (n). Up to renumbering the vertices, we can assume that v1 <

m
v2 <

m
· · · <

m
v2q+1. We

consider the following procedure:

Algorithm 1 (construction of the mapping Λ).
i. Glue the three last vertices v2q−1, v2q, v2q+1 together, via the mapping Φ, in order to obtain a
new map m1 of genus p+ 1 with a distinguished trisection τ of type I.
ii. for i from 1 to q − 1 do:

Let (v2q−2i−1, v2q−2i, τ) be the triple consisting of the last two vertices which have not been used
until now, and the trisection τ . Apply the mapping Ψ to that triple, in order to obtain a new map
mi+1 of genus p+ i+ 1, with a distinguished trisection τ of type II.
end for.

We let Λ(m, v∗) := (mq, τ) be the map with a distinguished trisection obtained at the end of this
procedure. Note that if q = 1, the distinguished trisection is of type I, and that it is of type II

otherwise.

As in the case of genus 2, we have the following theorem:
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Theorem 1 (Our main result). The application Λ defines a bijection:

Λ :

g−1⊎

p=0

U2g−2p+1
p (n) −→ Dg(n).

In other words, all unicellular maps of genus g with a distinguished trisection can be obtained in a
canonical way by starting with a map of a lower genus with an odd number of distinguished vertices,
and then applying once the mapping Φ, and a certain number of times the mapping Ψ.

Note that in the statement of the theorem the disjoint-union sign is used only to emphasize the
fact that the sets whose union is taken are disjoint. This sign will always have this meaning in the
rest of the paper.

Given a map with a marked trisection (m, τ), the converse application consists in slicing re-
cursively the trisection τ while it is of type II, then slicing once the obtained trisection of type I,
and remembering all the vertices resulting from the successive slicings. More formally, we have the
following proposition:

Proposition 3. Let (m, τ) ∈ Dg(n). We define the pair Ξ(m, τ) by the following procedure:

1. We let m0 := m and i := 0.

2. If τ is of type II in mi, we let (mi+1, v2i+1, v2i+2) := Ψ−1(mi, τ). Then we let i := i+ 1 and
we return to step 2.
Else, τ is of type I in mi and we go to step 3.

3. Let (mi+1, v2i+1, v2i+2, v2i+3) := Φ−1(mi, τ). We end the procedure and we let

Ξ(m, τ) := (mi+1, v1, v2, . . . , v2i+3).

Then the mapping

Ξ : Dg(n) −→
g−1⊎

p=0

U2g−2p+1
p (n).

is a bijection, which is the inverse bijection of Λ.

Proof of Theorem 1 and Proposition 3. First, the mapping Ξ is well defined. Indeed, by definition
of a trisection of type II, we know by induction that each time we enter steps 2 and 3, τ is a
trisection of the map mi. Moreover, since the genus of the maps mi decreases with i, we necessarily
reach step 3, and the procedure stops.

Then, the mapping Λ is clearly injective, since the mappings Ψ and Φ are.
Finally, to prove at the same time that Ξ is injective and that it is the inverse mapping of Λ, it

is enough to show that the vertices vi produced by the procedure defining Ξ satisfy v1 <m v2 <m

. . . <m v2q+1. Indeed, after that it will be clear by construction that Λ ◦ Ξ = Ξ ◦ Λ = Id. Now,
we deduce from Remark 1 and by an induction on i that after the ith passage in step 2 in the
definition of Ξ, we have v1 <mi+1

v2 <mi+1
. . . <mi+1

v2i+2. The same remark shows that at the end
of step 3, we have v1 <mi+1

v2 <mi+1
. . . <mi+1

v2i+3, which concludes the proof.
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5 Enumerative corollaries.

5.1 A combinatorial identity

Using the trisection lemma (Lemma 3), Euler’s formula, and Theorem 1, we obtain the following
new identity (stated in the introduction as Formula (4)):

Theorem 2. The number ǫg(n) of rooted unicellular maps of genus g with n edges satisfies the
following combinatorial identity:

2g · ǫg(n)=
(
n+ 1− 2(g − 1)

3

)
ǫg−1(n) +

(
n+ 1− 2(g − 2)

5

)
ǫg−2(n) + · · ·+

(
n+ 1

2g + 1

)
ǫ0(n).

Note that this identity is recursive only in the genus (the number of edges n is fixed). For that
reason, it enables one to compute easily, for a fixed g, the closed formula giving ǫg(n) by a simple
iteration (as we did for genera 1 and 2).

5.2 The polynomials Rg(n)

Theorem 1 implies by induction that all unicellular maps of genus g with n edges can be obtained
from a plane tree with n edges, by successively gluing vertices together. From the enumeration
viewpoint, we obtain the first bijective proof that the numbers ǫg(n) are the product of a polynomial
and a Catalan number:

Corollary 3. The number ǫg(n) of unicellular maps of genus g with n edges equals:

ǫg(n) = Rg(n)Cat(n),

where Rg is the polynomial of degree 3g defined by the formula:

Rg(n) =
∑

0=g0<g1<···<gr=g

r∏

i=1

1

2gi

(
n+ 1− 2gi−1

2(gi − gi−1) + 1

)
.

Proof. The statement directly comes from an iteration of the bijection of Theorem 1. More precisely,
the formula given here for Rg(n) reads as follows. In order to generate a unicellular map of genus g,
we start with a plane tree with n edges, and we apply a certain number of times (say r) the
mapping Λ to create unicellular maps of increasing genera. In the formula, g1 < · · · < gr = g are
the genera of the maps produced by the successive applications of Λ. Now, in order to increase the
genus from gi−1 to gi, we have to choose 2(gi− gi−1)+1 vertices in a unicellular map of genus gi−1,
which gives the binomial in the formula. The factor 1/(2gi) is here to compensate the multiplicity
in the construction coming from the trisection lemma (Lemma 3).

From Theorem 2 and the fact that Cat(n) is asymptotically equivalent to 1√
π
n− 3

2 4n, one obtains

easily the asymptotic behaviour of ǫg(n), already computed in [BCR88]:

Corollary 4 ([BCR88]). The polynomial Rg(n) has degree 3g and leading coefficient 1
12gg! . When

n tends to infinity, one has:

ǫg(n) ∼
1

12gg!
√
π
n3g− 3

2 4n.
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Our construction also answers a question of Zagier concerning the interpretation of a property of
the polynomials Rg:

Corollary 5 (Zagier [LZ04, p. 160]). For each integer g ≥ 1, the polynomial Rg(n) is divisible by
(n+ 1) . . . (n+ 1− 2g).

Proof. In short, the divisibility property comes from the fact that, in order to construct a unicellular
map of genus g from a plane tree, one always needs to involve at least 2g+1 vertices of the tree in
one of the successive gluings. A more detailed proof goes as follows.

As explained in the proof of Corollary 3, one can construct all unicellular maps of genus g by
first choosing an integer r > 0 and a sequence of genera 0 = g0 < g1 < · · · < gr = g, and then
applying several times the gluing operation. We let mi be the map of genus gi obtained after the
i-th gluing, m0 being the original tree, and for 0 ≤ i < r we let Xi be the subset of vertices of
size 2(gi+1 − gi) + 1 which is distinguished in mi to apply the gluing operation. The set ∪r−1

i=0Xi

naturally projects onto a subset S of vertices of the tree, namely the set of vertices which will be
involved, at some step, in a gluing operation. Note that for each i the vertex resulting from the
i-th gluing may be again an element of the set Xj for some j > i, so it is not possible to determine
the size of S knowing only r and the gi’s. However, it is easy to see that 2g + 1 ≤ |S| ≤ 3g.

Now, it is possible to express the number of unicellular maps of fixed genus g and size n as a
(finite) sum over the possible values of |S|. Clearly, for fixed s ≥ 2g + 1, the number of s-element
subsets of vertices of m0 is

(
n+1
s

)
, which is divisible by (n+1) . . . (n+1−2g). Now, the contribution

of such a set S to the polynomial Rg can be expressed as the sum of the quantity
∏

i
1
2gi

over all
possible ways to choose numbers 0 < g1 < · · · < gr = g, all possible ways to choose sets (Xi)0≤i<r

such that |Xi| = 2(gi+1 − gi) + 1 and that the projection of ∪r−1
i=0Xi on m0 is S. All the sums being

finite, the contribution of the set S is some rational number (some weight), depending only on |S|
and g, but not on n, which concludes the proof.

6 Variants.

6.1 Bipartite unicellular maps

A unicellular map is bipartite if one can color its vertices in black and white in such a way that only
vertices of different colors are linked by an edge. All bipartite unicellular maps considered in this
paper will be rooted, and by convention the root vertex (the vertex containing the root half-edge)
will always be colored in white.

Notation 4. We let βg(i, j) be the number of bipartite unicellular maps of genus g with i white
vertices and j black vertices. Such a map has i+ j + 2g − 1 edges.

It is clear that that our construction also applies to bipartite unicellular maps: the only differ-
ence is that, if we want the gluing operations Φ and Ψ to preserve the bipartition of the map, we
have to paste together only vertices of the same color. We therefore obtain the following variant of
our main identity:

Proposition 4. The number βg(i, j) of bipartite unicellular maps with i white vertices and j black
vertices obey the following recursion formula:

2g · βg(i, j) =
g−1∑

p=0

(
i+ 2g − 2p

2g − 2p+ 1

)
βp(i+ 2g − 2p, j) +

g−1∑

p=0

(
j + 2g − 2p

2g − 2p+ 1

)
βp(i, j + 2g − 2p). (8)
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Corollary 6. We have βg(i, j) = Sg(i, j)β0(i, j), where β0(i, j) =
i+j−1

ij

(
i+j−2
i−1

)2
is the number of

bipartite plane trees with i white vertices and j black vertices computed in [GJ83], and Sg is the
polynomial in (i, j) defined by:

Sg(i, j) =
1

2g

g−1∑

p=0

(
i+ 2g − 2p

2g − 2p+ 1

)
Sp(i+ 2g − 2p, j) +

1

2g

g−1∑

p=0

(
j + 2g − 2p

2g − 2p+ 1

)
Sp(i, j + 2g − 2p)

with S0 = 1.

For example for the first genera we obtain:

S0 = 1 ; S1(i, j) =
(i+ 2)(i+ 1)i+ (j + 2)(j + 1)j

12
; S2(i, j) = s2(i, j) + s2(j, i)

where s2(i, j) =
i(i+1)(i+2)(i5+22i4+211i3+2i2j+998i2+i2j3+3i2j2+21ij2+2248i+7ij3+14ij+96j2+1920+64j+32j3)

5760 .

6.2 Precubic unicellular maps

A unicellular map is precubic if all its vertices have degree 1 or 3. In such a map, all trisections are
necessarily of type I: indeed, a trisection of type II cannot appear in a vertex of degree less than
4. Therefore, each precubic map can be obtained in exactly 2g different ways from a precubic map
of genus (g − 1) with three distinguished leaves. By repeating the argument g times, we see that
each precubic unicellular map can be obtained in exactly 2g · 2(g − 1) . . . 2 = 2gg! different ways
from a precubic tree (a plane tree where all vertices have degrees 1 or 3), by g successive gluings
of a triple of leaves.

Now, we can easily enumerate precubic trees with n edges. First, we observe that by removing
a leaf from such a tree, we find a binary tree with n− 1 edges (and n vertices). This implies that
n = 2m+ 1, where m is the number of nodes of the binary tree, and that the number of precubic
trees with n edges which are rooted on a leaf is the Catalan number Cat(m). A double-counting
argument then shows that those trees whose root-vertex has degree 3 are counted by the number
3m
m+2Cat(m): indeed, the number 3mCat(m) counts precubic trees which are rooted at the same
time on a leaf and a vertex of degree 3, and these trees can also be obtained by distinguishing one
of the (m + 2) leaves in a tree which is rooted on a vertex of degree 3. Finally, the number of all

precubic rooted trees with n edges equals
(
1 +

3m

m+ 2

)
Cat(m) = Cat(m+ 1). We thereby obtain:

Corollary 7. The number ξg(n) of precubic unicellular maps of genus g with n = 2m+ 1 edges is
given by:

ξg(n) =
1

2gg!

(
m+ 2

3, 3, . . . , 3,m+ 2− 3g

)
Cat(m+ 1) =

2(2m+ 1)(2m)!

12gg!(m+ 2− 3g)!m!
.

Precubic unicellular maps which have no leaves necessarily have 6g − 3 edges. These objects
appeared previously in the literature ([WL72, BV02], and recently in [CMS09] under the name of
dominant schemes). We can recover their number by setting m = 3g − 2 in the previous formula.
In that case, the bijection given here reduces to the one given in our older paper [Cha10], in which
the following corollary already appeared. However, we repeat it here for completeness:
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Corollary 8 ([WL72]). The number of rooted unicellular maps of genus g with all vertices of
degree 3 is:

2(6g − 3)!

12gg!(3g − 2)!
.

Dually, this number counts rooted triangulations of genus g with only one vertex.

6.3 Labelled unicellular maps.

A labelled unicellular map is a pair (m, l) such that m is a rooted unicellular map, and l is a labelling
of the vertices of m, i.e. a mapping l : V (m) → Z such that if v1, v2 are two adjacent vertices in m,
then l(v1) − l(v2) ∈ {−1, 0, 1}, and such that the root-vertex has label 0. These objects were
introduced in the planar case by Cori and Vauquelin [CV81] who gave a bijection relating rooted
planar maps to labelled trees, that is, labelled unicellular maps of null genus2. This bijection was
later re-interpreted by Schaeffer [Sch99], and extended to the case of positive genus by Marcus and
Schaeffer [MS01]. The Marcus-Schaeffer bijection implies the following theorem:

Proposition 5 ([MS01], see also [CMS09] for the version stated here). Let mg(n) be the number of
(all, not necessarily unicellular) rooted maps of genus g with n edges, and let lg(n) be the number
of labelled unicellular maps of genus g with n edges. Then one has:

(n+ 2− 2g)mg(n) = 2 lg(n).

Therefore it is interesting to see what our construction becomes on labelled unicellular maps. We

let L(k)
g (n) be the set of rooted labelled unicellular maps of genus g with n edges and k distinguished

vertices of the same label. We also let DLg(n) be the set of labelled unicellular maps carrying a
distinguished trisection. We have:

Corollary 9. The application Λ induces a bijection:

Λ :

g−1⊎

p=0

L(2g−2p+1)
p (n) −→ DLg(n).

Proof. The only thing to change in our construction so that the gluing of a labelled unicellular map
results in a well-defined labelled unicellular map is to restrict the gluing operation to vertices of
the same label, which is exactly what we do here.

Note that it is not easy to compute the cardinality of L(k)
g (n): in order to compute it from lg(n),

one would need nontrivial information about the distribution of labels of vertices in a randomly
labelled unicellular map of genus g, or by induction, in a randomly labelled plane tree. Still,
Corollary 9, or even its special case already presented in [Cha10], enables one to obtain some
information about the asymptotic behaviour of mg(n), in connection with continuum random trees
(see [Cha10]).

2More precisely, the bijection in [CV81] relates rooted planar maps to well labelled trees, which are labelled trees
in which the labelling function l takes only nonnegative values. The same nonnegative labellings are considered in
[Sch99], and in the well labelled unicellular maps introduced in [MS01]. It was understood later (see [CMS09]) that
the nonnegativity hypothesis can be circumvented by a conjugation argument, which is why we prefer to consider
general (i.e. non necessarily well labelled) labelled unicellular maps here. That being said, Corollary 9 holds verbatim
if one replaces everywhere ”labelled” unicellular maps by ”well labelled” unicellular maps.
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7 More computations.

We now sketch a computation inspired by Emmanuel Guitter [Gui09], that enables one to obtain
the Harer-Zagier formula from our construction. For all n ≥ 1, we let Fn(x) =

∑
g≥0 ǫg(n)x

n+1−2g

be the generating function of unicellular maps with n edges, where the variable x marks the number
of vertices. Then we have:

Proposition 6 ([Gui09]). For every real sequence (an)n≥0, the formal power series F (x, y) =∑
n≥0 any

n+1Fn(x) is a solution of the difference-differential equation:

2y · ∂

∂y
F (x, y) = F (x+ 1, y)− F (x− 1, y) (9)

Proof. Clearly, the series
1

2

(
Fn(x+ 1)− Fn(x− 1)

)
is the generating function of unicellular maps

with n edges, in which an odd number of vertices have been distinguished, and are no longer
counted in the exponent of x. These objects are divided into two categories: either the number of
distinguished vertices is ≥ 3, or it is equal to one. By our main theorem, objects of the first kind
are in bijection with unicellular maps with n edges and a distinguished trisection; objects of the
second kind are unicellular maps with n edges with a distinguished vertex. Now, by the trisection
lemma and Euler’s formula, in each map the number of trisections plus the number of vertices

equals n + 1. Therefore we have:
1

2

(
Fn(x + 1) − Fn(x − 1)

)
= (n + 1)Fn(x) and the proposition

follows.

Corollary 10 ([HZ86]). Let an = 2nn!
(2n)! , and let F (x, y) =

∑
n≥0 any

n+1Fn(x). Then one has:

F (x, y) =
1

2

(
1 + y

1− y

)x

− 1

2
. (10)

As observed in [HZ86], the Harer-Zagier formula (3) follows from (10) by writing
(
1+y
1−y

)x

=
(
1 + 2y

1−y

)x

and expanding the x-th power with the binomial theorem.

Proof. We follow [Gui09]. First, one easily checks that the function given here is a solution of
Equation (9). Moreover, a solution to Equation (9) is entirely characterized by its ”planar terms”,
i.e. by the coefficients of xn+1yn+1 for all n ≥ 0 (think about computing the coefficients in-
ductively via Formula (4)). Hence the only thing to check is that limy→0 F (u

y
, y) is equal to∑

n≥0 anCat(n)u
n+1 = 1

2

(
exp(2u)− 1

)
, which is immediate from (10).

We conclude with an extension of the previous computation to bipartite unicellular maps. For
these maps, the ordinary generating series is not given by a simple closed formula [Adr97], and it is
convenient to work with “modified” generating series. More precisely, following Adrianov [Adr97]
and Zagier [Zag95], we introduce for each integer v ≥ 0 the series φv(x) :=

∑
k≥1 k

vxk−1. We
consider the modified generating series of bipartite unicellular maps defined as follows:

Bn(x, y) =
∑

i,j≥0

βn+1−i−j

2

(i, j)φi(x)φj(y).
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Note that by Euler’s formula, a unicellular map with i+ j vertices and genus n+1−i−j
2 has n edges,

so that Bn(x, y) is the generating function of bipartite unicellular maps with n edges, in which a
map with i white and j black vertices is given a weight φi(x)φj(y). By studying the effect of the
deletion of vertices in the context of modified generating series, one obtains the following analogue
of Proposition 6.

Proposition 7. The formal power series Bn(x, y) is a solution of the differential equation:

∂

∂x

(
(1− x2)Bn(x, y)

)
+

∂

∂y

(
(1− y2)Bn(x, y)

)
= (n+ 1)Bn(x, y). (11)

Corollary 11 ([Adr97]). The series Bn(x, y) admits the following closed form:

Bn(x, y) = n!
(1− xy)n−1

((1− x)(1− y))n+1
. (12)

Proof. One easily checks that the series given here is a solution of Equation (11). Now, as in the
monochromatic case, a formal power series

Cn(x, y) =
∑

1≤i+j≤n+1

cn+1−i−j

2

(i, j)φi(x)φj(y)

which is a solution of Equation (11) is characterized by its ”planar terms”, i.e. by the sequence of
numbers (c0(i, j))i≥1,j≥1. Therefore it is enough to prove that the numbers c0(i, j) corresponding

to the function Cn(x, y) := n! (1−xy)n−1

((1−x)(1−y))n+1 are equal to the numbers β0(i, j) =
i+j−1

ij

(
i+j−2
i−1

)2
.

Now, set X = 1
1−x

, Y = 1
1−y

so that Cn(x, y) = n!X2Y 2(X + Y − 1)n−1 is a polynomial

C̃n(X,Y ) in X and Y . Using the fact that around x = 1, one has φv(x) =
v!

(1−x)v+1 +O
(

1
(1−x)v

)
,

one obtains that for all i, j such that i+ j = n+ 1, the coefficient of Xi+1Y j+1 in the polynomial
C̃n(X,Y ) is i!j!c0(i, j). Therefore we have:

c0(i, j) =
n!

i!j!
× CoeffXi−1Y j−1

(
(X + Y − 1)n−1

)
=

n!

i!j!

(
n− 1

i− 1, j − 1, 0

)
= β0(i, j).
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