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Abstract

A unicellular map is the embedding of a connected graph in a surface in such a
way that the complement of the graph is a topological disk. In this paper we present
a bijective link between unicellular maps on a non-orientable surface and unicellular
maps of a lower topological type, with distinguished vertices. From that we obtain a
recurrence equation that leads to (new) explicit counting formulas for non-orientable
unicellular maps of fixed topology. In particular, we give exact formulas for the pre-
cubic case (all vertices of degree 1 or 3), and asymptotic formulas for the general case,
when the number of edges goes to infinity. Our strategy is inspired by recent results
obtained by the second author for the orientable case, but significant novelties are
introduced: in particular we construct an involution which, in some sense, “averages”
the effects of non-orientability.
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1 Introduction

A map is an embedding of a connected graph in a (2-dimensional, compact, connected)
surface considered up to homeomorphism. By embedding, we mean that the graph is drawn
on the surface in such a way that the edges do not intersect and the faces (connected com-
ponents of the complementary of the graph) are simply connected. Maps are sometimes
referred to as ribbon graphs, fat-graphs, and can be defined combinatorially rather than
topologically as is recalled in Section 2. A map is unicellular if is has a single face. For
instance, the unicellular maps on the sphere are the plane trees.

In this paper we consider the problem of counting unicellular maps by the number of
edges, when the topology of the surface is fixed. In the orientable case, this question has a
respectable history. The first formula for the number ǫg(n) of orientable unicellular maps
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with n edges and genus g (hence n + 1 − 2g vertices) was given by Lehman and Walsh
in [12], as a sum over the integer partitions of size g. Independently, Harer and Zagier
found a simple recurrence formula for the numbers ǫg(n) [7]. Part of their proof relied on
expressing the generating function of unicellular maps as a matrix integral. Other proofs
of Harer-Zagier’s formula were given in [8, 6]. Recently, Chapuy [2], extending previous
results for cubic maps [3], gave a bijective construction that relates unicellular maps of
a given genus to unicellular maps of a smaller genus, hence leading to a new recurrence
equation for the numbers ǫg(n). In particular, the construction in[2] gives a combinatorial
interpretation of the fact that for each g the number ǫg(n) is the product of a polynomial
in n times the n-th Catalan number Cat(n) = 1

n+1

(2n
n

)
.

For non-orientable surfaces, results are more recent. The interpretation of matrix inte-
grals over the Gaussian Orthogonal Ensemble (space of real symmetric matrices) in terms
of maps was made explicit in [5]. Ledoux [9], by means of matrix integrals and orthogonal
polynomials, obtained for unicellular maps on general surfaces a recurrence relation which
is similar to the Harer-Zagier one. As far as we know, no direct combinatorial nor bijective
technique have successfully been used for the enumeration of a family of non-orientable
maps until now.

A unicellular map is precubic if it has only vertices of degree 1 and 3: precubic unicel-
lular maps are a natural generalization of binary trees to general surfaces. In this paper,
we give for all h ∈ 1

2N an explicit formula for the number ηh(m) of precubic unicellular
maps of size m (2m + 1h∈N edges) on the non-orientable surface of Euler Characteristic
2 − 2h. These formulas (Corollaries 8 and 9) take the form ηh(m) = Ph(m)Cat(m) if h
is an integer, and ηh(m) = Ph(m)4m otherwise, where Ph is a polynomial of degree 3⌊h⌋.
Our approach, which is completely combinatorial, is based on two ingredients. The first
one, inspired from the orientable case [3, 2], is to consider some special vertices called
intertwined nodes, whose deletion reduces the topological type h of a map. The second
ingredient is of a different nature: we show that, among non-orientable maps of a given
topology and size, the average number of intertwined nodes per map can be determined
explicitly. This is done thanks to an averaging involution, which is described in Section 4.
This enables us to find a simple recurrence equation for the numbers ηh(m). As in the
orientable case, an important feature of our recurrence is that it is recursive only on the
topological type h, contrarily to equations of the Harer-Zagier type [7, 9], where also the
number of edges vary. It is then easy to iterate the recurrence in order to obtain an explicit
formula for ηh(m).

In the case of general (not necessarily precubic) unicellular maps, our approach does
not work exactly, but it does work asymptotically. That is, we obtain, with the same tech-
nique, the asymptotic number of non-orientable unicellular maps of fixed topology, when
the number of edges tends to infinity (Theorem 11). As far as we know, all the formulas
obtained in this paper are new.
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2 Topological considerations

In this section we recall some definitions on maps and gather the topological tools needed
for proving our results. One of these tools is a canonical way to represent non-orientable
maps combinatorially which will prove very useful for our purposes.

We denote N = {0, 1, 2, 3, . . .} and 1
2N = {0, 12 , 1, 32 , . . .}. For a non-negative real

number x, we denote by ⌊x⌋ the integer part of x. For a non-negative integer n, we denote
n!! = n · (n− 2)!! if n > 1, and 0!! = 1!! = 1.

2.1 Classical definitions of surfaces and maps

Surfaces. Our surfaces are compact, connected, 2-dimensional manifolds. We consider
surfaces up to homeomorphism. For any non-negative integer h, we denote by Sh the torus
of genus h, that is, the orientable surface obtained by adding h handles to the sphere. For
any h in 1

2N, we denote by Nh the non-orientable surface obtained by adding 2h cross-
caps to the sphere. Hence, S0 is the sphere, S1 is the torus, N1/2 is the projective plane
and N1 is the Klein bottle. The type of the surface Sh or Nh is the number h. By the
theorem of classification, each orientable surface is homeomorphic to one of the Sh and
each non-orientable surface is homeomorphic to one of the Nh (see e.g. [10]).

Maps as graphs embedding. Our graphs are finite and undirected; loops and multiple
edges are allowed. A map is an embedding (without edge-crossings) of a connected graph
into a surface, in such a way that the faces (connected components of the complement of
the graph) are simply connected. Maps are always considered up to homeomorphism. A
map is unicellular if it has a single face.

Each edge in a map is made of two half-edges, obtained by removing its middle-point.
The degree of a vertex is the number of incident half-edges. A leaf is a vertex of degree 1.
A corner in a map is an angular sector determined by a vertex, and two half-edges which
are consecutive around it. The total number of corners in a map equals the number of
half-edges which is twice the number of edges. A map is rooted if it carries a distinguished
half-edge called the root, together with a distinguished side of this half-edge. The vertex
incident to the root is the root vertex. The unique corner incident to the root half-edge
and its distinguished side is the root corner. From now on, all maps are rooted.

The type h(m) of a map m is the type of the underlying surface, that is to say, the
Euler characteristic of the surface is 2− 2h(m). If m is a map, we let v(m), e(m) and f(m)
be its numbers of vertices, edges and faces. These quantities satisfy the Euler formula:

e(m) = v(m) + f(m)− 2 + 2h(m). (1)

Maps as graphs with rotation systems and twists. Let G be a graph. To each edge
e of G correspond two half-edges, each of them incident to an endpoint of e (they are both
incident to the same vertex if e is a loop). A rotation system for G is the choice, for each
vertex v of G, of a cyclic ordering of the half-edges incident to v. We now explain the
relation between maps and rotation systems. Our surfaces are locally orientable and an
orientation convention for a map m is the choice of an orientation, called counterclockwise
orientation, in the vicinity of each vertex. Any orientation convention for the map m

induces a rotation system on the underlying graph, by taking the counterclockwise ordering
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of appearance of the half-edges around each vertex. Given an orientation convention, an
edge e = (v1, v2) of m is a twist if the orientation conventions in the vicinity of the
endpoints v1 and v2 are not simultaneously extendable to an orientation of a vicinity of
the edge e; this happens exactly when the two sides of e appear in the same order when
crossed counterclockwise around v1 and counterclockwise around v2. Therefore a map
together with an orientation convention defines both a rotation system and a subset of
edges (the twists). The flip of a vertex v consists in inverting the orientation convention
at that vertex. This changes the rotation system at v by inverting the cyclic order on
the half-edges incident to v, and changes the set of twists by the fact that non-loop edges
incident to e become twist if and only if they were not twist (while the status of the other
edges remain unchanged). The next lemma is a classical topological result (see e.g. [10]).

Lemma 1. A map (and the underlying surface) is entirely determined by the triple con-
sisting of its (connected) graph, its rotation system, and the subset of its edges which are
twists. Conversely, two triples define the same map if and only if one can be obtained
from the other by flipping some vertices.

By the lemma above, we can represent maps of positive types on a sheet of paper as
follows: we draw the graph (with possible edge crossings) with the convention that the
counterclockwise order of the half-edges around each vertex on the paper gives the rotation
system, and we indicate the twists by marking them by a cross (see e.g. Figure 1). The
faces of the map are in bijection with the borders of that drawing, which are obtained
by walking along the edge-sides of the graph, and using the crosses in the middle of
twisted edges as “crosswalks” that change the side of the edge along which one is walking
(Figure 1). Observe that the number of faces of the map gives the type of the underlying
surface using Euler’s formula.

Figure 1: A representation of a map on the Klein
bottle with three faces. The border of one of them
is distinguished in dotted lines.

tour

tour

(a) (b)

(c)

border of
the face

Figure 2: (a) a twist; (b) a left
corner; (c) a right corner.

2.2 Unicellular maps, tour, and canonical rotation system

Tour of a unicellular map. Let m be a unicellular map. By definition, m has a unique
face. The tour of the map m is done by following the edges of m starting from the root
corner along the distinguished side of the root half-edge, until returning to the root-corner.
Since m is unicellular, every corner is visited once during the tour. An edge is said two-
ways if it is followed in two different directions during the tour of the map (this is always
the case on orientable surfaces), and is said one-way otherwise. The tour induces an order
of appearance on the set of corners, for which the root corner is the least element. We
denote by c < d if the corner c appears before the corner d along the tour. Lastly, given
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an orientation convention, a corner is said left if it lies on the left of the walker during the
tour of map, and right otherwise (Figure 2).

Canonical rotation-system. As explained above, the rotation system associated to a
map is defined up to the choice of an orientation convention. We now explain how to
choose a particular convention which will be well-suited for our purposes. A map is said
precubic if all its vertices have degree 1 or 3, and its root-vertex has degree 1. Let m be
a precubic unicellular map. Since the vertices of m all have an odd degree, there exists a
unique orientation convention at each vertex such that the number of left corners is more
than the number of right corners (indeed, flipping a vertex change its left corners into right
corners and vice versa). We call canonical this orientation convention. From now on, we
will always use the canonical orientation convention. This defines canonically a rotation
system, a set of twists, and a set of left/right corners. Observe that the root corner is a
left corner (as is any corner incident to a leaf) and that vertices of degree 3 are incident
to either 2 or 3 left corners. We have the following additional property.

Lemma 2. In a (canonically oriented) precubic unicellular map, two-ways edges are in-
cident to left corners only and are not twists.

Proof. Let e be a two-ways edge, and let c1, c2 be two corners incident to the same vertex
and separated by e (c1 and c2 coincide if that vertex has degree 1). Since e is two-ways,
the corners c1, c2 are either simultaneously left or simultaneously right. By definition of
the canonical orientation, they have to be simultaneously left. Thus two-way edges are
only incident to left corners. Therefore two-ways edges are not twists since following a
twisted edge always leads from a left corner to a right corner or the converse.

2.3 Intertwined nodes.

We now define a notion of intertwined node which generalizes the definition given in [3]
for precubic maps on orientable surfaces.

Definition 3. Let m be a (canonically oriented) precubic unicellular map, let v be a vertex
of degree 3, and let c1, c2, c3 be the incident corners in counterclockwise order around v,
with the convention that c1 is the first of these corners to appear during the tour of m.
The vertex v is called an intertwined node if c3 appears before c2 during the tour of m.

Moreover, we say that the vertex v has flavor A if it is incident to three left corners.
Otherwise, v is incident to exactly one right corner, and we say that v is of flavor B, C,
or D respectively, according to whether the right corner is c1, c2 or c3.

Observe that the definition of the canonical orientation was a prerequisite to define
intertwined nodes. The intertwined of some unicellular maps on the Klein bottle are
indicated in Figure 8. We will now show that intertwined nodes are exactly the ones
whose deletion decreases the type of the map without disconnecting it nor increasing its
number of faces.

The opening of an intertwined node of a map m is the operation consisting in splitting
this vertex into three (marked) vertices of degree 1, as in Figure 3. That is, we define a
rotation system and set of twists of the embedded graph n obtained in this way (we refrain
from calling it a map yet, since it is unclear that it is connected) as the rotation system
and set of twists inherited from the original map m.
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v

opening

map m map n

Figure 3: Opening of an intertwined node
(of a precubic map).

opening

m n

Figure 4: Opening for non-precubic
unicellular maps (dominant case).
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Figure 5: The tours of m and n, in the case of flavor A, and in the case of flavor B.

Proposition 4. Let n be a positive integer and let h be in {1, 3/2, 2, 5/2, . . .}. For each
flavor F in {A,B,C,D}, the opening operation gives a bijection between the set of precubic
unicellular maps with n edges, type h, and a distinguished intertwined node of flavor F,
and the set of precubic unicellular maps with n edges, type h − 1 and three distinguished
vertices of degree 1. The converse bijection is called the gluing of flavor F.

Moreover, if a precubic unicellular map m is obtained from a precubic unicellular map n

(of lower type) by a gluing of flavor F, then m is orientable if and only if n is orientable
and F = A.

The opening of intertwined nodes of type A and B are represented in Figure 5.

Proof. We first show that the opening of an intertwined vertex produces a unicellular
map (and decreases the type by 1). Let m be a precubic unicellular map, and let v be
an intertwined node. Let c1, c2, c3 be the three corners incident to v in counterclockwise
order, with the convention that c1 is the first of these corners to appear during the tour
of m. Since v is intertwined, the sequence of corners appearing during the tour of m has
the form

w(m) = w1c1w2c3w3c2w4,

where w1, w2, w3, w4 are sequences of corners. Let n be the embedded graph with marked
vertices v1, v2, v3 obtained by opening m. We identify the corners of m distinct from
c1, c2, c3 with the corners of n distinct from the corners d1, d2, d3 incident to v1, v2, v3. By
following the edges of n starting from the root corner along the distinguished side of the
root half-edge, one gets a sequence of corners w(n). If v has flavor A, this sequence of
corners is

w(n) = w1d1w3d2w2d3w4,
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as can be seen from Figure 5. Similarly, if v has flavor B (resp. C, D) then the sequence
of corner is

w(n) = w1d1w3d2w2d3w4, (resp. w(n) = w1d1w3d2w2d3w4, w(n) = w1d1w2d2w3d3w4),

where wi is the mirror of the sequence wi obtained by reading wi backward. In each
case, the sequence w(n) contains all the corners of n, implying that n is a unicellular map.
Moreover, n has two more vertices than m, so by Euler formula, its type is h(n) = h(m)−1.

We now prove that m is orientable if and only if v has flavor A and n is orientable.
Suppose first that m is orientable. In this case, m has no right corner, so that v has flavor
A. Hence, the relation between w(m) and w(n) indicated above shows that n has no right
corner (in the orientation convention inherited from m). Hence n is orientable. Suppose
conversely that v has flavor A and n is orientable. Since v has flavor A the orientation
convention of n inherited from m is the canonical one (indeed the corners of n are right
if and only if they are right in m, and m has a minority of right corner at each vertex).
Since n is orientable, this orientation convention has no right corner. Therefore, the map
m has no right corner either. Thus, m is orientable.

c1c3

c2

d3
d2

w1

w(m)=w1c1w3c3w2c2w4

w(n)=w1d1w2d2w3d3w4

e1e2e3

w2w3

w4

e2e3

w2w3

w4

e1

w1

d1

c1
c3

c2

w(m)=w1c1w3c3w2c2w4

e2

e3

w2w3

w4

e1

w1

c3
c2

c1

w(m)=w1c1w3c3w2c2w4

e2e3

w2w3

w4

e1

w1

c1
c3

c2

w(m)=w1c1w2c3w3c2w4

e2

e3

w2w3

w4

e1

w1

gluing D

gluing Cgluing B

gluing A

Figure 6: The gluing of flavor A, B, C and D.

We now define the gluing operation (of flavor A, B, C or D) which we shall prove to
be the inverse of the opening operation (on node of flavor A, B, C or D). Let us treat in
details the gluing of flavor B; the other flavors being similar. Let n be a precubic unicellular
map with three distinguished leaves v1, v2, v3 encountered in this order during the tour
of n. For i = 1, 2, 3 we denote by ei and di respectively the edge and corner incident to vi
(see Figure 6). We consider the canonical orientation convention of n. Clearly, e1, e2, e3
are two-way edges, hence they are not twists for this convention (by Lemma 2). The gluing
of flavor B on the map n gives a map m defined as follows: the graph of m is the graph
of n after identification of the three leaves v1, v2, v3 into a single vertex v, the rotation
system of m is the same as the rotation system of n at any vertex distinct from v, and the
rotation system at v is (e1, e2, e3) in counterclockwise order, lastly the set of twists of m is
the set of twists of n together with the two edges e1 and e2. We now prove that the map
m is unicellular. Let us denote by

w(n) = w1d1w2d2w3d3w4
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the sequence of corners encountered during the tour of n (where the wi are sequences of
corners distinct from d1, d2, d3). Let us denote by c1, c2, c3 the corners of the new vertex v
incident to (e2, e1), (e1, e3), (e3, e2) respectively. By following the edges of m starting from
the root corner along the distinguished side of the root half-edge, one gets the sequence
of corners

w(m) = w1c1w3c3w2c2w4,

as can be seen from Figure 6. This sequence contains all corners of m showing that m is
unicellular. We will now show that v is an intertwined vertex of flavor B. Observe first
that the corners in the sequence w1 are followed in the same direction during the tour of m
and n, so that the corners in w1 are left corners in the map n (for its canonical orientation
convention) if and only if they are left corners in the map m (for its non-canonical orienta-
tion convention inherited from n). In particular, the corner preceding c1 during the tour of
m (the last corner in the sequence w1) is a left corner since it is a left corner in n (indeed,
e1 is a two-way edge in n incident only to left corners by Lemma 2). Since e1 is a twist of
m, this implies that c1 is a right corner of m (for its non-canonical convention). A similar
reasoning shows that c2 and c3 are left corners of m (for its non-canonical convention).
Since v is incident to a majority of left corners, the orientation convention at v is the
canonical one. Hence c1, c2, c3 are in counterclockwise order around v for the canonical
orientation convention of m, which together with the expression of w(m) shows that v is
an intertwined node of flavor B.

It only remains to prove that the opening of a node of flavor B and the gluing of flavor
B are inverse operations. The reader might already be convinced of this fact by reasoning
in terms of ribbon graphs. Otherwise, the proof (which must deal with some orientation
conventions) runs as follows.

We first prove that opening a glued map gives the original map. Let n be a map with
marked leaves v1, v2, v3, let m be the map with new vertex v obtained by the corresponding
gluing of flavor B, and let n

′ be the map obtained by opening m at v. It is clear that
the graph G underlying n and n

′ is the same and we want to prove that n = n
′ (that is,

there exists a set of vertices U ′ such that flipping U ′ changes the system of rotation and
set of twists of n to those of n′). The map m inherits an orientation convention from n

which might differ from its canonical convention. These two conventions on m differ by the
flipping of a certain subset of vertices U , and gives two different systems of rotations and
two sets of twists for m. By definition, the map n and n

′ have graph G and rotation system
and set of twists given by the non-canonical and canonical convention for m. Observe now
that one can get the rotation system and set of twists of n to those of n′ by flipping the
set of vertices U ′, where U ′ = U if v /∈ U and U ′ = U \{v}∪{v1, v2, v3} otherwise. Hence,
n = n

′.
We now consider a map m with intertwined vertex v of flavor B, the map n with

marked leaves obtained from the opening of m at v, and the map m
′ obtained by the

gluing of flavor B. It is clear that the graph G underlying m and m
′ is the same and we

want to prove that m = m
′ (that is, there exists a set of vertices U such that flipping U

changes the system of rotation and set of twists of m to those of m′). The map n inherits
an orientation convention from m which might differ from its canonical convention. Let
v1, v2, v3 be the marked leaves of n appearing in this order during the tour of n and let
e1, e2, e3 be the incident edges. In the orientation convention C of n inherited from m, the
corners incident to v1 and v2 are right corners, while v3 is a left corner (see Figure 5). In
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the orientation convention C ′ of n obtained from the canonical convention by flipping v1
and v2, the corners incident to v1 and v2 are right corners, while v3 is a left corner. This
implies that one goes from the convention C to the convention C ′ by flipping a subset of
vertices U not containing v1, v2, v3. By definition, the maps m and m

′ have graph G and
system of rotation and twists inherited respectively from the conventions C and C ′ on
m. Since the orientation convention of m and m

′ coincide at v (the edges e1, e3, e2 appear
in this counterclockwise order around v) and v1, v2, v3 /∈ U , one gets from the system of
rotation and twists of m to those of m′ by flipping the set of vertices U . Hence, m = m

′.
This concludes the proof that the opening and gluing of flavor B are inverse operations.

The proofs for the other flavors is similar (see Figure 6 for the definition of the gluings of
type A, C, and D).

3 Main results.

3.1 The number of precubic unicellular maps.

In this section, we present our main results, which rely on two ingredients. The first one
is Proposition 4, which enables us to express the number of precubic unicellular maps of
type h with a marked intertwined node in terms of the number of unicellular maps of a
smaller type. The second ingredient is the fact (to be discussed in Section 4) that, among
maps of type h and fixed size, the average number of intertwined nodes in a map is 2h−1.

In order to use Proposition 4, we first need to determine the number of way of choosing
non-root leaves in precubic maps.

Lemma 5. Let h ∈ 1
2N and let m be a precubic unicellular map of type h. Then, the

number of edges of m is at least 6h − 1 and is odd if the type h is an integer and even
otherwise. Moreover, if m has 2m+ 1h∈N edges, then it has m+ 1− 3h− 1

21h/∈N non-root
leaves.

Proof. Let n1 and n3 be the number of vertices of degree 1 and 3 inm, respectively. One has
n1+n3 = v(m) and n1+3n3 = 2e(m). Moreover, Euler formula gives v(m) = e(m)+1−2h.
Solving this system of equations gives n1 = e(m)/2 + 3/2 − 3h. Since n1 ≥ 1 (because
the root vertex of a precubic maps is a leaf) this implies the stated conditions on e(m).
Moreover the number of non root leaves is n1 − 1 = m+ 1− 3h− 1

21h/∈N.
Let h ≥ 1 be an element of 1

2N, and let m ≥ 1 be an integer. We denote by Oh(m) and
Nh(m) respectively the sets of orientable and non-orientable precubic unicellular maps of
type h with 2m+1h∈N edges, and we denote by ξh(m) and ηh(m) their cardinalities. From
Lemma 5 and Proposition 4, the number η•h(m) of non-orientable unicellular precubic maps
of type h with 2m+ 1h∈N edges and a marked intertwined node is given by:

η•h(m) = 4

(
ℓ

3

)
ηh−1(m) + 3

(
ℓ

3

)
ξh−1(m), (2)

where ℓ = m + 4 − 3h − 1
21h/∈N is the number of non-root leaves in precubic unicellular

maps of type h− 1 having 2m+1h∈N edges. Here, the first term accounts for intertwined
nodes obtained by gluing three leaves in a non-orientable map of type h−1 (in which case
the flavor of the gluing can be either A, B, C or D), and the second term corresponds to



O. Bernardi, G. Chapuy – Counting unicellular maps on non-orientable surfaces. 10

the case where the starting map of type h− 1 is orientable (in which case the gluing has
to be of flavor B, C or D in order to destroy the orientability).

The keystone of this paper, to be proved in Section 4 is the following result:

Proposition 6. There exists and involution Φ of Nh(m) such that for all maps m ∈
Nh(m), the total number of intertwined nodes in the maps m and Φ(m) is 4h − 2. In
particular, the average number of intertwined nodes of elements of Nh(m) is (2h− 1), and
one has η•h(m) = (2h− 1)ηh(m).

It is interesting to compare Equation (2) and Proposition 6 with the analogous results
given in [3] for the orientable case. First, the number ξh(m) of unicellular orientable maps
satisfies

ξ•h(m) =

(
ℓ

3

)
ξh−1(m),

because only the gluings of type A are to be considered. Moreover, each map of genus h
has exactly 2h intertwined nodes (yielding ξ•h(m) = 2hξh(m)), whereas here the quantity
(2h−1) is only an average value. For example, Figure 8 shows two maps on the Klein bottle
(h = 1) which are related by the involution Φ: they have respectively 2 and 0 intertwined
nodes. It should also be noted that (contrarily to the situation for the orientable case)
certain unicellular maps have no intertwined nodes, hence cannot be obtained by gluing a
map of smaller type.

As a direct corollary of Proposition 6 and Equation (2), we can state our main result:

Theorem 7. The numbers ηh(m) of non-orientable precubic unicellular maps of type h
with 2m+ 1h∈N edges obey the following recursion:

(2h − 1) · ηh(m) = 4

(
ℓ

3

)
ηh−1(m) + 3

(
ℓ

3

)
ξh−1(m), (3)

where ℓ = m + 4 − 3h − 1
21h/∈N, and where ξh(m) is the number of orientable precubic

unicellular maps of genus h with 2m + 1h∈N edges, which is 0 if h 6∈ N, and is given by
the following formula otherwise [2]:

ξh(m) =
1

(2h)!!

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

(2m)!

12hh!m!(m + 1− 3h)!
. (4)

Explicit formulas for the numbers ηh(m) can now be obtained by iterating the recursion
given in Theorem 7.

Corollary 8 (the case h ∈ N). Let h ∈ N and m ∈ N, m ≥ 3h − 1. Then the number of
non-orientable precubic unicellular maps of type h with 2m+ 1 edges equals:

ηh(m) = ch

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

ch · (2m)!

6hm!(m+ 1− 3h)!
(5)

where ch = 3 · 23h−2 h!

(2h)!

h−1∑

l=0

(
2l

l

)
16−l.
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Corollary 9 (the case h 6∈ N). Let h ∈ {1
2 ,

3
2 ,

5
2 , . . .} and m ∈ N, m ≥ 3⌊h⌋ − 1. Then the

number of non-orientable precubic unicellular maps of type h with 2m edges equals:

ηh(m) =
4⌊h⌋

(2h− 1)(2h − 3) . . . 1

(
m− 1

3, 3, . . . , 3,m− 1− 3⌊h⌋

)
× η1/2(m)

=
4m+⌊h⌋−1(m− 1)!

6⌊h⌋(2h− 1)!!(m − 1− 3⌊h⌋)! .

From Corollaries 8 and 9 one gets ηh(m) ∼m→∞ kh 4
mm3h−3/2, where kh = ch

6h
√
π
if

h ∈ N, and kh = 4h−3/2

6h−1/2(2h−1)!!
otherwise.

Proof of Corollary 8. It follows by induction on h and Equations (3) and (4) that the
statement of Equation (5) holds, with the constant ch defined by the recurrence c0 = 0
(since there is no non-orientable map of type 0) and ch = λh−1ch−1 + ah−1, with λh−1 =

4
2h−1 and ah−1 = 3

(2h−1)(2h−2)!! = 3
2h−1(h−1)!(2h−1)

. The solution of this recurrence is

ch =
∑h−1

l=0 alλl+1λl+2 . . . λh−1. Now, by definition, the product alλl+1λl+2 . . . λh−1 equals
3·4h−1−l

2ll!(2l+1)(2l+3)(2l+5)...(2h−1)
. Using the expression 1

(2l+1)(2l+3)...(2h−1) =
2hh!
2h! ·

(2l)!
2ll!

and report-

ing it in the sum gives the expression of ch given in Corollary 8.

Proof of Corollary 9. Since for non-integer h we have ξh−1(m) = 0, the first equality is
a direct consequence of an iteration of Theorem 7. Therefore the only thing to prove is
that the number η1/2(m) of precubic maps in the projective plane is 4m−1. This can be
done by induction on m via an adaptation of Rémy’s bijection [11]. For m = 1, we have
η1/2(m) = 1 (the only map with two edges is made of an edge joining the root-leaf to a
node and of a twisted loop incident to this node). For the induction step, observe that
precubic projective unicellular maps with one distinguished non-root leaf are in bijection
with precubic projective unicellular maps with one leaf less and a distinguished edge-side:
too see that, delete the distinguished leaf, transform the remaining vertex of degree 2 into
an edge, and remember the side of that edge on which the original leaf was attached.
Since a projective precubic unicellular map with 2m edges has m− 1 non-root leaves and
4m edge-sides, we obtain for all m ≥ 1 that mη1/2(m + 1) = 4mη1/2(m), and the result
follows.

Remark. Before closing this subsection we point out that the bijection à la Rémy
presented in the proof of Corollary 9 can be adapted to any surface. Such a bijec-
tion implies that the number ηh(m) of maps on a surface of integer type h satisfies
(m + 1 − 3h)ηh(m) = 2(2m − 1)ηh(m − 1). This recursion on m imposes the general
form of the numbers ηh(m):

ηh(m) =
2m(2m− 1)

m(m− 3h+ 1)
ηh(m− 1) = . . . = Kh

(2m)!

m!(m− 3h+ 1)!

for the constant Kh = mmin!
(2mmin)!

ηh(mmin), where mmin = 3h − 1. Similarly, for non-integer

type h, one gets (m− 1− 3⌊h⌋)ηh(m) = 2(2m− 2)ηh(m− 1), hence

ηh(m) =
4(m− 1)

(m− 1− 3⌊h⌋)ηh(m− 1) = . . . = Kh
4m(m− 1)!

(m− 1− 3⌊h⌋)! ,
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for the constant Kh = 1
43⌊h⌋+1mmin!

ηh(mmin), where mmin = 3⌊h⌋ + 1. Observe however

that the approach à la Rémy is not sufficient to determine explicitly the value of ηh(mmin).

3.2 The asymptotic number of general unicellular maps.

In this subsection we derive the asymptotic number of arbitrary (i.e., non-necessarily pre-
cubic) unicellular maps of given type (the type is fixed, the number of edges goes to
infinity). The expression of these asymptotic numbers was already given in [1] in terms of
the number of unicellular cubic maps (maps with vertices of degree 3) of the same type
(see also [4] for the orientable case). Moreover, the number of unicellular cubic maps of
type h is easily seen to be ηh(mmin), where mmin = 3h−1+ 1

21h/∈N, hence can be obtained
from Corollaries 8 and 9. The goal of this subsection is rather to explain how to adapt the
opening bijections described in Subsection 2.3 to (almost all) arbitrary unicellular maps.

Let m be a unicellular map of type h. The core of m is the map obtained by deleting
recursively all the leaves of m (until every vertex has degree at least 2). Clearly, the core
is a unicellular map of type h formed by paths of vertices of degree 2 joining vertices of
degree at least 3. The scheme of m is the map obtained by replacing each of these paths
by an edge, so that vertices in the scheme have degree at least 3. We say that a unicellular
map is dominant if the scheme is cubic (every vertex has degree 3).

Proposition 10 ([4, 1]). Let h ∈ 1
2N. Then, among non-orientable unicellular maps of

type h with n edges, the proportion of maps which are dominant tends to 1 when n tends
to infinity.

The idea behind that proposition is the following. Given a scheme s, one can easily
compute the generating series of all unicellular maps of scheme s (there is only a finite
number of schemes), by observing that these maps are obtained by substituting each edge
of the scheme with a path of trees. A generating function approach then easily shows
that the schemes with maximum number of edges are the only one contributing to the
asymptotic number of unicellular maps. These schemes are precisely the cubic ones.

The opening bijection of Subsection 2.3 can be adapted to dominant unicellular maps
as follows. Given a dominant map m of type h and scheme s, and v an intertwined node
of s, we can define the opening operation of m at v by splitting the vertex v in three,
and deciding on a convention on the redistribution of the three “subtrees” attached to the
scheme at this point (Figure 4): one obtains a dominant map n of type h − 1 with three
distinguished vertices. These vertices are not any three vertices: they have to be in general
position in n (i.e., they cannot be part of the core, and none can lie on a path from one
to another), but again, in the asymptotic case this does not make a big difference: when
n tends to infinity, the proportion of triples of vertices which are in general position tends
to 1. We do not state here the asymptotic estimates that can make the previous claims
precise (they can be copied almost verbatim from the orientable case [3]), but rather we
state now our asymptotic theorem:

Theorem 11. Let κh(n) be the number of non-orientable rooted unicellular maps of type
h with n edges. Then one has, when n tends to infinity:

(2h− 1)κh(n) ∼ 4
n3

3!
κh−1(n) + 3

n3

3!
ǫh−1(n)
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where ǫh(n) denotes the number of orientable rooted unicellular maps of genus h with n
edges. Therefore,

κh(n) ∼n→∞
ch√
π6h

n3h− 3

24n if h ∈ N, κh(n) ∼n→∞
4⌊h⌋

2 · 6⌊h⌋(2h− 1)!!
n3h− 3

2 4n if h 6∈ N.

where the constant ch is defined in Corollary 8.

We recall for comparison that the number of orientable rooted unicellular maps of type

h with n edges satisfies ǫh(n) ∼n→∞
n3h−3/24n

12hh!
√
π
.

4 The average number of intertwined nodes

In this section we prove Proposition 6 stating that the average number of intertwined
nodes among precubic unicellular maps of type h and size m is exactly (2h− 1):

η•h(m) = (2h− 1)ηh(m). (6)

Let us emphasize the fact that the number of intertwined nodes is not a constant over
the set of unicellular precubic maps of given type and number of edges. For instance,
among the six maps with 5 edges on the Klein bottle N1, three maps have 2 intertwined
nodes, and three maps have none; see Figure 7. As stated in Proposition 6, our strategy
to prove Equation (6) is to exhibit an involution Φ from the set Nh(m) to itself, such that
for any given map m, the total number of intertwined nodes in the maps m and Φ(m) is
4h(m)− 2. Observe from Figure 7 that the involution Φ cannot be a simple re-rooting of
the map m.

Figure 7: The precubic unicellular maps with 5 edges on the Klein bottle (the root is
incident to the unique leaf). Intertwined nodes are indicated as white vertices.

Before defining the mapping Φ, we relate the number of intertwined nodes of a map to
certain properties of its twists. Let m be a (canonically oriented) precubic map, and let e
be an an edge of m which is a twist. Let c be the corner incident to e which appears first in
the tour of m. We say that e is left-to-right if c is a left-corner, and that it is right-to-left
otherwise (see Figure 8). In other words, the twist e is left-to-right if it changes the side
of the corners from left, to right, when it is crossed for the first time in the tour of the
map (and the converse is true for right-to-left twists).

Lemma 12. Let m be a precubic unicellular map of type h(m), considered with its canonical
orientation convention. Then, its numbers τ(m) of intertwined nodes, TLR(m) of left-to-
right twists, and TRL(m) of right-to-left twists are related by:

τ(m) = 2h(m) + TRL(m)− TLR(m). (7)
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left-to-right

right-to-left

root
root

(a) (b)

Figure 8: Two maps on the Klein Bottle N1 and their intertwined nodes (white vertices).
The number of twists are (a) TLR(m) = 1, TRL(m) = 1; (b) TLR(m) = 2, TRL(m) = 0.

Proof. We first define the label of a corner of m as the element of {1, . . . , 2e(m)} indicating
the position of appearance of this corner during the tour of the map: the root corner has
label 1, the corner that follows it in the tour has label 2, etc... We say that a corner of
m is a descent if it is followed, counterclockwise around its vertex, by a corner of smaller
or equal canonical label, and that it is an ascent otherwise. We let dsc(m) and asc(m) be
the total numbers of descents and ascents in m, respectively. We will now compute the
difference dsc(m) − asc(m) in two different ways: one by summing over edges, the other
by summing over vertices (extending the ideas used in [2] for the orientable case).

To each edge e = (v1, v2) of m we associate the two (distinct) corners c1, c2 incident to
the vertices v1 and v2 respectively and following e clockwise around their vertex. Clearly
this, creates a partition of the set of corners of m and we can compute dsc(m)− asc(m) by
adding the contribution of each edge. Let e = (v1, v2) be an edge. For i = 1, 2 we denote
by li the label of ci and by l′i the label of the other corner incident to vi and e (l′i = li if
vi is a leaf). Up to exchanging v1 and v2, we can assume that l1 < l2. We now examine
five cases:
• e is the root edge of m; Figure 9(a). Since v1 is a leaf, the edge e is two-ways hence not a
twist and incident to left-corners only. We get l1 = l′1 = 1, l2 = 2e(m), and l′2 = 2. Hence
both c1 and c2 are descents.
• e is not the root edge, is not a twist, and is two-ways; Figure 9(b). In this case, we know
by Lemma 2 that all the corners are left, from which (l′1, l

′
2) = (l2 + 1, l1 + 1). Therefore

c1 is an ascent and c2 is a descent.
• e is not the root edge, is not a twist, and is one-way; Figure 9(c). In this case, we have
(l′1, l

′
2) = (l2 − ǫ, l1 + ǫ), where ǫ = 1 or −1 according to whether c1 is a left or a right

corner. In both cases, c1 is an ascent and c2 is a descent (observe that v1 cannot be a leaf
by Lemma 2, hence l1 6= l′1).
• e is a right-to-left twist; Figure 9(d). In this case, l1 < l2 implies that e is followed from
v1 to v2. By definition of a right-to-left twist, l′1 < l1 hence c1 is an descent. Moreover,
l2 = l1 + 1 and l′2 = l′1 + 1, therefore c2 is also a descent.
• e is a left-to-right twist; Figure 9(e). This case is similar to the previous one. The corner
c1 is necessarily ascent, and since l2 = l1+1 and l′2 = l′1+1, the corner c2 is also an ascent.

l1=l′
1
=1

l′
2
=2

l2=2e(m)

tour l1

l2

l1

l2

l1<l′
1

l2=l1+1

l1

l′
1
=l2+1

l′
2
=l1+1

l′
1
=l2−ǫ

l′
2
=l1+ǫ

l′
1

l′
2
=l′

1
+1

l2=l1+1l′
1
<l1

l′
2
=l′

1
+1

(a) (b) (c) (e)(d)ǫ=1

ǫ=−1

Figure 9: The five cases of the proof of Lemma 12.



O. Bernardi, G. Chapuy – Counting unicellular maps on non-orientable surfaces. 15

Expressing the difference dsc(m)−asc(m) as a sum over all edges of m, we obtain from
the five cases above:

dsc(m)− asc(m) = 2 + 0 + 0 + 2TRL(m)− 2TLR(m) = 2
(
1 + TRL(m)− TLR(m)

)
.

Using the fact that dsc(m) + asc(m) = 2e(m), we obtain the total number of descents in
m which is dsc(m) = e(m) + 1 + TRL(m)− TLR(m).

Now, there is another way of counting the descents. Indeed, since by definition each
non-intertwined node has exactly one descent, and each intertwined node has exactly two
of them, one gets: dsc(m) = 2τ(m) + (v(m) − τ(m)). Solving for τ(m) and using the
previous expression for dsc(m) gives

τ(m) = dsc(m)− v(m) = e(m) + 1− v(m) + TRL(m)− TLR(m).

The lemma then follows by applying Euler’s formula.

We now define the promised mapping Φ averaging the number of intertwined nodes.
Let m be a unicellular precubic map on a non-orientable surface. We consider the canonical
orientation convention for the map m, which defines a rotation system and set of twists.
The set of twists is non-empty since the map m lives on a non-orientable surface. By cutting
every twist of m at their middle point, one obtains a graph together with a rotation system
and some dangling half-edges that we call buds. The resulting embedded graph with buds,
which we denote by m̂, can have several connected components and each component (which
is a map with buds) can have several faces; see Figure 10. We set a convention for the
direction in which one turns around a face of m̂: the edges are followed in such a way
that every corner is left (this is possible since m̂ has no twist). For any bud b of m̂, we let
σ(b) be the bud following b when turning around the face of m̂ containing b. Clearly, the
mapping σ is a permutation on the set of buds. We now define Φ(m) to be the graph with
rotation system and twists obtained from m̂ by gluing together into a twist the buds σ(b)
and σ(b′) for every pair of buds b, b′ forming a twist of m. The mapping Φ is represented
in Figure 10.

1

2

root

3

4

5

6

7

8

9

10 root

11

12

13

14 Φ

1

10

3

14 9

2

13

8

7

12

11 6

4 5

Figure 10: A unicellular map m and its image by the mapping Φ. The twists are indicated
by (partially) dotted lines, while the map m̂ is represented in solid lines.
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Before proving that Φ(m) is a unicellular map, we set some additional notations. We
denote by k the number of twists of m and we denote by w(m) = w1w2 · · ·w2k+1 the
sequence of corners encountered during the tour of m, where the subsequences wi and
wi+1 are separated by the traversal of a twist for i = 1 . . . 2k. Observe that corners in wi

are left corners of m if i is odd, and right corners if i is even (since following a twist leads
from a left to a right corner or the converse). Hence, the sequence of corners encountered
between two buds around a face of m̂ are one of the sequences w′

1, w
′
2, . . . , w

′
2k, where

w′
1 = w2k+1w1, and for i > 1, w′

i = wi if i is odd and w′
i = wi otherwise (where wi is the

mirror sequence of wi obtained by reading wi backwards). We identify the buds of m̂ (i.e.
the half-twists of m or Φ(m)) with the integers in {1, . . . , 2k} by calling i the bud following
the sequence of corners w′

i around the faces of m̂. This labelling is indicated in Figure 10.
We will now consider the permutation σ as a permutation on {1, . . . , 2k} and we denote
r = σ−1(1). The map in Figure 10 gives σ = (1, 8, 13, 2, 9, 14, 3, 10)(4, 11, 6, 5)(7, 12) and
r = 10. We first prove a technical lemma.

Lemma 13. The permutation σ maps odd to even integers. In particular, r = σ−1(1) is
even.

Proof. By Lemma 2, all twists of m are one-way. Hence, every bud of m̂ is incident both
to a left corner and to a right corner of m. The lemma therefore follows from the fact that
left and right corners of m belong to the sequences w′

i for i odd and i even respectively.

We are now ready to prove that Φ(m) is unicellular and a little more. In the following,
we denote by i the representative of an integer i modulo 2k belonging to {1, . . . , 2k}.

Lemma 14. The embedded graph Φ(m) is a unicellular map. Moreover, the rotation
system and set of twists of Φ(m) inherited from m correspond to the canonical orientation
convention of Φ(m). Lastly, the sequence of corners encountered during the tour of Φ(m)
reads v1v2 . . . v2k+1, where the subsequences vi separated by twist traversals are given by
vi = wσ(r+1−i) for all i = 1, . . . , 2k, and v2k+1 = w2k+1.

Proof. We consider, as above, the map m with its canonical orientation convention and
the map Φ(m) with the orientation convention inherited from m. We denote by α the
(fixed-point free) involution on {1, . . . , 2k} corresponding to the twists of m. That is to
say, α(i) = j if the half-edges i, j form a twist of m. We also denote by β = σασ−1 the
involution corresponding to the twists of Φ(m).
Fact 1: For i ∈ {1, . . . , 2k}, α(i) = i + 1 if i is odd (hence, α(i) = i − 1 if i is even).
Similarly β(i) = i+ 1 if i is even (hence β(i) = i− 1 if i is odd).
To prove Fact 1, recall that w1, . . . , wn denote the sequences of corners, encountered in
that order during the tour of m. If i ∈ {2, 3, . . . , 2k} is odd (resp. even), then the sequence
of left corners wi = w′

i (resp. right corners wi = w′
i) goes from the bud σ−1(i) to the

bud i (resp. from the bud i to the bud σ−1(i)) during the tour of m; see Figure 11.
Hence, if i ∈ {1, 2 . . . 2k} is odd, the twist of m traversed between wi and wi+1 is made
of the half-twists i and i + 1, while if i is even it is made of the half-twists σ−1(i) and
σ−1(i+ 1). From the odd case, one gets α(i) = i+ 1 if i is odd. From the even case, one
gets α(σ−1(i)) = σ−1(i+ 1) if i is even. That is, β(i) ≡ σασ−1(i) = i+ 1 if i is even.

We now denote by v1v2v3 . . . vℓ+1 the sequence of corners encountered by following the
edges of Φ(m) starting and ending at the root corner (tour of the face of Φ(m) containing
the root), where the subsequences vi and vi+1 are separated by a twist traversal. Clearly,
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wi+1

tour

(a) i odd. (b) i even.

wi
i

i + 1 wi+1

tour

wi σ
−1(i)

σ
−1(i + 1)

Figure 11: Proof of Fact 1.

vi+1

tour

(a) i odd. (b) i even.

vi
φ(i)

φ(i + 1) vi+1

tour

vi σ−1(φ(i))

σ−1(φ(i + 1))

Figure 12: Proof of Fact 2.

v1 = w1, vℓ+1 = w2k+1 and for i = 1 . . . ℓ+ 1 the corners in vi are left corners of Φ(m) if
and only if i is odd. For i = 1 . . . ℓ, we denote v′i = vi if i is odd and v′i = vi otherwise,
so that each of the sequences v′1 belongs to {w′

1, . . . , w
′
2k}. For i = 1 . . . ℓ, we denote by

φ(i) the bud following v′i around the faces of m̂. Then, the same reasoning as above (see
Figure 12) proves:
Fact 2: For i = 1, . . . , ℓ− 1, β(φ(i)) = φ(i+ 1) if i is odd, and σβσ−1(φ(i)) = φ(i+ 1) if
i is even.

Fact 3: If φ(i) = σ(j) for certain integers 1 ≤ i < ℓ and 1 < j ≤ 2k of different parity,
then φ(i+ 1) = σ(j − 1).
The Fact 3 is easily proved by the following case analysis. If i is odd, then

φ(i+ 1) = β(φ(i)) = β(σ(j)) = σα(j) = σ(j − 1),

where the first and last equalities are given by Fact 2 and Fact 1 respectively. Similarly,
if i is even

φ(i+ 1) = σβσ−1(φ(i)) = σβσ−1(σ(j)) = σβ(j) = σ(j − 1).

We now consider the relation φ(1) = 1 = σ(r) and recall that 1 and r are of different
parity by Lemma 13. Then Fact 3 implies by induction that φ(i) = σ(r + 1− i) for
i = 1 . . . ℓ. This proves that v′i = w′

σ(r+1−i)
for i = 1 . . . ℓ. Since i and σ(r + 1− i)

have the same parity (by Lemma 13), this also gives vi = wσ(r+1−i) for i = 1 . . . ℓ. In
particular, for i = ℓ, one gets vℓ = wσ(r+1−ℓ). Moreover, by definition vℓ+1 = w2k+1, hence

vℓ = wσβ(r). Hence, β(r) = r + 1− ℓ. Since r is even, β(r) = r + 1 (by Fact 1), hence
ℓ = 2k.

The sequence v1v2 . . . v2k+1 contains all the corners of Φ(m). Hence, Φ(m) is a uni-
cellular map. Moreover, a corner is left for the map m (resp. the map Φ(m) considered
with its orientation convention inherited from m) if and only if it belongs to a sequence wi

(resp. vi = wσ(r+1−i)) for an odd integer i. Since i and σ(r + 1− i) have the same parity
a corner is left for m if and only if it is left for Φ(m). This shows that the orientation
convention of Φ(m) inherited from m is the canonical convention of Φ(m).

We now make the final strike by considering the action of Φ on the set Nh(m) of
non-orientable maps of type h.

Proposition 15. Let m be a positive integer and h be in {1/2, 1, 3/2, . . .}. The mapping
Φ is a bijection from the set Nh(m) to itself. Moreover, for every map m in Nh(m), the
total number of intertwined nodes in the maps m and Φ(m) is 4h− 2.
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Proof. Clearly, the maps m and Φ(m) have the same number of edges and vertices. Hence,
they have the same type by Euler formula. Moreover, they both have k > 0 twists (for
their canonical convention) hence are non-orientable. Thus, Φ maps the set Nh(m) to
itself. To prove the bijectivity (i.e. injectivity) of Φ, observe that for any map m, the

embedded graphs m̂ and Φ̂(m) are equal; this is because the canonical rotation system and
set of twists of m and Φ(m) coincide. In particular, the permutation σ on the half-twists
of m can be read from Φ(m). Hence, the twists of m are easily recovered from those of
Φ(m): the buds i and j form a twist of m if σ(i) and σ(j) form a twist of Φ(m).

We now proceed to prove that the total number of intertwined nodes in m and Φ(m)
is 4h − 2. By Lemma 12, this amounts to proving that TLR(m) − TRL(m) + TLR(Φ(m)) −
TRL(Φ(m)) = 2. Since m and Φ(m) both have k twists, TLR(m) − TRL(m) + TLR(Φ(m)) −
TRL(Φ(m)) = 2(TLR(m)+TLR(Φ(m))− k). Hence, we have to prove TLR(m)+TLR(Φ(m)) =
k + 1.

Let i be a bud of m̂, let t be the twist of m containing i, and let c, c′ be the corners
preceding and following i in counterclockwise order around the vertex incident to i. By
definition, the twist t of m is left-to-right if and only if c appears before c′ during the tour
of m. Given that the corners c and c′ belong respectively to the subsequences wi and wσ(i)

(except if i = r in which case σ(i) = 1 and c′ is in w2k+1), the twist t is left-to right if and
only if i < σ(i) or i = r (and these two possibillities are disjoint since σ(r) = 1).

Let us now examine under which circumstances the bud σ(i) is part of a left-to-right
twist of Φ(m). The corners d and d′ preceding and following the bud σ(i) in counter-
clockwise order around the vertex incident to σ(i) belong respectively to wσ(i) and wσσ(i)

(except if σ(i) = r, in which case σσ(i) = 1 and c′ belongs to w2k+1). By Lemma 14,
wσ(i) = vr+1−i for i = 1 . . . 2k. Therefore, the twist t′ of Φ(m) containing σ(i) is left-to-

right (for m̂) if and only if r + 1− i < r + 1− σ(i) or σ(i) = r (and these two possibillities
are disjoint since σ(i) = r implies r + 1− σ(i) = 1).

The two preceding points gives the number TLR(m) + TLR(Φ(m)) of left-to right twists
as

TLR(m) + TLR(Φ(m)) = 1 + 1
2

∑2k
i=1 δ(i),

where δ(i) = 1i<σ(i) + 1r+1−i<r+1−σ(i) is the sum of two indicator functions (the factor

1/2 accounts for the fact that a twist has two halves). The contribution δ(i) is equal to 2
if i ≤ r < σ(i), 0 if σ(i) ≤ r < i, and 1 otherwise. Finally, there are as many integers i
such that i ≤ r < σ(i) as integers such that σ(i) ≤ r < i (true for each cycle of σ). Thus,∑2k

i=1 δ(i) = 2k, and TLR(m) + TLR(Φ(m)) = k + 1.

The last Proposition is sufficient to establish Equation (6), and the enumerative results
of Section 3. However, Proposition 6 was saying a little bit more, namely that the bijection
Φ can be chosen as an involution:

Proof of Proposition 6. Observe that, as we defined it, the bijection Φ is not an involution.
But one can easily define an involution from Φ, as the mapping acting as Φ on elements
m of Nh(m) such that τ(m) > 2h− 1, acting as Φ−1 if τ(m) < 2h− 1, and as the identity
if τ(m) = 2h− 1.
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