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We perform the asymptotic enumeration of two classes of rooted maps on orientable
surfaces: m-hypermaps and m-constellations. For m = 2 they correspond respectively
to maps with even face degrees and bipartite maps. We obtain explicit asymptotic
formulas for the number of such maps with any finite set of allowed face degrees.

Our proofs combine a bijective approach, generating series techniques related to
lattice walks, and elementary algebraic graph theory.

A special case of our results implies former conjectures of Z. Gao.
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1. Introduction

Maps are combinatorial objects which describe the embedding of a graph in a surface. The
enumeration of maps began in the sixties with the work of Tutte, in the series of papers
[24, 25, 23, 26]. By analytic techniques, involving recursive decompositions and non trivial
manipulations of power series, Tutte obtained beautiful and simple enumerative formulas
for several families of planar maps. His techniques were extended in the late eighties
by several authors to more sophisticated families of maps or to the case of maps of
higher genus. Bender and Canfield [3, 4] obtained the asymptotic number of maps on a
given orientable surface. Gao [14] obtained formulas for the asymptotic number of 2k-
angulations on orientable surfaces, and conjectured a formula for more general families
(namely maps where the degrees of the faces are restricted to lie in a given finite subset
of 2N).

A few years later, Schaeffer [22], following the work of Cori and Vauquelin [11], gave in
thesis a bijection between planar maps and certain labelled trees which enables to recover
the formulas of Tutte, and explains combinatorially their remarkable simplicity. This
bijection has attracted a lot of interest in probability and physics, since it also enables to
study geometrical aspects of large random maps [10, 16, 18, 8, 20, 17]. Moreover, it has
been generalised in two directions. First, Bouttier, Di Francesco, and Guitter [7] gave
a construction that generalises Schaeffer’s bijection to the large class of Eulerian maps,
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which includes for example maps with restricted face degrees, or constellations. Secondly,
Marcus and Schaeffer [19] generalised Schaeffer’s construction to the case of maps drawn
on orientable surfaces of any genus, opening the way to a bijective derivation [9] of the
results of Bender and Canfield.

The first purpose of this article is to unify the two generalisations of Schaeffer’s bijec-
tion: we show that the general construction of Bouttier, Di Francesco, and Guitter stays
valid in any genus, and involves the same kind of objects as developped in [19]. Our sec-
ond (and main) task is then to use this bijection to perform the asymptotic enumeration
of several families of maps, namely m-constellations and m-hypermaps. These maps will
be defined later, but we can mention now that for m = 2, they correspond respectively
to bipartite maps, and maps with even face degrees. In particular, a special case of our
results implies the conjectures of Gao [14].

Apart of the generalized Bouttier–Di Francesco–Guitter bijection, our paper is based
on a decomposition of the objects inherited from that bijection inspired from a previous
work of Marcus, Schaeffer and the author [9]. In our case, this decomposition leads to the
study of of certain lattice paths. Considering the generating series of these paths (which
turn out to be algebraic), and inverting the decomposition, we express the generating
series of m-hypermaps or constellations of genus g as a rational function of the roots
of a certain characteristic polynomial. We finally perform the singularity analysis of the
series, from which we deduce asymptotic formulas via transfer theorems.

2. Outline of the paper

Since the decomposition of maps presented in this paper is rather long and contains
several details, we begin with a general description of the different sections which will,
we hope, enlight the presentation.

- Section 3: we give several definitions related to maps on surfaces, and we state our
two main results (Theorems 3.1 and 3.2).

- Section 4: we present the generalized version of the Bouttier–Di Francesco–Guitter
bijection, which relates Eulerian maps of genus g with one distinguished vertex to
certain objects called g-mobiles (Theorem 4.3). These objects are maps of genus g with
one face carrying several types of vertices and edges, which are labelled by integers.
The construction is similar to the planar case, only the proof of Lemma 4.1 is specific
to positive genus.

- Section 5: the purpose of this section is to present the two main building blocks of
mobiles, which are elementary stars and cells (these are certain sorts of star-graphs
carrying labels on their vertices). We introduce the notion of an m-walk, which is a
certain kind of lattice walk that describes the succession of the labels of vertices around
elementary stars (these walks already appear implicitely in [7]).

- Section 6: we present the main decomposition of this paper. Each mobile can be
decomposed into the following building blocks: a forest of planar mobiles, a certain
number of lattice paths (whose elementary steps are precisely the cells of Section 5),
and one full-scheme. The full-scheme is a sort of ”skeleton” of the mobile, and contains
also several decorations, which make the decomposition reversible (Proposition 6.6).
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An important fact is that for each genus, the number of possible full-schemes is finite.
(Lemma 6.5).

- Section 7: we study in details the characteristic polynomial, which is the generating
polynomial of cells, with two variables (for the size and the increment). In order to
study lattice walks whose steps are given by the cells, we study in details the behaviour
of the roots of the characteristic polynomial; we also compute the values of several of
its partial derivatives at the critical point.

- Section 8: using the decomposition previously stated, and a suitable resummation of
the expressions of Section 7, we manage to express the generating series of g-mobiles
as a rational fraction in the roots of the characteristic polynomial (Section 8.2). Then,
we perform the singular analysis of the series at its radius of convergence: we show
that only the principal root contributes to the singularity, thanks to a study of the
cancellations of the contributions between conjugate roots (Proposition 8.4).

- Section 9: we compute explicitely the contribution to the generating series of mo-
biles, of the decorations which appear in the full-schemes. Finally, our last step is
a ”depointing lemma” (Lemma 9.4), which relates the asymptotic number of rooted
maps with a distinguished vertex (which is what we inherit from the bijection) to the
number of maps which are only rooted. We conclude the paper by several corollaries
which concern special cases of our main results, for example Gao’s conjecture or non
degree-restricted m-constellations.

Constellations vs hypermaps: In all the paper, we treat simultaneously the cases of
m-hypermaps and m-constellations (which are a special case of m-hypermaps). To this
end, we define in Section 6 the type of a m-hypermap, which is some element of a Z/mZ
vector space of dimension 2g; constellations correspond to m-hypermaps whose type is
the null vector. In the paper, all the building blocks (elementary stars and cells), and
corresponding generating series, are considered under different versions which depend on
the type of the underlying hypermap; we make as explicit as possible the relations between
blocks of different types (Proposition 7.5). At the very end (Section 9), we discover that
the contributions of the different building blocks are well balanced, and that in very
large m-hypermaps, all the possible types are equally likely. In particular, in the large
size limit, m-constellations form an asymptotic proportion 1/m2g of all m-hypermaps
(Theorem 3.2).

3. Definitions and main results

Let Sg be the torus with g handles. A map on Sg (or map of genus g) is a proper
embedding of a finite graph G in Sg such that the maximal connected components of
Sg \G are simply connected regions. Multiple edges and loops are allowed. The maximal
simply connected components are called the faces of the map. The degree of a face is the
number of edges incident to it, counted with multiplicity. A corner consists of a vertex
together with an angular sector adjacent to it.

We consider maps up to homeomorphism, i.e. we identify two maps such that there
exists an orientation preserving homeorphism that sends one to another. In this setting,
maps become purely combinatorial objects (see [21] for a detailed discussion on this
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fact). In particular, there are only a finite number of maps with a given number of edges,
opening a way to enumeration problems.

All the families of maps considered in this article will eventually be rooted (which
means that an edge has been distinguished and oriented), pointed (when only a vertex
has been distinguished), or both rooted and pointed. In every case, the notion of oriented
homeomorphism involved in the definition of a map is adapted in order to keep trace of
the pointed vertex or rooted edge.

The first very useful result when working with maps on surfaces is Euler characteristic
formula, that says that if a map of genus g has f faces, v vertices, and n edges, then we
have:

v + f = n + 2− 2g.

An Eulerian map on Sg is a map on Sg, together with a colouring of its faces in black
and white, such that only faces of different colours are adjacent. By convention, the root
of an Eulerian map will always be oriented with a black face on its right. This article
will mainly be concerned with two special cases of Eulerian maps, namely m-hypermaps
and m-constellations.

Definition. Let m ≥ 2 be an integer. An m-constellation on Sg is a map on Sg, together
with a colouring of its faces in black and white such that:

(i) only faces of different colours are adjacent.
(ii) black faces have degree m, and white faces have a degree which is a multiple of m.
(iii) every vertex can be given a label in {1, . . . ,m} such that around every black face, the

labels of the vertices read in clockwise order are exaclty 1, . . . ,m.

A map that satisfies conditions (i) and (ii) is called a m-hypermap.

It is a classical fact that in the planar case, conditions (i) and (ii) imply condition (iii), so
that all planar m-hypermaps are in fact m-constellations; however, this is not the case in
higher genus. Observe that 2-hypermaps are in bijection with maps whose all faces have
even degree (in short, even maps). This correspondence relies on contracting every black
face of the 2-hypermap to an edge of the even map. Observe also that this correspondence
specializes to a bijection between 2-constellations and bipartite maps. This makes m-
constellations and m-hypermaps a natural object of study. For previous enumerative
studies on constellations, and for their connection to the theory of enumeration of rational
functions on a surface, see [15],[6].

In the rest of the paper, m ≥ 2 will be a fixed integer, and D ⊂ N>0 will be a non-empty
and finite subset of the positive integers. If m = 2, we assume furthermore that D is not
reduced to {1}. A m-hypermap with degree set mD is an m-hypermap in which all white
faces have a degree which belongs to mD. The same definition holds for constellations.
For example, a 2-constellation of degree set 2{2} is (up to contracting black faces to
edges) a bipartite quadrangulation. Finally, the size of an m-hypermap is its number of
black faces.

Our main results are the two following theorems:
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Theorem 3.1. The number cg,D,m(n) of rooted m-constellations of genus g, degree set
mD, and size n satisfies:

cg,D,m(n) ∼ tg
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and the constant tg is defined in [3].

Theorem 3.2. The number hg,D,m(n) of rooted m-hypermaps of degree set mD and
size n on a surface of genus g satisfies:

hg,D,m(n) ∼ m2gcg,M,D(n)

when n tends to infinity along multiples of gcd(D).

Observe that Theorem 3.2 can be reformulated as follows: the probability that a large
m-hypermap of genus g is an m-constellation tends to 1/m2g. To our knowledge, this fact
had only been observed in the case of quadrangulations (which are known to be bipartite
with probability ∼ 1/4g, see [2] and references therein). Putting Theorems 3.1 and 3.2
together gives an asymptotic formula for the number hg,D,m(n), which was already proved
by Gao in the case where m = 2 and D is a singleton, and conjectured for m = 2 and
general D in the paper [14]. All the other cases were, as far as we know, unknown.

4. The Bouttier–Di Francesco–Guitter bijection on an orientable surface.

In this section, we describe the Bouttier–Di Francesco–Guitter bijection on Sg. This con-
struction has been introduced in [7], as a generalisation of the Cori-Vauquelin-Schaeffer
bijection, and provides a correspondence between planar maps and plane trees. Here, we
unify this generalisation with the generalisation of [19], where the classical bijection of
Cori, Vauquelin, and Schaeffer is extended to any genus.

All the constructions are local and are similar to the planar case. The proof that the
construction is well defined (Lemma 4.1) is an adaptation of the one of [19], and is
different from the one of [7], that uses the planarity. After that, everything (Lemma 4.2)
is already contained in [7]. Therefore, we will not state all proofs.
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Figure 1. The Bouttier–Di Francesco–Guitter construction.

4.1. From Eulerian maps to mobiles.
Let m be a rooted and pointed Eulerian map on Sg (i.e. m has at the same time a root
edge and a distinguished vertex).

The BDFG construction:

(1) orientation and labelling. First, we orient every edge of m in such a way that it has
a black face on its right. Then, we label each vertex v of m by the minimum number
of oriented edges needed to reach it from the pointed vertex. Observe that along
an oriented edge, the label can either increase by 1, or decrease by any nonnegative
integer.

(2) local construction. First, inside each face of m, we add a new vertex of the colour
of the face. Then, inside each white face F of m, and for all edge e adjacent to F , we
procede to the following construction (see Figure 1):

• if the label increases by 1 along e, we add a new edge between the unlabelled white
vertex at the center of F and the extremity of e of greatest label.

• if the label decreases by τ ≥ 0 along e, we add an new edge between the two central
vertices lying at the centers of the two faces separated by e. Moreover, we mark
each side of this is edge with a flag, which is itself labelled by the label in m of the
corresponding extremity of e, as in Figure 1.

(3) erase original edges. We let m̄ be the map obtained by erasing all the original edges
of m and the pointed vertex v0 (i.e. the map consisting of all the new vertices and
edges added in the construction, and all the original vertices of the map except the
pointed vertex).

(4) choose a root and shift labels. We define the root of m̄ as the edge associated
to the root edge of m in the above construction; we orient it such that it leaves a
white unlabelled vertex. The root label is either the label of the only labelled vertex
adjacent to the root edge (if it exists), either the label of the flag situated on the left
of the root edge. We now shift all the labels in m̄ by minus the root label, so that
the new root label is 0: we let Mob(m) be the map obtained at this step. A planar
example is shown on Figure 2.

Recall that a g-tree is a map on Sg which has only one face. In the planar case, from
Euler characteristic formula, this is equivalent to the classical graph-theoretical definition
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Figure 2. A rooted and pointed 3-constellation on the sphere, and its associated mobile.

of a tree. However, in positive genus, a g-tree always has cycles, and therefore will never
be a tree, in the graph sense. We have:

Lemma 4.1. Mob(m) is a well-defined map on Sg, and is moreover a g-tree.

Proof. Our proof follows the arguments of [9]. We let m′ be the map consisting of the
original map m and all the new vertices and edges added in the previous construction; to
avoid edge-crossings, each time a flagged edge of Mob(m) crosses an edge of m, we split
those two edges in their middle, and we consider the pair of flags lying in the middle
of the flagged edge as a tetravalent vertex of m′, linked to the four ends created by the
edge-splitting.

It is clear from the construction rules that each black or white unlabelled vertex is
adjacent to at least one flagged edge, so that m′ is a well defined connected map of genus
g. We now let m̂′ be the dual map of m′, and t be the submap of m̂′ induced by the set of
edges of m′ which are dual edges of original edges of m. We now examine the cycles of t.

By convention, we orient each edge of t as follows: if the edge lies between a vertex and
a flag, then we orient it in such a way that it has the flag on its left. If it lies between
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Figure 3. A typical black face, and the four types of white faces of m′. When a cycle of arrows
crosses a face, the label at its right cannot increase. Moreover, it remains constant if and only if
it turns around a single vertex.

two vertices, then we orient it in such a way that it has the vertex of greatest label on
its left. Then by the construction rules (see Figure 3) each face of m′ carries a unique
outgoing edge of t. Hence, if t contains a cycle of edges, it is in fact an oriented cycle.
Moreover, when going along an oriented cycle of edges of t, the label present at the right
of the edge cannot increase (as seen on checking the different cases on Figure 3). Hence
this label is constant along the cycle, and looking one more time at the different cases on
Figure 3, this is possible only if the cycle encircles a single vertex. Such a vertex cannot
be incident to any vertex with a smaller label (otherwise, by the construction rules, an
edge of Mob(m) would cut the cycle), which implies by definition of the labelling by the
distance that the encycled vertex is the pointed vertex v0.

Hence t has no other cycle than the cycle encycling v0. This means that, after removing
v0 and all the original edges of m, one does not create any non simply connected face,
and that Mob(m) is a well defined map of genus g (for a detailed topological discussion
of this implication, see the appendix in [9]).

Finally, let b (resp. w) be the number of black (resp. white) faces of m, and v (resp. e)
be its number of vertices (resp. edges). Then by Euler characteristic formula, one has:

(b + w) + v = e + 2− 2g

Now, by construction, Mob(m) has e edges and b + w + v − 1 vertices. Hence applying
Euler characteristic formula to Mob(m) shows that it has exactly one face, i.e. that it is
a g-tree.

4.2. From mobiles to Eulerian maps
Our definition of a mobile is similar to the one given in [7]:
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Definition. A g-mobile is a rooted g-tree t such that:

i. t has vertices of three types: unlabelled ones, which can be black or white, and labelled
ones carrying integer labels.

ii. edges can either connect a labelled vertex to a white unlabelled vertex, or connect
two unlabelled vertices of different color. The edges of the second type carry on each
side a flag, which is itself labelled by an integer.

iii-w. when going clockwise around a white unlabelled vertex:

• a vertex labelled l is followed by a label l − 1 (either vertex or flag).

• two successive flags of labels l and l′ lying on the same edge satisfy l′ ≥ l; the
second flag is followed by a label l′ (either vertex or flag).

iii-b. when going clockwise around a black unlabelled vertex, two flags of labels l and l′

lying on the same side of an edge satisfy l′ ≤ l; the second flag is followed by a flag
labelled ≥ l′.

iv. The root edge is oriented leaving a white unlabelled vertex. The root label (which is
either the label of the labelled vertex adjacent to the root, if it exists, or the label of
the flag present on its left side) is equal to 0.

One easily checks that the BDFG construction leads to a map that satisfies the condi-
tions above. Hence, thanks to the previous lemma (Lemma 4.1), for every Eulerian map
m, Mob(m) is a g-mobile. We now describe the reverse construction, that associates an
Eulerian map to any g-mobile. This construction takes place inside the unique face of
Mob(m). In particular, we want to insist on the fact that all the work specific to the non
planar case has been done when proving that Mob(m) is a g-tree. Until the end of this
section, everything is similar to the planar case. For this reason, we refer the reader to
[7] for proofs. Let t be a g-mobile. The closure of t is defined as follows:

Reverse construction:

(0) Translate all the labels of t by the same integer in such a way that the minimum label
is either a flag of label 0, or a labelled vertex of label 1.

(1) Add a vertex of label 0 inside the unique face of t. Connect it by an edge to all the
labelled corners of t of label 1, and to all the flags labelled 0.

(2) Draw an edge between each labelled corner of t of label n ≥ 2 and its succesor,
which is the first labelled corner or flag with label n − 1 encountered when going
counterclockwise around t.

(3) Draw an edge between each flag of label n and its succesor, which is the first labelled
corner or flag with label n encountered when going counterclockwise around t.

(4) Remove all the original edges and unlabelled vertices of t.

We call Map(t) the map obtained at the end of this construction. The root of Map(t) is
either the root joining the endpoint of the root of t to its succesor (if it is labelled), or the
edge corresponding to the flags lying on the root edge. The fact that this construction is
reciprocal to the previous one is proved in the planar case in [7], but, as we already said,
every argument stay valid in higher genus. Hence we have:
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Lemma 4.2 ([7]). For every Eulerian map m, one has: Map(Mob(m)) = m For every
g-mobile t, one has: Mob(Map(t)) = t

This proves:

Theorem 4.3. The application Mob defines a bijection between the set of rooted and
pointed Eulerian maps of genus g with n edges and the set of g-mobiles with n edges.
This bijection sends a map which has ni white faces of degree i for all i, b black faces,
and v vertices to a mobile which has ni white unlabelled vertices of degree i for all i, b

black unlabelled vertices and v − 1 labelled vertices.

4.3. m-constellations, m-hypermaps, and mobiles
Mobiles obtained from m-hypermaps form a subset of the set of all mobiles, and satisfy
additionnal properties. To keep the terminology reasonable, we make the following con-
vention:
Convention: In the rest of the paper, the word mobile will refer only to mobiles which
are associated to m-hypermaps of genus g by the Bouttier–Di Francesco–Guitter bijec-
tion.

Let m be a rooted and pointed m-hypermap, with vertices labelled by the distance
from the pointed vertex. We define the increment of an (oriented) edge as the label of
its origin minus the label of its endpoint; since all black faces have degree m, by the
triangle inequality, all increments are in J−1,m− 1K. More, if if a black face is adjacent
to an edge e of increment m−1, and since the sum of the increments is null along a face,
then its m− 1 other edges must have type −1. Hence, the black unlabelled vertex of the
corresponding mobile has degree 1: it is connected only to the flagged edge corresponding
to e.

Now, let t be a mobile. The increment of a flagged edge is the increment of the associ-
ated edge in the corresponding m-hypermap: it is therefore the difference of the labels of
the two flags, counterclockwise around the white unlabelled vertex. All black unlabelled
vertices of degree 1 are linked to a flagged edge of increment m− 1.

Now, observe that an m-hypermap is an m-constellation if and only if the labelling of
its vertices by the distance from the pointed vertex, taken modulo m, realizes the property
iii of the definition of a constellation. Indeed, in a m-constellation, the difference modulo
m between the distance labelling and any labelling realizing property iii is constant on a
geodesic path of oriented edges from the pointed vertex to any vertex, since both increase
by 1 modulo m at each step. Hence, all the edges of an m-constellation have an increment
which is either −1, either m− 1. This gives:

Lemma 4.4. Let m be a rooted and pointed m-hypermap, with vertices labelled by the
distance from the pointed vertex. Then m is an m-constellation if and only if one of the
following two equivalent properties holds:

• all its edges have increment −1 or m− 1
• all the black unlabelled vertices of its mobile have degree 1
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In particular, m is an m-constellation if and only if, clockwise around any black face, the
label increases by 1 exactly m− 1 times, and decreases by m− 1 exactly one time.

5. The building blocks of mobiles: elementary stars and cells.

5.1. Elementary stars.

3
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4

1
2
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Figure 4. (a) a white split-edge of type 3; (b) a black split edge of type 3; (c) a white elementary star;
(d) a black elementary star.

We now define what the building blocks of mobiles are.

Definition. (see Figure 4) A white split-edge is an edge that links a white unlabelled
vertex to a pair formed by two flags, each one lying on one side of the edge, as in Figure 4.
Each flag is labelled by integer. If those labels are l1 and l2, in clockwise order around the
unlabelled vertex, the quantity l2 − l1 + 1 is called the type of the split-edge. The same
definition holds for black split-edges, but in this case the type is defined as l1 − l2 − 1.

A white elementary star is a star formed by a central white unlabelled vertex, which
is connected to a certain number of labelled vertices, and to a certain number of white
split edges, and that satisfies the property iii-w of Definition 4.2. Elementary stars are
considered up to translation of the labels.

The same definition holds for black elementary stars, up to replacing “white” by
“black” and property iii-w by property iii-b.

The following lemma will be extremely useful:

Lemma 5.1. Let s be a white elementary star of degree km. Assume that s has r

split-edges, and let τ1, τ2, . . . , τr be their types. Then we have:
r∑

i=1

τi = km.

Proof. We number the flags from 1 to r, in clockwise order, starting anywhere. We let li
and l′i be the labels carried by the i-th flag, in clockwise order, so that the corresponding
type is τi = l′i − li + 1. By the property iii-w, the label decreases by one after each
labelled vertex, so that l′i − li+1 is exactly the number of labelled vertices between the
i-th and i + 1-th flags (with the convention that the r + 1-th flag is the first one). Hence
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the total degree of s is:

r +
r∑

i=1

(l′i − li+1) = r +
r∑

i=1

(l′i − li) =
r∑

i=1

τi

which yields the result.

Remark. If s is a black elementary star which is present in a mobile t such that Map(t)
is an m-hypermap, then the conclusion of the lemma also holds, with k = 1. Indeed, if
l1, .., lm is the clockwise sequence of the distance labels around the corresponding black
face of Map(t), then

∑m
i=1 τi =

∑m
i=1(li+1 − li + 1) = m.

Definition. An m-walk of length l is a l-tuple of integers (n1, . . . , nl) ∈ J−1,m − 1Kl

such that
∑

ni = 0. A circular m-walk of length l is an m-walk of length l considered up
to circular permutation of the labels (i.e. an orbit under the action of the cyclic group
Zl on the indices).

We now explain how to associate an m-walk to an elementary star. Let s be a white
elementary star with degree multiple of m. We read clockwise the sequence of labels
of vertices and split-edges around the central vertex. We interpret labelled vertices as a
number −1, and split-edges of type τ as a number τ−1. We obtain a sequence of integers
(n1, . . . , nl) defined up to circular permutations.

Lemma 5.2. For each l multiple of m, the construction above defines a bijection be-
tween white elementary stars of degree l and circular m-walks of length l.

Proof. It follows from the property iii-w that the walk associated to a white elementary
star is indeed an m-walk. Conversely, given an m-walk of length l, and interpreting steps
−1 as labelled vertices, and steps τ − 1 as split-edges of type τ , one reconstructs a white
elementary star, which is clearly the only one from which the construction above recovers
the original walk.

Definition. We say that a split-edge is special if its type is not equal to m. A star is
special if it contains at least one special split-edge, and standard otherwise.

5.2. Cells and chains of type 0.
Definition. (see Figure 5) A cell of type 0 is a standard white elementary star of degree
multiple of m, which carries two distinguished labelled vertices: the in one and the out
one.
The increment of a cell of type 0 is the difference lout − lin of the labels of its out and
in vertices. Its size is its number of split-edges, and its total degree is its degree as an
elementary star (i.e. the degree of the central vertex).

A chain of type 0 is a finite sequence of cells type 0. Its size and increment are defined
additively from the size and increment of the cells it contains. Its in vertex (resp out
vertex) is the in vertex of its first cell (resp. out vertex of its last cell).
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Figure 5. Four examples in the case m = 3. Up, a cell of type 0, and a chain of type 0; down, a cell of
type 2, and a chain of type 1.

On pictures, to draw a chain of type 0, we identify the out vertex of each cell with the
in vertex of the following one, as in Figure 5. From Lemma 5.2, cells of type 0 are in
correspondence with m-walks which have only steps −1 and m − 1, which implies that
the total degree of a cell of type 0 equals m times its size, and that, in a chain of type
0, the total number of corners of the chain adjacent to a labelled vertex equals (m− 1)
times the size of the chain.

5.3. Cells and chains of type τ ∈ J1,m− 1K.
Definition. (see Figure 5) Let τ ∈ J1,m− 1K. A cell of type τ is a pair (s1, s2) where:
- s1 is a white elementary star, with exactly two special split-edges: the in one, of type
τ , and the out one, of type m− τ .
- s2 is a black elementary star, with exactly two special split-edges: the in one, of type
m− τ , and the out one, of type τ .

On pictures, we identify the two split-edges of type m − τ , as in Figure 5. The in
split-edge of the cell is the in split-edge of s1, and its out split-edge is the out split-edge
of s2; the corresponding labels lin and lout are defined with the convention of Figure 5.
The increment of the cell is the difference lout - lin.

A chain of type τ is a finite sequence c of cells of type τ . On pictures, we glue the flags
of the out split-edge of a cell with the flags of the in split-edge of the following cell, as in
Figure 5. The increment of the chain is the sum of the increment of the cells it contains.
We let |c| denote the total number of labelled vertices appearing in c. We also let 〈c〉
be the total number of black vertices appearing in c plus its total number of split-edges
of type m (equivalently, 〈c〉 is the total number of black vertices of c if one links each
split-edge of type m to a new univalent black vertex).

6. The full scheme of a mobile.

In this section, we explain how to reduce mobiles of genus g to a finite number of cases,
indexed by minimal objects called their full schemes. Full schemes are a generalisation
of what is called labelled schemes in [9] (see the remark in Section 6.5).
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6.1. Schemes.
Definition. A scheme of genus g is a rooted map s of genus g, which has only one face,
and whose all vertices have degree ≥ 3. The set of schemes of genus g is denoted Sg.

Let s be a scheme of genus g, and, for all i ≥ 3, let ni be the number of vertices of s of
degree i. Then, by the hand-shaking lemma, its number of edges is 1

2

∑
ini, and Euler

Characteristic formula gives: ∑
i≥3

i− 2
2

ni = 2g − 1. (6.1)

Hence the sequence (ni)i≥3 can only take a finite number of values. Since the number of
maps with a given degree sequence is finite, this proves:

Lemma 6.1 ([9]). The set Sg of all schemes of genus g is finite.

We now need a technical discussion that will be of importance later. We assume that
each scheme of genus g carries an arbitrary orientation and labelling of its edges, chosen
arbitrarily but fixed once and for all. This will allow us to talk about “the i-th edge” of
a scheme, or “the canonical orientation” of an edge, without more precision. Our first
construction is not specific to mobiles, and applies to all maps of genus g with one face
(see Figure 6):

Algorithm 1 (The scheme of g-tree t.). Let t be a g-tree. First, if t contains a
vertex of degree 1, we erase it, together with the edge it is connected to. We then repeat
this step recursively until there are no vertices of degree 1 left. We are left with a map
c, which we call the core of t (see Figure 6, middle part). If the original root of t is still
present in the core, we keep it as the root of c. Otherwise, the root is present in some
subtree of t which is attached to c at some vertex v: we let the root of c be the first edge
of c encountered after that subtree when turning clockwise around v (and we orient it
leaving v).

Now, in the core, vertices of degree 2 lie on maximal paths whose end vertices are of
degree at least 3 We now replace each of these paths by an edge: we obtain a map s, which
has only vertices of degree ≥ 3. The root of s is the edge corresponding to the path that
was carrying the root of c (with the same orientation). We say that s is the scheme of t.
The vertices of t that remain vertices of s are called the nodes of t.

6.2. The superchains of a mobile.
Let t be a mobile whose scheme s has k edges. Each edge of s corresponds to a path
of vertices of degree 2 of the core. For i = 1..k, we let pi be the path corresponding
to the i-th edge of s, oriented by the canonical orientation of this edge (observe that
each node is the extremity of several paths). A priori, pi can contain labelled vertices,
black or white unlabelled vertices, and flagged or unflagged edges. We have the following
important lemma:
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Figure 6. From a 1-tree to its scheme.

Lemma 6.2. All the special flagged edges of t lie on the paths pi, i = 1..k.

Proof. Assume that there is a special flagged edge e0 in t \ c: e0 belongs to a subtree t′

that has been detached from t during the construction of its core. e0 is connected to two
unlabelled vertices, one of them, say v, being the farthest from c. Now, by Lemma 5.1,
an unlabelled vertex (black or white) of t cannot be connected to exactly one special
flagged edge. Hence v is connected to another special edge e1. Repeating recursively this
argument, one constructs an infinite sequence of special edges e0, e1, . . .. All these special
edges belong to the subtree t′, so that the sequence cannot form a cycle: this implies
that these edges are all distinct, which is impossible since a mobile has a finite number
of edges.
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cells of type 1
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Figure 7. A typical superchain of type 1, in the case m = 3. It has two nodal star, only one correcting
term a1(e) (a2(e) is empty), and the superchain itself is formed of three consecutive cells of type 1.

Each unlabelled vertex of pi was, in the original mobile t, at the center of an elementary
star. We now re-draw all these elementary stars around each unlabelled vertex of pi, as on
Figure 7. If the extremities of pi are unlabelled vertices, we say that the corresponding
stars are nodal stars of t. For the moment, we remove the nodal stars, if they exist:
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we obtain a (eventually empty) sequence s1, . . . , sl of successive stars. We now have to
distinguish two cases.

case 1: pi contains no special flagged edge. In this case, pi is made of succession of
edges linking white unlabelled vertices to labelled vertices (since the only remaining case,
flagged edges of type m, are only linked to univalent black vertices and then cannot be
part of the core). Consequently, the sequence s1, . . . , sl is a sequence of white elementary
stars, with no special flagged edges, glued together at labelled vertices, i.e. a chain of
type 0 in the terminology of the preceding section. We say that (s1, . . . , sl) is the i-th
superchain of t.

case 2: pi contains at least one special flagged edge In this case, we will also show
that our path reduces to a sequence of cells. First, from Lemma 5.1, an unlabelled vertex
cannot be adjacent to exactly one special edge. Now, from Lemma 6.2, an unlabelled
vertex of pi which is not one of its extremities cannot be adjacent to more than 2 special
edges in t. Hence such a vertex is adjacent either to 0 or 2 special edges. Hence the set
of special flagged edges of pi forms itself a path with the same extremities as pi, i.e. is
equal to pi. In other terms: all the edges of pi are special flagged edges.
We now consider the sequence of stars s1, . . . , sl. If the first star of the sequence is black,
we call it a1(i) and we remove it (otherwise we put formally a1(i) = ∅). Similarly, if the
last star is white, we call it a2(i) and we remove it. We now have a sequence of alternating
color stars (s′1, . . . , s

′
l′) that begins with a white star and ends with a black one. From

what we just said, all these stars are elementary stars with exactly two special flagged
edges, glued together at these flagged edges. Since the sequence is ordered, we can talk
of the ingoing and outgoing special edge of each of these stars. Now, let τ be the type
of the ingoing special edge of s′1. By Lemma 5.1, the type of its outgoing special edge is
m− τ . Now, this flagged edge is also the ingoing edge of the black star s′2, and applying
Lemma 5.1 again, the type of the outgoing edge of s′2 is m− (m− τ) = τ . Consequently,
(s′1, s

′
2) is a cell of type τ , in the sense of the previous section. Applying recursively the

argument, each pair (s′2q−1, s
′
2q) is a cell of type τ . The sequence (s′1, . . . , s

′
l) is therefore

a chain of type τ , which we call the i-th superchain of t.
In the two cases above, we have associated to the i-th edge e of s a chain, which we

called the i-th superchain of t. We now define the type of e as the type of this chain, and
we note it τ(e).

By convention, if the i-th edge has type 0, we put a1(i) = a2(i) = ∅.

6.3. Typed schemes and the Kirchoff law.
Let v be a node of t. If v is labelled, then it is connected to no flagged edge (since flagged
edges only connect unlabelled vertices). Hence all the paths pi’s that are meeting at v

correspond to case 1 above, or equivalently, all the edges of s meeting at v are edges of
type 0.

On the contrary, assume that v is unlabelled. Let e be an edge of s adjacent to v,
of type τ(e) 6= 0. and let pi be the corresponding path of the core. We let τ̃(e) be the
type of the split-edge of pi which is adjacent to v. It follows from the construction rules
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of the scheme that if v is white, then one has τ̃(e) = τ(e) if e is incoming at v and
τ̃(e) = m − τ(e) if it is outgoing. On the contrary, if v is black then τ̃(e) = m − τ(e) if
e is incoming and τ̃(e) = τ(e) if it is outgoing. Now, in both cases, Lemma 5.1 or the
remark following it give:

∑
e∼v τ̃(e) = 0 mod m.

In all cases, we have therefore:

Proposition 6.3 (Kirchoff law). Let v be a vertex of s. We have:∑
e outgoing

τ(e)−
∑

e ingoing

τ(e) = 0 mod m (6.2)

This leads to the following definition:

Definition. Let s be a scheme of genus g. A typing of s is an application

τ : {edges of s} → J0,m− 1K

that satisfies Equation (6.2) around each vertex.
A typed scheme is a pair (s, τ) formed by a scheme and one of its typings.
If s is the scheme of a mobile t, and τ is the application that associates to each edge of
s the type of its corresponding superchain, we say that (s, τ) is the typed scheme of t.

For future reference, we now state the following lemma, which is a key fact in the proof
of Theorem 3.2:

Lemma 6.4. Let s be a scheme of genus g. Then s has exactly m2g different typings.

Proof. Observe that, if we identify J0,m − 1K with Z/mZ, the set of all valid typings
of s is a Z/mZ vector space. Actually, it coincides with the cycle space of s in the
sense of algebraic graph theory (see [27] for an introduction to this notion). Now, it is
classical that the dimension of the cycle space of a connected graph equals its number of
edges minus its number of vertices plus 1 (to see that, observe that the complementary
edges of any spanning tree form a basis of this space). Now, since s has one face, Euler
characteristic formula gives:

#edges of s−#vertices of s = 2g − 1.

Hence the cycle space has dimension 2g, and its cardinality is m2g.

6.4. Nodal stars and decorated schemes.
Let once again v be a node of t. If v is unlabelled, it is located at the center of an elemen-
tary star Fv (which, as we already said, we call a nodal star). Fv has a certain number
of special split-edges, and a certain number of distinguished labelled vertices, which are
connected to the paths pi’s of t. We slightly abuse notations here, and assume the nota-
tion Fv denotes not only the elementary star itself, but the elementary star together with
those distinguished vertices and the application that maps each distinguished vertex and
split-edge of Fv to the corresponding half-edge of s.
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In the case where v is labelled, we put formally Fv = ◦, where ◦ may be understood as
a single labelled vertex considered up to translation (so that its label does not import).

Until the rest of the paper, if s is a scheme of genus g, we note E(s) and V (s) for the
sets of edges and vertices of s, respectively. If |E(s)| = k, we will sometimes identify E(s)
with J1, kK.

Definition. We say that the quadruple

(s, τ, F, a) =
(
s, (τ(e))e∈E(s), (F (v))v∈V (s), (a1(e), a2(e))e∈E(s)

)
is the decorated scheme of t.

6.5. The full scheme of a mobile.
We now present the last step of the reduction of mobiles to elementary objects. We
assume that for each decorated scheme (s, τ, F, a), and for each vertex v of s, the star Fv

carries an arbitrary but fixed labelled vertex or flag, chosen once and for all, that we call
the canonical element of v.

Now, let t be a mobile, of decorated scheme (s, τ, F, a). For each vertex v of s, we let
lv be the label in t of the canonical element of v. We now normalize these labels, so that
they form an integer interval of minimum 0. Precisely, we let M = card {lv, v ∈ V (s)}−1
and λ be the unique surjective increasing application {lv, v ∈ V (s)} → J0,MK.

Definition. We say that the quintuple (s, τ, F, a, λ) is the full scheme of t.

In few words, the full scheme of t contains five informations: the combinatorial arrange-
ment of the superchains, given by s; the types of the superchains, given by τ ; the stars
Fv that lie on the nodes of t; the (eventually trivial) stars a1(e) and a2(e) that ensure
that each superchain of type 6= 0 begins with a white star, and ends with a black one;
the relative order of the labels of the canonical elements, given by λ.

Remark. Our full schemes are a generalization of the labelled schemes of [9], which
consist only of the pair (s, λ). Here, our mobiles are more complicated, so we have to
take the decoration (F, a) and the typing τ into account.

Recall that the number of schemes of genus g, and the number of typings of a given
scheme, are finite. Moreover, since the set D of allowed face degrees is finite, there are
only a finite number of elementary stars with total degree in mD. Hence (F (v))v∈V (s)

and (a1(e), a2(e))e∈E(s)) can only take a finite number of values, and:

Lemma 6.5. The set Fg of all full schemes of genus g is finite.

Let f = (s, τ, F, a, λ) be a full scheme of genus g. We say that a labelling (lv)v∈V (s) of
its canonical elements is compatible with f if normalizing it to an integer interval as we
did above yields the application λ. We consider compatible labellings up to translation,
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or equivalently, we assume that the minimum lv is equal to 0, so that all the compatible
labellings are of the form:

lv =
λ(v)∑
i=1

δi for some δ ∈ (N>0)M .

Assume that such a labelling has been fixed. To reconstruct a mobile, we have to do the
inverse of what precedes, and substitute a sequence of cells of the good type along each
edge of s. Observe that, for each edge e, the increment ∆(e) of the superchain to be
substituted to e is fixed by the choice of (lv). Precisely, let e+ and e− be the extremities
of e, with the convention λ(e+) ≥ λ(e−) (if λ(e+) = λ(e−), any fixed choice will be
convenient). Then, up to the sign, we have ∆(e) = le+ − le− + aF,a(e), where aF,a(e) is
a correction term that does not depends on the lv’s, and that accounts for the fact that
superchains do not necessarily begin and end at the canonical vertices. Precisely, aF,a(e)
equals the difference of the label of the canonical element of e+ and the label of the out
vertex or flag of a2(e), from which one must substract the corresponding quantity for e−
(and it is important that these differences depend only on F and a). Putting things in
terms of the δi’s, we can write:

∆(e) = aF,a(e) + δe−+1 + . . . + δe+ = aF,a(e) +
∑

j

Ae,jδj

where for each edge e and j ∈ J1,MK we put Ae,j = 1e−<j≤e+ .

6.6. A non-deterministic algorithm.
We consider the following non-deterministic algorithm:

Algorithm 2. We reconstruct a mobile by the following steps:

(1) we choose a full scheme f = (s, τ, F, a, λ) ∈ Fg.
(2) we choose a compatible labelling (lv)v∈V (s) of f, or equivalently, a vector δ ∈ (N>0)M .
(3) for each edge e of s, we choose a chain of type τ(e). We then replace the edge e by

this chain, eventually preceded by the star a1(e) and followed by the star a2(e) if they
are not empty.

(4) on each corner adjacent to a labelled vertex, we attach a planar mobile (which can
eventually be trivial).

(5) we distinguish an edge as the root, and we orient it leaving a white unlabelled vertex.
(6) we shift all the labels in order that the root label is 0.

We have:

Proposition 6.6. All mobiles of genus g can be obtained by Algorithm 2. More pre-
cisely, each mobile whose scheme has k edges can be obtained in exactly 2k ways by that
algorithm.

Proof. The first statement follows by the decomposition we have explained until now:
we just have to re-add what we have deleted. Precisely, to reconstruct the mobile t
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from its full scheme, one can first recover the labelling, then replace each edge by the
corresponding superchain. Then, one has to re-attach the planar trees that have been
detached from t during the construction of its core: this can be done at step 4. Finally,
one obtains t by choosing the right edge for its root, and shifting the labels to fit the
convention of the definition of a mobile.

Now, let us prove the second statement. It is clear that the only way to obtain the
mobile t by different choices in the algorithm above is to start at the beginning with
a scheme which coincides with the scheme of t as an unrooted map, but may differ by
the rooting. Precisely, let us call a doubly-rooted mobile a mobile whose scheme carries a
secondary oriented root edge. Clearly, a mobile whose scheme has k edges corresponds to
2k doubly-rooted mobiles (since its scheme is already rooted once, it has no symmetry).
Now, Algorithm 2 can be viewed as an algorithm that produces a doubly-rooted mobile:
the secondary root of the scheme of the obtained mobile is given by the root of the
scheme s chosen at step 1 (we insist on the fact that the root of the starting scheme s

has no reason to be the root of the scheme of the mobile obtained at the end). Moreover,
it is clear that each doubly-rooted mobile can be obtained in exaclty one way by the
algorithm: the secondary root imposes the choice of the starting scheme s, and after
that all the choices are imposed by the strucure of t. This concludes the proof of the
proposition.

Remark. Let us consider a variant of the algorithm, where at step 1, we choose only full
schemes whose typing is identically 0. Then Proposition 6.6 is still true, up to replacing
the word ”mobile” by “mobile associated with an m-constellation”. Indeed, a mobile is
associated to an m-constellation if and only if it has no special edge, and the double-
rooting argument in the proof of the proposition clearly works if we restrict ourselves to
this kind of mobiles.

7. Generating series of cells and chains

Algorithm 2 and Proposition 6.6 reduce the enumeration of mobiles to the one of a few
building blocks: schemes, planar mobiles, cells and chains of given type. We now compute
the corresponding generating series.
Note: In what follows, m and D are fixed. To keep things lighter, the dependancy in m

and D will many times be omitted in the notations.

7.1. Planar mobiles.
We let T◦(z) be the generating series, by the number of black vertices, of planar mobiles
whose root edge connects a white unlabelled vertex to a labelled vertex. Observe that
T◦ is also the generating series of planar mobiles which are rooted at a corner adjacent
to a labelled vertex (for example, choose the root corner as the first corner encountered
clockwise after the root edge, clockwise around the labelled vertex it is connected to).
Now, let t be a planar mobile, whose root edge is connected to a labelled vertex, and
say that the white elementary star containing the root-edge has total degree mk. This
star is attached to one planar mobile on each of its (m − 1)k labelled vertices; each of
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these mobiles is naturally rooted at a labelled corner. Moreover, given this star and the
sequence of those (m − 1)k planar mobiles, one can clearly reconstruct the mobile t.
Finally, by Lemma 5.2, the number of white elementary stars with total degree mk and
a distinguished edge connected to a labelled vertex is equal to the number of m-walks of
length mk that begin with a step −1, and have (m− 1)k steps −1 and k steps m− 1 in
total, which is

(
mk−1

k

)
. This gives the equation:

T◦(z) = 1 +
∑
k∈D

(
mk − 1

k

)
zkT◦(z)(m−1)k (7.1)

Observe that the hypotheses made on D ensure that this equation has degree at least 2
in T◦. Moreover, T◦ has a positive radius of convergence z

(c)
m,D, and letting Tc = T◦(z

(c)
m,D),

one has:

Tc = (m− 1)
∑
k∈D

k

(
mk − 1

k

)
[z(c)

m,DTc
m−1]k (7.2)

Subtracting Equation (7.1) to Equation (7.2) shows that z
(c)
m,DTc

m−1 = t
(c)
m,D, and Tc =

βm,D, where t
(c)
m,D and βm,D are defined in the statement of Theorem 3.1.

Writing down the multivariate Taylor expansion of Equation (7.1) near z = z
(c)
m,D easily

leads to the following lemma:

Lemma 7.1. When z tends to z
(c)
m,D, the following Puiseux expansion holds:

1− T◦(z)
Tc

=

√
2βm,D

(m− 1)γm,D

√
1− z

z
(c)
m,D

+ O
(
z
(c)
m,D − z

)

7.2. The characteristic polynomial of type 0.
Let F◦◦m,D be the set of all cells of type 0 whose total degree belongs to mD. For F ∈ F◦◦m,D,
we denote respectively |F | and i(F ) the size and the increment of F . The characteristic
polynomial of type 0 is the polynomial 1 − Pm,D(X, t), where the generating Laurent
polynomial Pm,D is defined by:

Pm,D(X, t) =
∑

F∈F◦◦
m,D

t|F |Xi(F )

For example, in the case m = 2, D = {2}, Figure 8 shows that the characteristic poly-
nomial is 1− t2(X−1 + 1 + X).

For every n ∈ N and i ∈ Z, we let an,i be the number of chains of type 0 of total
size n and increment i. Note that for every n, an,i = 0 except for a finite number of
values of i. Hence, if C[X, X−1][[t]] denotes the ring of formal power series in t with
coefficients that are Laurent polynomials in X, the generating function Sm,D(X, t) =∑∞

n=0

∑∞
i=−∞ an,it

nXi of chains of type 0 by the size and the increment is a well defined
element of C[X, X−1][[t]]. Since, by definition, a chain of type 0 is a sequence of cells of
type 0, and since the size and the increment are additive parameters, we have by classical
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Figure 8. The three cells of type 0 and total degree 4.

symbolic combinatorics:

Sm,D(X, t) =
1

1− Pm,D(X, t)
.

This is the reason why we will spend some time on the study of the polynomial 1 −
Pm,D(X, t) (which is called the kernel in the standard terminology of lattice walks, see
[1, 5]).

Observe that, in the m-walk reformulation, a cell of type 0 is a circular m-walk with
two distinguished steps −1, or equivalently, a m-walk beginning with a step −1, with
another step −1 distinguished. Hence the number of cells of type 0 and total degree
mk equals [(m− 1)k − 1]

(
mk−1

k

)
tk, so that P (1, t) =

∑
k∈D[(m− 1)k − 1]

(
mk−1

k

)
tk, and

P (1, t
(c)
m,D) = 1. Consequently, t

(c)
m,D is the radius of convergence of the series Sm,D(1, t).

We now study the partial derivatives at the critical point. We have:

Lemma 7.2.
t∂Pm,D

∂t
(1, t

(c)
m,D) =

γm,D

m− 1
(7.3)

∂Pm,D

∂X
(1, t

(c)
m,D) = 0 (7.4)

∂2Pm,D

∂X2
(1, t

(c)
m,D) =

m

6
γm,D (7.5)

Proof. The first equation comes immediately from the definition of γm,D and the fact
that there are [(m− 1)k − 1]

(
mk−1

k

)
distinct cells of type 0 and size k.

For the second equation, observe that since the operation consisting in inverting the in
and out vertices of a cell is an involution of F◦◦m,D, then for every t on has: Pm,D(X, t) =
Pm,D(X−1, t), which implies the second claim after derivating.

We now prove the third equation. First, recall that in the m-walk reformulation, Pm,D

is the generating function of linear m-walks of length mk, beginning with a step −1, and
where a position preceding a step −1 is distinguished. Since the first derivative vanishes
(Equation (7.4)), we have:

∂2Pm,D

∂X2
(1, t) =

∑
F∈F◦◦

m,D

i(F )(i(F )− 1)t|F |

=
∑

F∈F◦◦
m,D

i(F )2t|F | =
∑
k∈D

pktk



Asymptotic enumeration of constellations on orientable surfaces 23

where pk(t) =
∑

F∈F◦◦
m,{k}

i(F )2. We now fix k ∈ D, and we let W◦
m,k be the set of m-walks

of length mk beginning with a step −1. We let u = (m−1)k be the number of step −1 of
such a walk, and for each w ∈ W◦

m,k, we let x0(w), x1(w), . . . , xu−1(w) be the ordinates
of the points preceding a step −1 in w (so that x0(w) = 0). Choosing first the m-walk,
and then distinguishing a step −1, we can write:

pk =
∑

w∈W◦
m,k

(x1(w)2 + x2(w)2 + . . . xu−1(w)2) (7.6)

We now introduce the risings as the quantities λi(w) = xi(w) − xi−1(w), for i ∈ J1, uK.
Then we have the following facts:

• By symmetry, the two following quantities are independant of j:

Vk =
∑

w∈W◦
m,k

λj(w)2tk (for j = 1..u− 1)

Wk =
∑

w∈W◦
m,k

λ1(w)λj(w)tk(F ) (for j = 2..u− 1)

• Since we have for all w: δ1(δ1 + · · ·+ δu) = 0 then it is still true after sumation and:

Vk + [u− 1]Wk = 0

Putting the last fact together with Equation (7.6), one gets after replacing xi(w) by
δ1(w) + · · ·+ δi(w) and expanding:

pk = =
u(u− 1)

2
Vk +

u(u− 1)(u− 2)
3

Wk

=
u(u + 1)

6
Vk (7.7)

Now, for any integer i, the number of rooted polygons of size k such that δ1 = (m−1)i−1
is easily seen to be equal to

(
mk−2−i

k−i

)
, hence:

Vk =
∑

i

[(m− 1)i− 1]2
(

mk − 2− i

k − i

)
= [Y k−i]

∑
i

[(m− 1)i− 1]2(1 + Y )mk−2−i

Expressing the last sum as an explicit rational fraction in Y , one obtains the exact value
of Vk, and putting it together with Equation (7.7) leads to:

pk =
mk(m− 1)[(m− 1)k − 1]

6

(
mk − 1

k

)
Hence

∂2Pm,D

∂X2
(1, t) =

∑
k∈D

mk(m− 1)[(m− 1)k − 1]
6

(
mk − 1

k

)
tk

which together with the definition of γm,D concludes the proof of the lemma.
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7.3. The roots of the characteristic polynomial.
In this section, we study the roots of 1 − Pm,D. Some of the arguments are general for
lattice walks and already contained in [1],[5].

We first observe that for a cell of type 0 and size k, the maximal possible increment is
(m−1)k−1, which corresponds to the case where the associated m-walk begins with all its
steps (−1), the last one being distinguished. Similarly, the minimal possible increment
is 1 − (m − 1)k. Moreover, by definition, the maximal exponent of t in Pm,D(X, t) is
max(D). Therefore if we define

r := (m− 1) max(D)− 1

then in Pm,D(X, t) the maximal power of X is r, and its minimal power is −r. The (true)
polynomial Xr(1−Pm,D) therefore has degree 2r in X, and it has 2r roots, counted with
multiplicity. Since 0 6∈ D we have Pm,D(X, 0) = 0, so that for t = 0 exactly r of these
roots are finite and equal 0. We let α1(t), . . . , αr(t) be these roots. Since exchanging the
in and out vertices of a cell is an involution, Pm,D is symmetrical under the exchange
X ↔ X−1, and the r other roots are α1

−1(t), . . . , α−1
r (t), and they are infinite at t = 0.

The αi(t) are formal Puiseux series in t. To understand their behaviour when t tends to
0, we consider the Newton polygon of the polynomial Xr(1−Pm,D(X, t)), i.e. the convex
hull of the points (i, j) of the plane such that the monomial tiXj appears with a non-zero
coefficient (see [13, p.498]). From the previous discussion on the maximal increments of
cells of given size, the Newton polygon is the convex hull of the following set of points:{

(0, r)
}⋃{

(k, r + (m− 1)k − 1), k ∈ D
}⋃{

(k, r + 1− (m− 1)k), k ∈ D
}
.

Now, since r equals (m−1) max(D)−1, it is easily seen (Figure 9) that the lower segment

exponent of t

exponent of X

max(D)

y = r + 1− (m− 1)x

y = r + (m− 1)x− 1

1

r+1
r

y

x
0

Figure 9. The Newton polygon of the polynomial Xr
`
1− Pm,D(X, t)

´
.

of the Newton polygon has slope − r
max(D) . Therefore the r branches α1(t), . . . , αr(t) have

a Puiseux expansion at t = 0 whose first term is :

αi(t) = c0(ξit1/r)max(D) + . . .
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for a non-zero constant c0 and a primitive r-th root of unity ξ. Moreover, the integers
r and max(D) are coprime, which implies the following important fact: the r branches
α1(t), . . . , αr(t) are r distinct formal Puiseux series. We have moreover:

Lemma 7.3. Up to renumbering the roots, we have:

(i) α1 ∈ R for t ∈ [0, t
(c)
m,D], and α1(t) is an increasing function on this interval. Moreover,

α1 −→ 1 when t −→ t
(c)
m,D.

(ii) for all i 6= 1, and for all t ∈ [0, t
(c)
m,D], |αi(t)| < |α1(t)|. There exists ε > 0 such that

for all i 6= 1 and for all t ∈ [0, tc], |αi(t)| < 1− ε.

In the rest of the paper, we will keep the renumbering of the roots given by the lemma.
The root α1(t) is called the principal branch.

Proof. We already observed that 1 is a root of Pm,D(X, tc), and by Lemma 7.2, it is
of multiplicity exactly two.

Now, for every t ∈ (0, tc) one knows by positivity of the coefficients of Pm,D that
Pm,D(1, t) ≤ Pm,D(1, tc) = 1, and Pm,D(0, t) = ∞. Moreover X 7→ Pm,D(X, t) is a de-
creasing function on [0, 1] (since for all i, Xi + X−i is) so that there exists a unique
α = α(t) ∈ [0, 1] such that Pm,D(α) = 1. Now, since Pm,D has positive coefficients, α(t)
is an increasing function of t. This proves claim (i).

Now, for every λ ∈ C, one has |Pm,D(λ)| ≤ Pm,D(|λ|), with equality if and only if
λ > 0. Hence if |λ| ≤ α1(t) one has Pm,D(λ, t) ≤ 1, with equality if and only if λ = α1.
This, together with a compacity argument, implies claim (ii).

Lemma 7.2 then gives:

Lemma 7.4. The following Puiseux expansion holds near t = tc:

α1(t) = 1−

√
12

m(m− 1)

(
1− t

t
(c)
m,D

) 1
2

+ o

(1− t

t
(c)
m,D

) 1
2


Let us now define, for i ∈ J1, rK, the following Puiseux series in t:

Ci =
1

−tmax(D)αi

∏
j(1−

1
αiαj

)
∏

j 6=i(αi − αj)
(7.8)

Then the following partial fraction expansion holds:

Sm,D(X, t) =
1

−tmax(D)
∏

i(X − αi)(1− αi
−1X−1)

(7.9)

=
∑

i

Ciαi

X − αi
+
∑

i

Ci

1−Xαi
(7.10)

For all n ∈ Z we let Mn(t) =
∑∞

k=0 ak,ntk be the generating series of chains of type
0 of total increment n, by the size. Now, it easy to extract the coefficient of Xn in
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Equation (7.10), via the following manipulations 1, which are valid operations in the ring
of formal Puiseux series in t whose coefficients are Laurent polynomials in X :

Sm,D(X, t) =
∑

i

X−1Ciαi

1−X−1αi
+
∑

i

Ci

1−Xαi

=
∑

i

∞∑
n=0

Ciαi
n+1X−n−1 −

∑
i

∞∑
n=0

Ciαi
nXn

so that one obtains the generating function of chains of increment n ∈ Z:

Mn(t) = ”[Xn]Sm,D(X, t)” =
r∑

i=1

Ci(t)αi(t)|n| (7.11)

Observe that in the series M0(t), the empty walk of length 0 is counted.

7.4. Chains of all types.
We will see now that the generating series of chains of type 0, and of type τ 6= 0 are
closely related. To put this relation in a more fancy form, we consider not only chains,
but chains where a planar mobile has been attached to each labelled vertex. For all
τ ∈ J0,m − 1K, we let Hτ

n(z) be the generating series of chains of type τ , that carry on
each labelled corner a planar mobile (which can eventually be trivial). The variable z

counts the total number of flagged edges.
In the case τ = 0, this series is easily related to Mn: since a chain of type 0 and size

k has (m − 1)k labelled vertices, and k flagged edges, Hn is obtained from Mn by the
substitution z ← zT◦(z)m−1.

Definition. In the rest of the paper, we note t(z) := zT◦(z)m−1

We have then:

H0
n(z) = Mn (t(z)) =

r∑
i=1

Ci(t(z))αi(t(z))|n|

We now examine the case τ ∈ J1,m − 1K. For such τ , we let P τ
m,D(X, t, u) be the

generating polynomial of elementary cells of type τ , where X, t, u count respectively the
increment, the number of black vertices, and the number of labelled vertices. We also
let r

(τ)
k (X) be the generating series of white elementary stars of total degree mk, with

exactly two special split-edges, one of type τ and one of type m − τ . Here, the variable
X counts the increment between the two special edges. Since such a star has exactly
(m − 1)k − 1 labelled vertices, k − 1 black vertices, and since the generating series of
black stars of degree m with two special edges is 1 + X + · · ·+ Xm−2, one has, recalling
that a cell of type τ is the juxtaposition of a white and a black star:

P
(τ)
m,D(X, t, u) = (1 + X + · · ·+ Xm−2)

∑
k∈D

tku(m−1)k−1r
(τ)
k (X). (7.12)

1 The author knows this technique from Mireille Bousquet-Mélou.
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Now, by Lemma 5.2, r
(τ)
k (X) is also the generating series of walks of length mk, with

step

m − 1

step

−1

special

step

special

step

m− 1 possible re-rootings.

Figure 10. Walks with two special steps are in correspondence with walks with two distinguished
steps, of increments m − 1 and −1 (vertical arrows). These walks can be re-rooted in m − 1
different ways to obtain walks with two distinguished steps −1 (horizontal arrows). In the re-
rooting operation, the increment between the two steps is modified by a quantity among 0, . . . , m−
2, inducing a factor 1 + X + · · ·+ Xm−2 in the generating series.

k − 1 steps m − 1, (m − 1)k − 1 steps −1, beginning with a step τ − 1 and ending by
a step m − τ − 1. These walks are in bijection with walks with of length km with only
steps −1 and m− 1, beginning with a step m− 1, and with a distinguished step −1: to
see that, exchange the steps τ , m−2− τ by two steps −1,m−1 2. Since in that walk the
only decreasing steps are steps −1, the distinguished step m − 1 lies in front of exactly
m − 1 steps −1. Hence (see Figure 10) (1 + X + · · · + Xm−2)r(τ)

k (X) is the generating
series of walks with two distinguished steps −1, where X counts the increment between
them.

Observe that these two distinguished steps are not necessarily distinct. If they are
equal, we have a circular walk with one marked step −1: there are

(
mk−1

k

)
of those. If

they are not equal, the object considered is, up to the correspondence of Lemma 5.2, a
cell of type 0. Hence we have:

(1 + X + · · ·+ Xm−2)r(τ)
k (X) =

(
mk − 1

k

)
+ [tk]Pm,D(X, t)

2 In particular, r
(τ)
k (X) does not depend on τ .
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This gives with Equation (7.12):

T◦(z)P τ
m,D(X, z, T◦(z)) =

(∑
k∈D

(
mk − 1

k

)
t(z)k + Pm,D(X, t(z))

)
And using Equation (7.1) gives:

T◦(z)
1− Pm,D(X, t(z))

=
1

1− P τ
m,D(X, z, T◦(z))

Now, observe that the coefficient of Xn in the right-hand side is precisely the series
Hτ

n(z). On the other hand, the coefficient of Xn in the left-hand side equals T◦Mn(t(z)).
This gives the following proposition, which is the key that relates the enumeration of
m-hypermaps and m-constellations:

Proposition 7.5. For all τ ∈ J1,m− 1K, and for all n ∈ Z, we have:

Hτ
n(z) = T◦(z)H0

n(z) (7.13)

8. Generating series of mobiles

8.1. Translating Proposition 6.6 into generating series.
The previous section gave us all the building blocks to translate Proposition 6.6 in terms
of generating series.

Let (s, τ, F, a, λ) be a full scheme of genus g. We are going to use Algorithm 2, and
substitute each edge of s with a chain. We first choose a compatible labelling (lv)v∈V (s)

of that scheme. We need a little discussion on a special case. Imagine that the labelling
imposes to substitute an edge e of type 0 to a chain of type 0 of increment ∆(e) = 0.
Then, if one of the extremities of e is associated with a non trivial nodal star, it is possible
to substitute e to an empty chain; otherwise, if the two extremities are associated with
the trivial nodal star ◦, the chain of length 0 is excluded: this would identify the two
corresponding vertices of the scheme. Hence, if e is an edge of s, of extremities v1 and
v2, we set:

rf,(lv)(e) =
{

1 if τ(e) = 0 and ∆(e) = 0 and Fv1 = Fv2 = ◦
0 otherwise.

Then the edge e can be replaced by the empty walk if and only if rf,(lv)(e) 6= 1. Observe
that, as the notation suggests, rf,(lv)(e) not only depends on the full scheme f, but also
on the compatible labelling (lv).

We let |a| = |a1| + |a2|, 〈a〉 = 〈a1〉 + 〈a2〉, and similarly |F | =
∑

v |Fv| and 〈F 〉 =∑
v〈Fv〉. Hence the series:

Rs,τ,F,a,λ(z) := z〈a〉+〈c〉t(z)|a|+|c|
∑

labellings

∏
e∈E(s)

(
H

τ(e)
∆(e)(z)− rf,(lv)(e)

)
is the generating series of objects generated by the first four steps of Algorithm 2. Observe
the first and second factor, that account respectively for the fact that black vertices
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appearing in the full scheme must be counted, and that planar mobiles must be attached
also on the labelled vertices of the full scheme.

We now let Rg(z) be the generating series of all mobiles of genus g, by the number of
black vertices. Again, dependency in m and D are omitted in the notation. Since a mobile
with k black vertices has in total mk edges, step 5 in Algorithm 2 corresponds to an op-
erator m zd

dz on the generating series. Hence, in terms of generating series, Proposition 6.6
admits the following reformulation:

Corollary 8.1.

Rg(z) = m
zd

dz

∑
(s,τ,F,a,λ)∈Fg

1
2|E(s)|

Rs,τ,F,a,λ(z) (8.1)

Remark. It follows from Remark 6.6 that the generating series of mobiles correspond-
ing to m-constellations of degree set mD can be written:

Rcons
g (z) = m

zd

dz

∑
(s,~0,F,a,λ)∈Fg

1
2|E(s)|

Rs,~0,F,a,λ(z) (8.2)

where the sum is restricted to the full schemes (s, τ, F, a, λ) ∈ Fg such that τ associates
0 to all edges.

8.2. An exact computation.
We fix a full scheme f = (s, τ, F, a, λ). We let E1 be the set of edges of s such that
λ(e+) = λ(e−), and E2 be its complementary. Observe that for e ∈ E1, the quantity
rf,(lv)(e) does not depend on the labelling : for such an edge, we will therefore note
rf,(lv)(e) = rf(e).

To lighten notations, we note T◦, Ci, αi for T◦(z), Ci(t(z)) and αi(t(z)), respectively.
We also note zf := z〈a〉+〈c〉t(z)|a|+|c|. Then we have from Equation (7.13)

Rf = zf
∑

δ1,..δM >0

∏
e∈E1

(
r∑

i=1

Ci − rf(e)

) ∏
e∈E2

(
T◦

1τ(e)6=0

r∑
i=1

Ciα
|∆(e)|
i − rf,(lv)(e)

)
(8.3)

= zfT◦
n 6=
∏

e∈E1

(
r∑

i=1

Ci − rf(e)

) ∑
δ1,..δM >0

∏
e∈E2

(
r∑

i=1

Ciα
|aF,a(e)+

PM
j=1 Ae,jδj |

i − rf,(lv)(e)

)

where n 6= is the number of edges of s of type 6= 0. Now, observe that when the δ′is are
large enough, all the quantities aF,a(e)+

∑M
j=1 Ae,jδj are positive, so that we can remove

the absolute values in the expression above. Similarly, when the δi’s are large enough, all
the quantities rf,(lv)(e), for e ∈ E2, are equal to 0. Therefore, if we define the following
rational fraction of the αi’s:

p(α1, . . . , αr) :=
∑

δ1,..δM <K

∏
e∈E2

(
r∑

i=1

Ciα
|aF,a(e)+

PM
j=1 Ae,jδj |

i − rf,(lv)(e)

)
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where K is a large enough integer, we can write :∑
δ1,..δM >0

∏
e∈E2

(
r∑

i=1

Ciα
|aF,a(e)+

PM
j=1 Ae,jδj |

i − rf,(lv)(e)

)

= p(α1, . . . , αr) +
∑

δ1,..δM≥K

∏
e∈E2

(
r∑

i=1

Ciα
aF,a(e)+

PM
j=1 Ae,jδj

i

)
Then we have, by expanding the product:∑
δ1,..δM≥K

∏
e∈E2

r∑
i=1

Ciα
aF,a(e)+

PM
j=1 Ae,jδj

i =
∑

δ1,..δM≥K

∑
i∈J1,rKE2

∏
e∈E2

Cieα
aF,a(e)+

PM
j=1 Ae,jδj

ie

=
∑

i∈J1,rKE2

∏
e∈E2

Cieα
aF,a(e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

where the last equality follows from a geometric summation on each variable δj . Observe
that it remains only sums and products over finite sets. This gives the statement:

Proposition 8.2. The series Rf(z) is an algebraic series of z, given by the following
expression:

Rf(z) = zfT◦
n 6=
∏

e∈E1

(
r∑

i=1

Ci − rf(e)

)
×

×

p(α1, . . . , αr) +
∑

i∈J1,rKE2

∏
e∈E2

Cie
α

aF,a(e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

 (8.4)

One should not worry to much about the form of the last equation. In the asymptotic
regime, many terms will disappear, and it will look much nicer.

8.3. The singular behaviour of Rf.
Lemma 8.3. The radius of convergence of Rf(z) is at least z

(c)
m,D.

Proof. Let us consider the family of all objects obtained by replacing each edge e of
the scheme s by a chain of type τ(e), without any constraint on the increment of the
chains. These objects are not all valid mobiles (most of them are not) but clearly, this
family contains all the mobiles counted by the series Rf(z). Now, if s has n0 edges of
type 0 and n1 edges of type 6= 0, the generating series of these objects is:

zf

(
1

1− Pm,D(1, t(z))

)n0
(

T◦(z)
1− Pm,D(1, t(z))

)n1

so that:

Rf(z) 4 zfT◦(z)n1

(
1

1− Pm,D(1, t(z))

)n0+n1
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where
∑

fnzn 4
∑

gnzn means that fn ≤ gn for all n. Since all the coefficients of these
two series are nonnegative, this implies that the radius of convergence of R~o is at least
z
(c)
m,D (recall that Pm,D(1, t

(c)
m,D) = 1 and that Pm,D has positive coefficients, so that z

(c)
m,D

is indeed the radius of convergence of the right hand side).

We now study the behaviour of Rf(z) near z = z
(c)
m,D. Several things happen that

create a singularity: First, z
(c)
m,D is the radius of convergence of T◦ and t(z). Second, we

saw that at t = t
(c)
m,D, at least α1(t) ceases to be analytic: we are thus in a regime of

composition of singularities. Third, at t = t
(c)
m,D, α1(t

(c)
m,D) = 1 so that denominators

in Equation (8.4) can vanish. These three factors are easy to control. There is a last
one, however, that could happen. Indeed, if Pm,D(X, t

(c)
m,D) has other multiple roots than

1, the corresponding series Ci diverge. However, if ever this happens the corresponding
divergences will cancel between multiple roots, and everything works as if 1 was the only
multiple root. Precisely, we have:

Proposition 8.4. The only dominating term in Expression (8.4) is the one correspond-
ing to ie = 1 for all e, and when z tends to z

(c)
m,D we have:

Rf(z) = cs,λzfTc
n 6= C1(t(z))|E(s)|

[1− α1(t(z))]M
[1 + o(1)] (8.5)

where the constant cs,λ =
1∏M

j=1

∑
e∈E Ae,j

depends only on s and λ.

Proof. First, the expansion of C1(t) near t = t
(c)
m,D gives : C1(t) ∼

1− α1

2(1− P (1, t))
which

implies that C1(t) = Θ
(
(t(c)m,D − 1)−1/2

)
.

We now consider the contribution of the roots αi(t) for i 6= 1. The definition of Ci(t)
shows that Ci(t) diverges at t = t

(c)
m,D if and only if αi(t

(c)
m,D) is a multiple root of

P (X, t
(c)
m,D). We let 1 = ρ1, ρ2, . . . , ρl be the roots of P (X, t

(c)
m,D) of modulus less than or

equal to 1, without multiplicity, and for j ≤ l we note Ij = {i ∈ J1, rK, αi(t
(c)
m,D) = ρj}.

In particular, I1 = {1}, and J1, rK = ]l
j=1Ij .

We now fix j ≥ 2. We let t in a pointed neighborhood of t
(c)
m,D on which the αi(t) are

all distinct. We have, from the partial fraction expansion of S(X, t):

Ci(t)αi(t) = ResX=αi(t)S(X, t) =
1

2πi

∮
Ti

S(X, t)dX

where we consider S(X, t) as an analytic function of the variable X, t being fixed, and
where Ti is a contour encircling αi(t) and containing no other root (Ti may, and will,
depend on t). Now we let ε > 0 be such that for t close enough to t

(c)
m,D, the roots αi(t),

i ∈ Ij are all contained in the interior of the circle C of center ρj and radius ε, and such
that this circle encloses no other root αi′(t) for i′ 6∈ Ij . We then consider a tessellation of
the circle C such that each face contains exactly one αi(t), and we let Ti be the border of
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the face encircling αi(t). Since the contributions of the contour integrals on each interior
edge of the tessellation cancels, we obtain:∑

i∈Ij

Ci(t)αi(t) =
1

2πi

∮
C

S(X, t)dX

Now, when t tends to t
(c)
m,D, S(X, t) converges to S(X, t

(c)
m,D) uniformly in X ∈ C. Con-

sequently,
∑

i∈Ij
Ci(t)αi(t) tends to 1

2πi

∮
C

S(X, t
(c)
m,D)dX, which is finite. Hence, even if

the Ci(t) can diverge, we have shown that
∑

i∈Ij
Ci(t)αi(t) = O(1) at t = t

(c)
m,D. Similarly,

by considering the residue of Xq−1S(X, t), we obtain that for all q ≥ 0 one has:∑
i∈Ij

Ci(t)αi(t)q = O(1) at t = t
(c)
m,D. (8.6)

We now show that this equation implies important simplifications at the critical point
in Equation (8.4). First, we arrange the summation on i, in order to group together the
indices whose corresponding roots meet at the critical point:

∑
i∈J1,rKE2

∏
e∈E2

Cieα
aF,a(e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

(8.7)

=
∑

w∈J1,lKE2

∑
i1∈Iw1

· · ·
∑

ik′∈Iw
k′

∏
e∈E2

Cieα
aF,a(e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

(8.8)

where we have identified E2 with the interval J1, k′K. For w ∈ J1, lKE2 , we let |w|1 be its
number of coordinates equal to 1, and we let kw = {j, ∀e ie = 1 or Ae,j = 0} be the
number of factors such that the denominator vanishes in the previous equation. Then
the previous sum rewrites:

∑
w∈J1,lKE2

C1(t)|w|1

(1− α1(t))kw

∑
i1∈Iw1

· · ·
∑

ik′∈Iw
k′

 ∏
e,we 6=1

Cie

 fw(αi1 , αi2 , . . . , αik′ )

where fw is a function of k′ variables which is analytic at the point (ρw1 , ρw2 , . . . , ρwk′ ).
We now consider the multivariate Taylor expansion of fw at this point, up to a certain
order. This expansion is a linear combination of monomials of the form αl1

i1
αl2

i2
. . . α

lk′
ik′

.
Now, Equation (8.6) implies that the quantity

∑
i1∈Iw1

· · ·
∑

ik′∈Iw
k′

 ∏
e,we 6=1

Cie

αl1
i1

αl2
i2

. . . α
lk′
ik′

is finite at the critical point. Hence, if we choose the order of the Taylor expansion large
enough to be sure that the rest multiplied by

∏
e,we 6=1 Cie is finite, we see that the quan-

tity
∑

i1∈Iw1
· · ·
∑

ik∈Iw
k′

(∏
e,we 6=1 Cie

)
fw(αi1 , αi2 , . . . , αik′ ) tends to a finite value at

t = t
(c)
m,D.
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This shows that in Equation (8.8), the term corresponding to w = (1, . . . , 1) dominates
strictly all the others. In particular we have:

∑
i∈J1,rKE2

∏
e∈E2

Cieα
aF,a(e)
ie

M∏
j=1

(∏
e α

Ae,j

ie

)K

1−
∏

e α
Ae,j

ie

∼ C1(t(z))|E2|
M∏

j=1

1
1− α1(t(z))

P
e Ae,j

(8.9)

A similar reasoning shows, on the one hand, that no unexpected singularity occurs in
p(α1, . . . , αr), so that this quantity is negligible with respect to the one we have just
examined, and on the other hand that the quantity

∑
i Ci(t) is equivalent to C1(t).

Hence we have analysed the behaviour of all quantities appearing in Equation (8.4), and
the statement is proved.

The expansion of Sm,D(1, t) near t = t
(c)
m,D gives :

C1(t) =
1− α1(t)

2(1− Pm,D(1, t))
[1 + o(1)]

Since Lemma 7.4 gives the singular expansion of α1(t), and since the expansion of
Pm,D(1, t) follows from Lemma 7.2, we obtain:

Lemma 8.5. When t tends to t
(c)
m,D, the following Puiseux expansion holds:

C1(t) =

√
3(m− 1)

m
γ−1

m,D

(
1− t

t
(c)
m,D

)−1/2

+ o

(1− t

t
(c)
m,D

)−1/2
 (8.10)

Setting t = t(z), the last proposition and Lemmas 7.4, 8.5, 7.1 finally give:

Lemma 8.6. When z tends to z
(c)
m,D, the following Puiseux expansion holds:

Rf(z) = cs,λ(z(c)
m,D)f(Tc)n 6=(m− 1)

k+m
4 m

M−k
2

×γ
M−3k

4
m,D β

− k+M
4

m,D 3
k−M

2 2
−k−5M

4

(
1− z

z
(c)
m,D

)− k+M
4

[1 + o(1)] (8.11)

where k is the number of edges of s.

8.4. The dominant pairs.
From the last lemma, the singular behaviour of the sum (8.1) is dominated by the full
schemes f for which the quantity k + M is maximal. First, to maximize the quantity
k + M , we can assume that λ is injective, i.e. that M = |V (s)| − 1, so that the dominant
terms will be given by schemes such that the quantity |E(s)| + |V (s)| − 1 is maximal.
Now, if a scheme s of genus g has ni vertices of degree i for all i ≥ 3 we have:

|E(s)|+ |V (s)| =
∑
i≥3

i + 2
2

ni.



34 Guillaume Chapuy

Maximizing this quantity with the constraint of Equation (6.1) imposes that
∑

i ni is
maximal, and since

∑
(i− 2)ni is fixed, this is realized if and only if n3 6= 0 and ni = 0

for i 6= 3, i.e. if s has only vertices of degree 3. From Euler characteristic formula, such
a scheme has 6g − 3 edges and 4g − 2 vertices. This leads to:

Definition. A dominant pair of genus g is a pair (s, λ), where s is a rooted scheme of
genus g with 6g − 3 edges and 4g − 2 vertices of degree 3, and λ is bijection: V (s) →
J0, 4g − 3K.
The set of all dominant pairs of genus g is denoted Pg.

Hence, only dominant pairs appear at the first order in the sum (8.1) (this was already
the case in [9]).

9. The multiplicative contribution of the nodal stars.

Observe that Equation (8.11) has a remarkable multiplicative form: the contribution of
the pair (s, λ) is clearly separated from the one of (τ, F, a). In this section, we will perform
a summation on (F, a). Since we are only interested in the asymptotics, we consider only
the case of dominant pairs.

9.1. Four types of nodes
We fix a triple (s, λ, τ) such that (s, τ) is a typed scheme and (s, λ) ∈ Pg.

We say that an edge e ∈ E(s) is special if τ(e) 6= 0. Let v ∈ V (s) be a vertex
of s adjacent to l special edges, and let τ1, ..τl be their types. We let τ̃i = τi if the
corresponding edge is incoming at v, and τ̃i = m − τi if it is outgoing. Hence, from the
discussion of subsection 6.3, in any full scheme of the form (s, τ, F, a, λ), τ̃i is the type
of the corresponding split-edge of Fv if Fv is a white elementary star; if Fv is a black
elementary star, the corresponding type will be m− τ̃i. We have:

Lemma 9.1. The vertices of s can be of four types:

1. vertices such that none of the three adjacent edges are special.
2. vertices such that exactly two adjacent edges are specials. In this case, one has: τ̃1 +

τ̃2 = m

3.1. vertices such that exactly three edges are specials, and such such that: τ̃1+ τ̃2+ τ̃3 = m.
3.2. vertices such that exactly three edges are specials, and such that: τ̃1 + τ̃2 + τ̃3 = 2m

Proof. The lemma is a straightforward consequence of the Kirchoff law (Proposi-
tion 6.3), and the fact that the τ̃i’s are elements of J1,m− 1K.

Observe that, in a full scheme, vertices of type 3.2 can correspond either to black or
white elementary stars, whereas all the other correspond to white elementary stars only.
We denote by v1 (resp. v2, v

(1)
3 , v

(2)
3 ) the number of vertices of type 1 (resp. 2, 3.1, 3.2).

Then we have:
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Lemma 9.2.

v
(1)
3 = v

(2)
3

Proof. Recall that n 6= is the number of edges of type 6= 0. Counting half-edges implies:

2n 6= = 3v
(1)
3 + 3v

(2)
3 + 2v2

Now, we compute the total sum, over all edges of type 6= 0, of the quantity τ +(m−τ). It
is of course equal to mn 6=, but also to the total sum of the types of the special half-edges
leaving all the vertices, i.e.:

mv
(1)
3 + 2mv

(2)
3 + mv2.

So we have : {
2n 6= = 3v

(1)
3 + 3v

(2)
3 + 2v2

mn 6= = mv
(1)
3 + 2mv

(2)
3 + mv2

and eliminating n 6= implies the lemma.

We let Ds,λ,τ be the set of all pairs (F, a) such that (s, τ, F, a, λ) ∈ Fg. We say that
such a pair is a decoration of s, τ, λ. We let

Rs,τ,λ(z) =
∑

(F,a)∈Ds,λ,τ

Rs,τ,F,a,λ(z).

Due to the nature of Equation (8.11), we need to compute the sum:∑
(F,a)∈Ds,λ,τ

z
(c)
m,D

(s,τ,F,a,λ)
. (9.1)

Each vertex of s will contribute a certain multiplicative factor to this quantity.

9.1.1. vertices of type 1. A vertex v of type 1 is ajacent to three edges of type 0.
Hence the star Fv can be either a single vertex ◦, or a white elementary star with three
distinguished labelled vertices. The corresponding multiplicative factor is therefore:

1 +
∑
k∈D

[(m− 1)k][(m− 1)k − 1]
2

(
mk − 1

k

)
t
(c)
m,D

(m−1)k
=

γm,D

2
.

Moreover, in this case, the half-edges ajacent to e are all of type 0, so they do not carry
any correcting star of a.

9.1.2. vertices of type 2. First, a vertex of type two cannot be decorated by a black
star, since it is linked to an edge of type 0. Then, a vertex of type 2 corresponds to a
white elementary star with exactly two special edges, which is rooted at a labelled vertex.
There are k[(m−1)k−1]

2

(
mk−1

k

)
of those. Moreover, each time a special half-edge is outgoing

at v, we need to add a correction black star in a for the corresponding superchain to begin
with a white star. Observe that the number of black stars with two marked special edges
is (m − 1), so that each black star added in a contributes a factor (m − 1)z(c)

m,D at the
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critical point. Hence the multiplicative contribution of a vertex of type 2 is:

[z(c)
m,D(m− 1)]out(v)

∑
k∈D

k[(m− 1)k − 1]
2

(
mk − 1

k

)
z
(c)
m,D

k
Tc

(m−1)k−1

=
[z(c)

m,D(m− 1)]out(v)

Tc

γm,D

2

where out(v) denotes the number of outgoing special half-edges at v.

9.1.3. vertices of type 3.1 Such a vertex can correspond only to a white star. In the
m-walk reformulation, this star is a walk of length mk ∈ mD, with (m−1)k−2 steps −1,
k − 1 steps m− 1, that begins with a special step, and with two other special steps. For
a given k, the number of such walks is

(
mk−1

(m−1)k−2,k−1,2

)
= k[(m−1)k−1]

2

(
mk−1

k

)
. Moreover,

as before, for each outgoing edge, we have to add a black polygon in the sequence a, so
that the multiplicative contribution of a vertex of type 3.1 is finally:

[z(c)
m,D(m− 1)]out(v)

∑
k∈D

k[(m− 1)k − 1]
2

(
mk − 1

k

)
z
(c)
m,D

k−1
Tc

(m−1)k−2

=
[z(c)

m,D(m− 1)]out(v)

(m− 1)z(c)
m,DTc

2

γm,D

2
= [z(c)

m,D(m− 1)]out(v)−1 γm,D

2Tc
2

9.1.4. vertices of type 3.2 Such a vertex can correspond to a white or black star.
If it is decorated by a white star, it corresponds to a walk of length mk ∈ mD, with

(m − 1)k − 1 steps −1, k − 2 steps m − 1, beginning with a special step, and with two
other special steps. The number of such walks being

(
mk−1

(m−1)k−1,k−2,2

)
= k[k−1]

2

(
mk−1

k

)
,

the corresponding contribution is:

[z(c)
m,D(m− 1)]out(v)

∑
k∈D

k[k − 1]
2

(
mk − 1

k

)
z
(c)
m,D

k−2
Tc

(m−1)k−1

= [z(c)
m,D(m− 1)]out(v)

 1

z
(c)
m,D

2
Tc

γm,D − (m− 2)βm,D

2(m− 1)2


In the other case, v is decorated by a black star with three marked special edges: there

are (m−1)(m−2)
2 of those, so that the contribution of the black star is (m−1)(m−2)

2 z
(c)
m,D.

Now, for each ingoing special edge of v, we need to add a white elementary star with two
special split-edges: the multiplicative contribution for adding such a star is

∑
k∈D[(m−

1)k − 1]
(
mk−1

k

)
z
(c)
m,D

k−1
Tc

(m−1)k = 1

(m−1)z
(c)
m,D

. The multiplicative factor for the second

case is therefore:

(m− 1)(m− 2)
2

z
(c)
m,D

[
1

(m− 1)z(c)
m,D

]3−out(v)

Putting the two cases together, the multiplicative contribution of a vertex of the type
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3.2 is:

[z(c)
m,D(m− 1)]out(v)

 1

z
(c)
m,D

2
Tc

γm,D − (m− 2)βm,D

2(m− 1)2
+

m− 2

2(m− 1)2z(c)
m,D

2


= [z(c)

m,D(m− 1)]out(v)−2 γm,D

2Tc

where we used that Tc = βm,D.

9.2. Final asymptotics
Putting the four cases together, it finally comes that:

∑
(F,a)∈Ds,λ,τ

z
(c)
m,D

(s,τ,F,a,λ)

=
∏

v:type 1

γm,D

2

∏
v:type 2

[z(c)
m,D(m− 1)]out(v)−1

Tc

γm,D

2∏
v:type 3.1

[z(c)
m,D(m− 1)]out(v)−1 γm,D

2Tc
2

∏
v:type 3.2

[z(c)
m,D(m− 1)]out(v)−2 γm,D

2Tc

=
(γm,D

2

)|V (s)|
[z(c)

m,D(m− 1)]out(s)−v2−v
(1)
3 −2v

(2)
3 Tc

−v2−2v
(1)
3 −v

(2)
3

where out(s) =
∑

v type 2;3.1;3.2 out(v) is the total number of special half-edges that are
outgoing. Observe that out(s) is also the total number of special edges (since each edge
has exactly one outgoing half-edge), i.e. out(s) = n 6=. Moreover, since v

(1)
3 = v

(2)
3 , we

have: v2 + v
(1)
3 + 2v

(2)
3 = v2 + 3

2v3 = n 6=.
Hence the multiplicative factor corresponding to all decorations of s, τ, λ is:

∑
(F,a)∈Ds,λ,τ

z
(c)
m,D

(s,τ,F,a,λ)
=
(

1
Tc

)n 6= (γm,D

2

)|V (s)|
.

That is where something great happens: the factor
(

1
Tc

)n 6=
simplifies with Tc

n 6= in Equa-
tion (8.11). Hence, the first term in the singular expansion of Rs,λ,τ does not depend
on the typing ! This is, with Lemma 6.4, the main argument leading to Theorem 3.2.
Precisely, summing Equation (8.11) over all the decorations gives:

Rs,λ,τ (z) = cs,λ

(γm,D

2

)|V (s)|

×(m− 1)
k+m

4 m
M−k

2 γ
M−3k

4
m,D β

− k+M
4

m,D 3
k−M

2 2
−k−5M

4

(
1− z

z
(c)
m,D

)− k+M
4

[1 + o(1)]

where k = 6g − 3 and |V (s)| = M + 1 = 4g − 2. This gives our main estimate:
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Proposition 9.3. When z tends to z
(c)
m,D, the following Puiseux expansion holds:

Rs,λ,τ (z) = cs,λ(m− 1)
5g−3

2 m−gγ
g−1
2

m,D β
3−5g

2
m,D 3g2

13−21g
2

(
1− z

z
(c)
m,D

)− k+M
4

[1 + o(1)] (9.2)

Let d = gcd(D). Then T◦(z) is actually a series in zd. It has therefore at least d

dominant singularities, which are the z
(c)
m,Dξk for a primitive d-th root of unity ξ. Now,

the positivity of the coefficients in Equation (7.1) easily shows that these are the only
singularities of T◦(z), and hence of t(z). Hence, due to the compositional nature of the
series Rf(z) (up to the prefactor zf, Rf(z) is in fact a power series with positive coefficients
in t(z)), this implies that the z

(c)
m,Dξk are the d only dominant roots of Rf(z) for all f, so

that they are also the d only dominant roots of Rs,τ,λ(z).
Now, Rs,τ,λ(z) being an algebraic series, it is amenable to singularity analysis, in the

classical sense of [12]. Hence Equation (9.2) and the classical transfer theorems of [12]
imply that the coefficient of zn in Rs,τ,λ(z) satisfies:

[zn]Rs,λ,τ (z) ∼ dcs,λ

Γ
(

5g−3
2

) (m− 1)
5g−3

2 m−gγ
g−1
2

m,D β
3−5g

2
m,D 3g2

13−21g
2 · n

5g−5
2 z

(c)
m,D

−n

when n goes to infinity along multiples of d. Using Corollary 8.1 and Theorem 4.3, we
obtain that the number h•g,m,D(n) of rooted and pointed m-hypermaps of degree set mD

with n black faces satisfies, when n tends to infinity along multiples of d:

h•g,m,D(n) ∼ dcg

Γ
(

5g−3
2

) (m− 1)
5g−3

2 m1−gγ
g−1
2

m,D β
3−5g

2
m,D 3g2

11−21g
2 · n

5g−3
2 z

(c)
m,D

−n

where cg = m2g

6g−3

∑
(s,λ)∈Pg

cs,λ; observe the factor m2g, that comes from Lemma 6.4.
Moreover, it follows from the remark after Corollary 8.1 that the number c•g,m,D(n) of

rooted and pointed m-constellations of degree set mD with n black faces satisfies, when
n tends to infinity along multiples of d:

m2gc•g,m,D(n) ∼ h•g,m,D(n).

9.3. A “de-pointing lemma”.
The last thing that remains to do to prove Theorems 3.1 and 3.2 is to relate maps which
are both rooted and pointed to maps which are only rooted. First, observe that each
rooted map with v vertices corresponds to exactly v distinct rooted and pointed maps.
Moreover, the vertices of an m-hypermap correspond, except for the pointed vertex,
to the labelled vertices of its mobile. Therefore counting rooted m-hypermaps is equiv-
alent to counting mobiles with a weight inverse of their number of labelled vertices plus 1.

Now, let tn be a mobile corresponding to an m-hypermap of degree set mD and size
n, chosen uniformly at random. We note Yn its number of labelled vertices, so that the
ratio between the numbers of rooted and pointed, and rooted only m-hypermaps equals
E
[

1
Yn+1

]
.

We restrict to the case of mobiles of associated full scheme f ∈ Fg. Recall that, up to
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a multiplicative factor, the series Rf(z) is actually a series in t(z) = zT◦(z)m−1 :

Rf(z) = zfT◦
n 6=H(t(z))

for a certain series H(t) given by equation (8.4). Now, let T (z, u) be the generating series
of planar mobiles, where z counts black vertices and u counts labelled vertices. Then the
series :

K(z, u) := (z, u)fT (z, u)n 6=H(zT (z, u)m−1)

is the generating series counting the same objects as Rf, by the number of black vertices
and labelled vertices, where we noted (z, u)f the bivariate generating polynomial of the
decorations of the scheme. Now, we have:

E [Yn] =
[zn]K ′

u(z, 1)
[zn]K(z, 1)

Moreover, the series T (z, u) is given by the following equation:

T (z, u) = u +
∑
k∈D

(
mk − 1

k

)
zkT (z, u)(m−1)k

A little computation shows that when z tends to z
(c)
m,D, the following expansion holds:

T ′u(z, 1)
zT ′z(z, 1)

=
(m− 1)
βm,D

(1 + o(1)),

which, since t(z) = zT (z, 1)m−1, implies the equation:

d

du

∣∣∣∣
u=1

H(zT (z, u)(m−1)) =
(m− 1)
βm,D

· z d

dz
H(t(z))(1 + o(1))

Moreover, we have seen that H has an expansion of the form:

H(t) = (cte)(t(c)m,D − t)−K(1 + o(1))

for a certain K > 0. Recall that in what precedes, we have already examined the singu-
larity type of all the series under consideration. Therefore we know that all these series
are algebraic series amenable to singularity analysis, in the sense of [12], and we can write
down the following computations:

[zn]K ′
u(z, 1)

[zn]K(z, 1)
∼

[zn] d
du

∣∣
u=1

H(zT (z, u)(m−1))
[zn]H(t(z))

∼ m− 1
βm,D

·
[zn]z d

dz H(t(z))
[zn]H(t(z))

∼ (m− 1)n
βm,D

Therefore we have shown the convergence: E
[
Yn

n

]
→ m− 1

βm,D
. The same computation

(with this time a second order derivative) shows that the second moment satisfies:

E
[(

Yn

n

)2] → (
m−1
βm,D

)2

. Consequently, we deduce from Chebichev inequality that the
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convergence actually holds in probability:

Yn

n

(P)
−→ m− 1

βm,D
.

This implies the convergence in probability of
n

Yn + 1
to

βm,D

m− 1
, and since this variable

is bounded, we deduce the convergence:

E
[

n

Yn + 1

]
→ βm,D

m− 1
.

From the previous discussion, we obtain:

Lemma 9.4. The numbers of rooted and pointed, and rooted only m-hypermaps or m-
constellations are related by the following asymptotic relations, when n tends to infinity
along multiples of d:

hg,m,D(n) ∼ βm,D

(m− 1)n
h•g,m,D(n) ; cg,m,D(n) ∼ βm,D

(m− 1)n
c•g,m,D(n).

This last result completes the proof of Theorems 3.1 and 3.2, up to setting

tg =
cg3g27−11g

(6g − 3)Γ
(

5g−3
2

) .
The last thing to do is to check that tg is indeed the same constant as in [4]: this will
be done in the next and last subsection, where we examine some corollaries of the two
theorems.

9.4. The case D = {k}.
In this subsection, we examine the case D = {k}. In this case, we have:

[(m− 1)k − 1]
(

mk − 1
k

)
tkc = 1

which gives:

βm,k =
(m− 1)k

(m− 1)k − 1
γm,k = (m− 1)k

We obtain the following:

Corollary 9.5. Let m ≥ 2 and k ≥ 2 be integers. Then the number cg,m,k(n) of rooted
m-constellations of genus g and size n, and whose all white faces have degree mk satisfies,
when n tends to infinity along multiples of k:

cg,m,k(n) ∼ tg
k

2

(√
2
√

m− 1[(m− 1)k − 1]
5
2

mk2

)g−1

n
5(g−1)

2 (z(c)
m,k)

−n
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where: z
(c)
m,k =

[
(m− 1)k

(m− 1)k − 1

]1−m [
[(m− 1)k − 1]

(
mk − 1

k

)]− 1
k

.

For m = 2, we obtain the asymptotic number of bipartite 2k-angulations with n edges:

cg,2,k(n) ∼ tg
k

2

[
1√
2

(k − 1)5/2

k2

]g−1

n
5(g−1)

2 z
(c)
2,k

−n

If furthermore k = 2, we recover the asymptotic number of bipartite quadrangulations
with 2n edges (which is also the number of maps with n edges, thanks to the classical
bijection of Tutte), in accordance with [3, 9]):

Corollary 9.6. The number m
(g)
n of rooted maps on Sg with n edges satisfies:

m(g)
n ∼ tgn

5(g−1)
2 12n

In particular, this proves that our constant tg is indeed the same as the one introduced
in [3]. Our last corollary concerns the number of all m-constellations of genus g (with-
out degree restriction). The following lemma is classical and reduces the study of all
m-constellations (without degree restriction) to the study of degree restricted m + 1-
constellations. See the proof of Corollary 2.4 in [6].

Lemma 9.7. There is a bijection between rooted m-constellations with n black faces and
rooted m + 1-constellations with n black faces where all white faces have degree m + 1.

This implies

Corollary 9.8. The number of all rooted m-constellations with n black faces on a
surface of genus g is asymptotically equivalent to:

tg
2

(√
2m(m− 1)5/2

m + 1

)g−1

n
5(g−1)

2

(
mm+1

(m− 1)m−1

)n

.
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