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L. INTRODUCTION

Hurwitz numbers and tau-func Hurwitz numbess, in their most general sense,
count the number of combinatorially inequivalent branched coverings of the sphere by
arientable surface with a given number of branchpoints and given ramification profiles. Hur-
witz numbers and their variants (dessins d'enfunts, weighted, monotone, orbifold Hurw

numbers) have o the mod-
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acters of the symmetric group. Equivalently, generating functions of Hurwitz numbers can
be expressed explicitly in terms of Schur functions, which gives them a rich structure. A fun-
damental faciin the field, going back to Pandariphande (Pan00) and Okounkov [Oko00] and
now understood in a wide generality {see ¢.g. [GI08, GPHITY) is that Hurwitz numbers can
be used 10 define a formal power series which is a tau-function of the KP. o more generally
2-Toda hierarchy [MIDOO]. Explicitly, in the case of & + 2 branchpoints, this tau-function
has the form
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L. INTRODUCTION

Hurwitz numbers and tau-functions. Hurwitz numbers, in their most general sense,
count the number of combinatorially inequivalent branched coverings of the sphere by an
arientable surface with a given number of branchpoints. and given ramification profiles. Hur-
witz numbers and their variants (dessins d'enfants, weighted, monotone, orbifold Hurwitz
numbers) have to he l ics, and the mod-
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Symmetric functions



Symmetric functions and their bases.

e Let A,, be the vector space of formal power series in x1, 2, ... which are symmetric,
and homogeneous of degree n.

Examples: 1 € Ay, > .z € Ay, Z” 1ixj € No, > w7 — QZMCCZ'ZIZJ‘ c Ay
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Symmetric functions and their bases.

e Let A,, be the vector space of formal power series in x1, 2, ... which are symmetric,
and homogeneous of degree n.

Examples: 1 € Ay, > .z € Ay, Z” 1ixj € No, > w7 — ZZM T;ix; € No

e A, has a basis which is naturally indexed by partitions of n

Mo =1 P A MUY = Dok TiTiT
................................... H M = 2«5 ity P

...................................................... : A — 2
; S ] My = » . - TiT,
: _ . : : _ 2 o [271] ZZ,] 1)
U mpy = o mp =30 o |
--------------------------------------- :-------------- ----------------.--------------------------------------------------. E m o $3

(my: monomial symmetric functions) L] ™8T 2

(group together all monomials “of re-ordered exponents ")

e A\,, has many other nice bases, all indexed by partitions.

pr(x) = Z xf and px = pa D, - - 2V
i

(px: powersums)

. 9 2.2
Example: ppo1) = pop1 = Zi,j,k Li Lk



Schur functions (1)

e If )\ is a partition, a semistandard Young tableau of shape A (SSYT) is a filling
of A which is < on rows and V on columns.

_ 7
A=(4,4,2,1) 15 S[g] = sz%’ i | S[3,1] = Z Ll j L kLm
T = 5 i<j ==k
3191919 — , s
ZCT = 563563513556%:685512 212]13]7 8[1’1] - inx‘j Z m 2
: i<j 1]

The Schur function sy is the generating function of SSYT's of shape A.

sa(x) = Z x?

T:SSYT(N)

Thm: The s\ for A = n are a basis of A,,.

(yes, in particular they are symmetric functions)



Schur functions (bis)

e Cool fact: Viewed as polynomials in the powersums p = (pg)x>1, Schur
functions generate characters of the symmetric group

E | Mu): t f tati
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uEn

representation V* of &,
(here n = |)A|)

e \We use powersums to equip A,, with the Hall scalar product:

<p/\7pu> — Z,\5A,M 2y = |CLA'|

Pk = Zz 37?1 PX = PX1PXxy - - - >‘>\e(>\)



Schur functions (bis)

e Cool fact: Viewed as polynomials in the powersums p = (pg)x>1, Schur
functions generate characters of the symmetric group

E | Mu): t f tati
sx =t sx(p) = % ‘CM|X>\ ()P é(f (@pera;e Oac?ciigmouna LEZ
uEn

representation VA of &,
(here n = |)A|)

e \We use powersums to equip A,, with the Hall scalar product:

<p,\7pu> — Z,\5A,M 2y = |CLA'|

Pk = Zz 97?1 PX = PX1PXxy - - - >‘>\e(>\)

e A characterisation of Schur functions:

(
orthonormal for Hall: (s, s,) = dx .

k triangular w.r.t. to monomials: sy =mx + >y ax umy

recall dominance order: pu < A:pp 4+ < A+ + N\ Vi



Jack polynomials

e Piotr Sniady: “Jack polynomials are Schur functions under steroids.”

e More precisely: we deform the Hall scalar product and keep triangularity

£(N)

<p>\7pu>oz — 2\ 5>\,,u

e Jack polynomials:

(
orthogonal for Hall,,: <J>(\O‘), Jl(ia)>04 — jﬁ\a)&\,u

triangular w.r.t. to monomials: J>(\Oé) (o)
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(for us: normalization coefficients jga) and gga) chosen s.t. [p?]]ﬁoz) =1)
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Jack polynomials

e Piotr Sniady: “Jack polynomials are Schur functions under steroids.”
e More precisely: we deform the Hall scalar product and keep triangularity

£(N)

<p>\7pu>oz — 2\ 5>\,,u

e Jack polynomials:

(
orthogonal for Hall,,: <J>(\O‘)’ J;Sa)>a — jia)d,\,u

triangular w.r.t. to monomials: (o) _ (o) /
\ g J =95 T mat D00 My

(for us: normalization coefficients ].g@) and gg(%) chosen s.t. [p?]]ﬁa) =1)

e We choose to view Jacks as polynomials in the powersums

for example J?E?i)(p) = pi*t + (Bar — Dpap1? + (202 — 2a)p3p1 — 20°py — apo?

® For aw = 1, Jacks are (normalized) Schur: JS) — Hys), =: 5,
A

P hOOk product
For o« = 2, Jacks are zonal polynomials: J>(\2) iIs related to representation
theory of the Gelfand pair (&3, B,,) “in the same way as” sy is to
representation theory of G,,. (a bit more later)



Maps and factorizations



Maps on orientable surfaces

e Bipartite map: bipartite (o/e) graph embedded on an
oriented surface with edges labelled {1,2,...,n}, with
simply connected faces, considered up to homeomorphism.

cycles of o, cycles of o, cycles of o0

— the same as a triple of permutations (0., g, 0¢) such that o,040, = id.
cf. [Cori-Machi 80s]
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e Cool fact (Frobenius). The number of factorizations of the identity in a finite
group into factors of given conjugacy classes, can be expressed in terms of
irreducible characters of the group. As a consequence we have:
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e Bipartite map: bipartite (o/e) graph embedded on an
oriented surface with edges labelled {1,2,...,n}, with
simply connected faces, considered up to homeomorphism.

oo = (1,4)(2,3)(5,6,7)
7‘\ ge = (1,6,7,3,4)(2,5)
—1 L
cycles of o, cycles of o, cycles of e, 0o~ = 0e00 = (1)(2,4,6,3,5,7)

— the same as a triple of permutations (0., g, 0¢) such that o,040, = id.
cf. [Cori-Machi 80s]

e Cool fact (Frobenius). The number of factorizations of the identity in a finite
group into factors of given conjugacy classes, can be expressed in terms of
irreducible characters of the group. As a consequence we have:

“Character formula” for map generating function

t’l’L
) P20 (m)dxe (m) A0 (m) = >t Hysx(p)sa(@)sa(r)

bip.map

Di >)< q; X o Q [proof: put the two cool facts together]
deg 2k

deg 1 deg j



Variant: rooted maps

e We only remember the position of the label 1 (“root edge”).
We ask the surface to be connected.
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Variant: rooted maps

e We only remember the position of the label 1 (“root edge”).
We ask the surface to be connected.

“Character formula” for rooted maps

0

Z tnp)\o(m)qu(m)TAo(m) — ta log Z t|>‘|H>\s>\(p)s>\(q)s>\(r)

. AEP

rooted bip. map

b >< B X " Qﬂeg 2k

Note: we now have coefficients in N (no more labels, usual g.f. instead of exponential g.f.)

(this is not obvious from the RHS!)



Maps on non (necessarily) orientable surfaces

e \WWe now want to look at bipartite maps on non-necessarily orientable surfaces.

00! 0o 7 o Je 7 An encoding by permutations still
/'L‘\ /V‘\ works but everything is defined
7\ T g up to change of local orientation -
around each vertex.... so it's more
complicated

— still works but now bipartite maps have to do with
factorisations in the double coset algebra B,, \ G2,/ B,,.
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e \WWe now want to look at bipartite maps on non-necessarily orientable surfaces.

2
25

? . . . SR
o Je 7 An encoding by permutations still S

0o 067 O _
/'L‘\ /V‘\ works but everything is defined

7\ T g up to change of local orientation

around each vertex.... so it's more
complicated

— still works but now bipartite maps have to do with
factorisations in the double coset algebra B,, \ G2,/ B,,.
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“Non-orientable character formula’’[Hanlon, Stanley, Stembridge '92, Goulden, Jackson '9¢]

0 J(Q)(p)J(Q)(q)J(Q)(r)
n _ IA] <X A A
Em:: t Pxe(m)dXe(m)T o (m) = 2t ot log E t

rooted bip. map
orientable or not
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AEP I\
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e \WWe now want to look at bipartite maps on non-necessarily orientable surfaces.
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“Non-orientable character formula’’[Hanlon, Stanley, Stembridge '92, Goulden, Jackson '9¢]

n 9 T (p)J 2 ()T D (x
Z £ Pxe (m) e (m) "¢ (m) ZQtEIOthW r(P)Jy (a)Jy (x)

j(2)
rooted bip. map AEP A

orientable or not

“Orientable character formula” (rewritten in Jack notation)

(1)

) 9 T 17V (@00 | o
S e ey — £ log 37 ARV (DT () g

Pi

Ot (1)
: AEP I\
~ooted bip. ma
orientzc)zble i /rk



Maps on non (necessarily) orientable surfaces

e \WWe now want to look at bipartite maps on non-necessarily orientable surfaces.

00! 0o 7 o Je 7 An encoding by permutations still
/'L‘\ /V‘\ works but everything is defined
7\ T g up to change of local orientation

around each vertex.... so it's more
complicated

— still works but now bipartite maps have to do with
factorisations in the double coset algebra B,, \ G2,/ B,,.

Zonal | “Non-orientable character formula’’|Hanlon, Stanley, Stembridge '92, Goulden, Jackson "9¢]

0 J(Q)(p)J(Q)(q)J(Q)(r)
@ n _ AL A A
‘ Em:: t7Dxe (m)dr® (m)TA° (m) Qtat log E t

j(2)
rooted bip. map AEP A

orientable or not

[

“Orientable character formula” (rewritten in Jack notation) D

@ ) 5 70 )7V @IV | o
‘ Z £7Px° (m)dA® (m) T2 (m) Ztalog Zt'” 2Py Q) () | g >‘<

(1)

Schur . (

~ooted bip. map AEP ‘7>‘ ,r.k
orientable



b-positivity



The Goulden-Jackson b-conjecture (1996)

e Conjecture: The generating function

o J(1+b) (p)J(l‘l‘b) (q)J(l‘l‘b) (I‘)
. Al <A A A
(1+ b}t log ot e
AEP I\

is b-positive, with integer coefficients!! It counts bipartite maps!!!



The Goulden-Jackson b-conjecture (1996)

e Conjecture: We have

3 JUHD) (5 7AFD) () 7O+ N .
(1—|—b)t— lOg Zt|>\| A ( ) A.(l—l—b() ) A ( ) — Z t| |p)\o(m)qu(m)7°)\<>(m)b (m)

ot AEP I\

bip. rooted map
orientable or not

The coefficients count non-orientable bipartite maps with a weight
b (™) where v(m) = 0 iff m is orientable,
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The Goulden-Jackson b-conjecture (1996)

e Conjecture: We have

0 v b e L @ () . (en
(1+0)t 5 log » 7 R = 2 "™ Pxe () @ (myae (a0
repP A

bip. rooted map
orientable or not

The coefficients count non-orientable bipartite maps with a weight
b (™) where v(m) = 0 iff m is orientable,

— b = 0: (Schur) character formula for orientable maps
— b = 1: (Zonal) character formula for non-(necessarily)-orientable maps

e Why is it so interesting? Because we have (had?) NO tools to attack it!
for b ¢ {0,1} there is no “character’ technology. Progress is rare.

[Lacroix "10] — OK if we keep ONE full set of variables (“times”):

= (pi)i>1, 4= (0i2)i>1, T = u = (u,u,
Uses [Okounkov'97] about (Tinear) expectations of Jacks under 6 ensembles.

Other cases proved for some particular coefficients [Kanunnikov,Promyslov,Vassilieva 18] [Dotega "17]
That coefficients are in Q[b] (not Q(b)) is proved in [Dotega-Féray '17]

e One of our results: — OK if we keep TWO sets of times.
P = (pi>i21v q= (Qz’)iZl, r=u=(u,u,...)



Even better: constellations and the tau-function

e Factorisations of the form o,0e0105...0, = id in &,, are in bijection with
generalizations of bipartite maps called k-constellations.

The character approach is still valid to count them.




Even better: constellations and the tau-function

e Factorisations of the form o,0e0105...0, = id in &,, are in bijection with
generalizations of bipartite maps called k-constellations.

The character approach is still valid to count them.

e Fact: The coolest object in the orientable (b = 0) literature is

T(k) (tv P,q, Ui, ...

Sx(P)sx(a)sx(ui)sa(uz)...5x(ug)
=2 G R—
I

(1) ﬁ(ak)
—Z Pt .

This is a tau-function of the 2—Toda (and KP) hierarchy.
[Goulden-Jackson'09,0kounkov’'00]

o: IThis is a central object in enumerative
e geometry (it counts branched coverings
of the sphere).




Our main result

e Theorem|[Chapuy-Dotega'20] Consider the b-deformed tau-function

L@ ) R ()

S J\ (p)
Tb(k)<t7p7q7 ula“°7uk) — t|>\| A (14D)
AEP I\

0
Then (1 + b)ta log Tb(k) iIs b-positive.

Its coefficients count (properly defined) k-constellations on non-
orientable surfaces with a weight (™) where v(m) = 0 iff m is
orientable.

e our result has three sets of parameters p = (p;)i>1, 9 = (q;)i>1, U = (u;) i<k
o the case k =1 or our result is the case r = u; of the b-conjecture.
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Our main result

e Theorem|[Chapuy-Dotega'20] Consider the b-deformed tau-function

L@ ) R ()

7 e)
Tb(k)(t;p,q, Uy oeey W) :Z AL A EI U
AEP N

0
Then (1 + b)ta log Tb(k) iIs b-positive.

Its coefficients count (properly defined) k-constellations on non-
orientable surfaces with a weight (™) where v(m) = 0 iff m is
orientable.

e our result has three sets of parameters p = (p;)i>1, 9 = (q;)i>1, U = (u;) i<k
o the case k =1 or our result is the case r = u; of the b-conjecture.

e The case b = 0 is the classical tau function.

e By letting kK — 0o we can do b-analogues of Hurwitz numbers (factorisations
in transpositions) and in fact, general weighted Hurwitz numbers (k = o0).



Elements of proof (?)



Proof structure

e Our proof has three halves:

1/2 — If you are a map expert, you can, in principle, write some sort of linear PDE
for the g.f. of constellations that reflects a “root-edge” decomposition. You
can hope to do it by controlling the variables p and q and (u;).

— do it. And do it also for the non-orientable case.
— there is (seems to be) a natural way to put the b-parameter in these PDEs.
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Laplace Beltrami operator acts nicely on Jack polynomials.

Use your creativity + commutator magic (applying these rules in all sort of

orders) to construct by induction a set of PDEs that cancel the function Tb(k).



Proof structure

e Our proof has three halves:

1/2

2/2

3/2

— If you are a map expert, you can, in principle, write some sort of linear PDE
for the g.f. of constellations that reflects a “root-edge” decomposition. You
can hope to do it by controlling the variables p and q and (u;).

— do it. And do it also for the non-orientable case.
— there is (seems to be) a natural way to put the b-parameter in these PDEs.

— If you are a Jack polynomial expert, you know that there are nice rules,
such as the Pieri rule, or the a-hook-content formula in [Stanley'89]. Also the
Laplace Beltrami operator acts nicely on Jack polynomials.

Use your creativity + commutator magic (applying these rules in all sort of

orders) to construct by induction a set of PDEs that cancel the function Tb(k).

— Suffer proving that the combinatorial (explicit) PDEs and the recursively
defined (Lax type) PDEs are in fact the same.

This part of the proof is long and difficult, at least in the way to do it.
For b € {0,1} we have a combinatorial proof. We develop some sort
of operator calculus that “lifts the combinatorial proof” to the world
of differential operators, and the lifted proof works for general b.



The combinatorial equations for £ =1 (bipartite maps) -I



The combinatorial equations for £ =1 (bipartite maps) -I

e Given a rooted bipartite (say) map, perform a root-edge decomposition:
— remove the root
— iterate on each remaining connected component



The combinatorial equations for £ =1 (bipartite maps) -I

e Given a rooted bipartite (say) map, perform a root-edge decomposition:
— remove the root

— iterate on each remaining connected component
e When you remove an edge there are several topological situations:

G&© GD G @ @

disconnect handle* twisted handle* diagonal twisted diagonal
g g

weights: 1 1 b 1 b

these two cases happen
at least once in the
decomposition iff the starting
map is non-orientable



The combinatorial equations for £ =1 (bipartite maps) -I

e Given a rooted bipartite (say) map, perform a root-edge decomposition:
— remove the root

— iterate on each remaining connected component
e When you remove an edge there are several topological situations:

G&© GD G @ @

disconnect handle* twisted handle* diagonal twisted diagonal
g g

weights: 1 1 b 1 b

these two cases happen
at least once in the
decomposition iff the starting
map is non-orientable

e Claim: the following operator takes all these cases into account:

19 .
Ay == (1 +0) Z%ﬂ L 9p Zg ‘|‘Zyi—1pja 0 ‘|‘b°zyiﬁ

o B
i i>1 i i>1 Yitj-1 i>0 Y

(y;; root-face of degree 7; p;: non-root-face of degree i; also extra weight 1/(1 + b) per cc.)
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A l—l_b Zyz+3 18]9@ ‘|‘ Zyz 1pja +b- Zyz(;jza

z]>1 zg>1 Yitj—1 1 >0

) ®Y _sz '7

1 >0 1 >0

Y, =

e Let F(p,q,u1) be the g.f. of labelled bipartite maps. Then:

i Yo >]<
F = '@Y(Y+H(AY+U%')) 1406 u1><

1=1
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10° 0 10
Ay = (1 b 17— 7 — ' b - i ,
y == (1+0) Z Yitj 13pi8yj_1 T Z Yi—1D; De T Z?J Dy,

ij>1 ii>1 iry—1 i>0
0 0
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i>0 Ay i>0 yi

e Let F(p,q,u1) be the g.f. of labelled bipartite maps. Then:

s Yo >J<
F = '@Y(Y+H(AY+U%')) 1+p < U1 >‘<
/ \iZI /

\ {

anonymise build a k-hyperedge

oot face build a “fake” oot Pk

face of degree 0 (track
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10° 0 10
Ay :=(1+0b) Yitj—1 + Yi—1Dj +0b- Yi 7
w221 77 Opi0y, 1 ”221 7 OYitj1 ,L.ZZO yi
0 0
Y_|_ = ZyrH-l , ®Y .= sz )
i>0 0y i>0 0y
e Let F(p,q,u1) be the g.f. of labelled bipartite maps. Then:
0
F=1"-0y Yy ] [(Ay +w)) A u W
i=1
anonym{e( T e \
build a k-hyperedge huild ke Pk Q
root face inside the root face ura @ e root

face of degree 0 (track
root-face degree with
variables ;)

Note: this corresponds to a
randomized decomposition
and proves only rational
weights. One can be more
precise and do a deterministic
rooted decomposition instead.
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e Define the operators:

Av=p1/(1+b) , Ajp1=[Da, Ay,  forj=>1

k
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e Then one has the equation, for m > 1:
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(proof uses a-Pieri rule + a-hook content rule+ Laplace-Beltrami rule + commutator magic)
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How to construct PDE’s for Tb(k)? (m =1,k =1, Schur case).

e Hook content formula:

ia(w) = J] (w+ @)

e

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

B(p,q,u) =) ( []@w+c ) A(P)sa(a)

A e
e Pieri rule: multiply by p; adds a box to a Schur function: pis)(p) = stg(p).
0/0p1 removes a box. [

e Another rule D,sy = (ZDE/\ C(D))S,\

s Do prilsr =3 d(D)srun ()
[l

e From this we obtain a differential equation for our function!!!

0

a_qlB(p, q,u) = (up1 + [Da,p1])B(p, q, u)

The miracle is that (by computing the commutator explicitly) this is the same
equation as the one we wrote for maps in the prevous slides!



La preuve que le miracle a lieu et que les opérateurs sont les mémes pour tout
k et m est une partie de | histoire que j omets. ..

Mercil



