Short synchronizing words for random automata

Guillaume Chapuy
CNRS – IRIF – Université Paris Cité – ERC CombiTop

based on joint work with

Guillem Perarnau
Universitat Politècnica de Catalunya

→ on arxiv last July: arXiv:2207.14108
Short synchronizing words for random automata

Guillaume Chapuy
CNRS – IRIF – Université Paris Cité – ERC CombiTop

based on joint work with

Guillem Perarnau
Universitat Politècnica de Catalunya

→ on arxiv last July: arXiv:2207.14108
Automata, synchronizing words
Automata

- An automaton with \(n \) states on \(\{a, b\} \) is the data of two functions:

\[
\begin{align*}
a : [n] & \rightarrow [n] \\
b : [n] & \rightarrow [n]
\end{align*}
\]

(there are \(n^n \times n^n = n^{2n} \) such things)
Automata

- An automaton with \(n \) states on \(\{a, b\} \) is the data of two functions:

\[
\begin{align*}
a & : [n] \to [n] \\
b & : [n] \to [n]
\end{align*}
\]

- Notion of \(w \)-transitions: if \(v \in [n] \) and \(w \in \{a, b\}^* \), we can read \(w \) starting from \(v \). For example: \(w = ababb \), \(1 \xrightarrow{w} 4 \).

(there are \(n^n \times n^n = n^{2n} \) such things)
Automata

- An automaton with n states on $\{a, b\}$ is the data of two functions:

 \[
 a : [n] \rightarrow [n] \\
 b : [n] \rightarrow [n]
 \]

- Notion of w-transitions: if $v \in [n]$ and $w \in \{a, b\}^*$, we can read w starting from v for example: $w = ababb$, $1 \xrightarrow{w} 4$

- Fix a subset $S \subset [n]$. Language recognized by an automaton (not used in this talk)

 \[
 = \text{set of all words } w \text{ s.t. } 1 \xrightarrow{w} s \text{ with } s \in S
 \]

 Recognized by automaton iff. recognized by regular expression

 All the super nice theory of regular/rational languages (Chomsky-Schutzenberger)
 (still full of incredible open problems!!)
Synchronizing words

- A word \(w \) is **synchronizing** if there exists \(v_0 \in [n] \) such that

\[
v \xrightarrow{w} v_0 \text{ for all } v \in [n]
\]

(think of a **reset word**. Basic motivation: the german-speaking microwave oven at IRIF)

Here \(w = b^2ab^2 \) works.

\((b^2 \text{ syncs } 1, 2, 3 \rightarrow 1 \text{ and } 4 \rightarrow 4 \text{ then } a \text{ sends } 1, 4 \rightarrow 1, 2 \text{ so } b^2 \text{ again syncs everyone})\)
Synchronizing words

- A word \(w \) is **synchronizing** if there exists \(v_0 \in [n] \) such that
 \[
 v \xrightarrow{w} v_0 \text{ for all } v \in [n]
 \]

 (think of a reset word. Basic motivation: the german-speaking microwave oven at IRIF)

Here \(w = b^2ab^2 \) works.

\((b^2 \text{ syncs } 1, 2, 3 \rightarrow 1 \text{ and } 4 \rightarrow 4 \)
then \(a \text{ sends } 1, 4 \rightarrow 1, 2 \)
so \(b^2 \text{ again syncs everyone} \)

- Not all automata are synchronizable !!!

 \[
 \begin{array}{c}
 1 \quad 2 \\
 a \quad b \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 3 \quad 4 \\
 b \quad a \\
 \end{array}
 \]

 (Note: checking synchronizability = easy; finding shortest word = NP-hard)
Shortest synchronizing words?

- Remark (Czerny 1960’s)

 If A is synchronizable, there is sync word of length $\leq n^3$

 (synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat $n - 1$ times)
Shortest synchronizing words?

- Remark (Czerny 1960’s)

 If A is synchronizable, there is sync word of length $\leq n^3$

 (synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat $n - 1$ times)

- Černý’s conjecture (1960’s) If A is synchronizable,

 then there is a sync word of length $\leq (n - 1)^2$

 (one of the biggest open problems in automata theory!!!)
Shortest synchronizing words?

- **Remark (Czerny 1960’s)**

 If A is synchronizable, there is sync word of length $\leq n^3$

 (synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat $n - 1$ times)

- **Černý’s conjecture (1960’s)**

 If A is synchronizable, then there is a sync word of length $\leq (n - 1)^2$

 (one of the biggest open problems in automata theory!!!)

Best results are cn^3: [Pin-Frankl 1983] $c = \frac{1}{6}$; [Szykuła 2018] $c = 0.1666$ [Shitov 2019] $c = 0.1654$
Shortest synchronizing words?

- Remark (Czerny 1960’s)
 - If A is synchronizable, there is sync word of length $\leq n^3$
 (synchronize 1, 2 with a word w of length $\leq n^2$ by pigeonhole on pairs of visited vertices then repeat $n-1$ times)

- Černý’s conjecture (1960’s) If A is synchronizable, then there is a sync word of length $\leq (n-1)^2$
 (one of the biggest open problems in automata theory!!)

Best results are cn^3: [Pin-Frankl 1983] $c = \frac{1}{6}$; [Szykuła 2018] $c = 0.1666$ [Shitov 2019] $c = 0.1654$

- What about random automata ???

- Conjecture [Cameron 2013] A random automaton is synchronizable w.h.p.
 Proved! [Berlinkov 2016] ” abstract” proof
 [Nicaud 2016] quantitative bound $O(n \log(n)^3)$ for shortest word!
Shortest sync words in random automata (main result!)

- Experiments and...

Conjecture [Kisielewicz, Kowalski, and Szykuła 2013]

The length of the shortest sync word in a uniform random automaton is

\[\approx \sqrt{n} \text{ w.h.p} \] !!!!

??!! probabilist’s view: we should understand where the \(\sqrt{n} \) comes from!!! (and prove it!)

-- Experiments and...

Conjecture [Kisielewicz, Kowalski, and Szykuła 2013]
Shortest sync words in random automata (main result!)

- Experiments and...

Conjecture [Kisielewicz, Kowalski, and Szykuła 2013]

The length of the shortest sync word in a uniform random automaton is

\[\approx \sqrt{n} \text{ w.h.p} \]

??!! probabilist’s view: we should understand where the \(\sqrt{n} \) comes from!!! (and prove it!)

Theorem [GC+ Guillem Perarnau, July 2022]

The conjecture of Kisielewicz, Kowalski, and Szykuła is true! up to a log factor. With high probability, a uniform random automaton has a synchronizing word of length at most

\[100\sqrt{n} \log(n) \]

Rest of the talk: heuristic of the proof

one-letter automata!
One-letter automata (!)
One-letter automata!!!

- A one-letter automata is just a function \(a : [n] \rightarrow [n] \) (i.e. a one-outregular digraph on \([n]\))

- Such an object is a collection of \textit{directed cycles} with \textit{trees} attached to them.
One-letter automata!!!

- A one-letter automata is just a function $a : [n] \rightarrow [n]$ (i.e. a one-outregular digraph on $[n]$)

- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!
One-letter automata!!!

- A one-letter automata is just a function $a : [n] \rightarrow [n]$
 (i.e. a one-outregular digraph on $[n]$)

- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability

\[
\frac{\text{nb. of trees}}{\text{nb. of automata}} = \frac{n^{n-1}}{n^n} = \frac{1}{n}
\]

(this is Cayley's formula!)

reset word a^H

$H = \text{height of tree}$
One-letter automata!!!

- A one-letter automata is just a function \(a : [n] \rightarrow [n] \)
 (i.e. a one-outregular digraph on \([n]\))

- Such an object is a collection of directed cycles with trees attached to them.

- It is synchronizable if and only if it is a (cycle-rooted) tree!!!

This is happens with probability

\[
\frac{\text{nb. of trees}}{\text{nb. of automata}} = \frac{n^{n-1}}{n^n} = \frac{1}{n}
\]

(this is Cayley's formula!)

reset word \(a^H\)

\(H = \text{height of tree} \approx \sqrt{n} \) w.h.p. (!!?)
A dream....

- Let A be a random 2-letter automaton.
 Let A_w be the one-letter automaton induced by w-transitions (for some word w)
- Maybe....
 A_w somehow behaves as a uniform random one-letter automaton...
A dream....

• Let A be a random 2-letter automaton.
 Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....
 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....
 A_w might be a tree with probability $\frac{1}{n}$
A dream....

• Let A be a random 2-letter automaton.
 Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....
 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....
 A_w might be a tree with probability $\frac{1}{n}$

• and maybe....
 combinatorics is messy enough so the A_w for different w are "somehow independent"
 (hum...)
A dream....

• Let A be a random 2-letter automaton.
 Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....
 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....
 A_w might be a tree with probability $\frac{1}{n}$

• and maybe....
 combinatorics is messy enough so the A_w for different w are “somehow independent” (hum...)

• so maybe...
 If I try all the words w of length $(1 + \epsilon) \log(n)$ (there are $n^{1+\epsilon} >> n$ of these)
 ... one w will work.
A dream....

• Let A be a random 2-letter automaton.
 Let A_w be the one-letter automaton induced by w-transitions (for some word w)

• Maybe....
 A_w somehow behaves as a uniform random one-letter automaton...

• so maybe....
 A_w might be a tree with probability $\frac{1}{n}$

• and maybe....
 combinatorics is messy enough so the A_w for different w are "somehow independent" (hum...)

• so maybe...
 If I try all the words w of length $(1 + \epsilon) \log(n)$ (there are $n^{1+\epsilon} >> n$ of these)
 ... one w will will work.

• and maybe...
 The automaton A_w is not too far from a uniform tree, its height will be $\approx \sqrt{n}$
 so the word w^H of length $\approx \sqrt{n} \log(n)$ will be synchronizing in A !!!
This works!

• Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree

• Let $N_k(A)$ the number of w of length k such that A is a w-tree*.
This works!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree.
- Let $N_k(A)$ the number of w of length k such that A is a w-tree.

Theorem [GC+ Guillem Perarnau 2022]
For a random 2-letter automaton A on n.

$$
P(N_k(A) > 0) \rightarrow \begin{cases} 0 & , k \leq (1 - \epsilon) \log n \\ 1 & , k \geq (1 + \epsilon) \log n \end{cases}$$
This works!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree.
- Let $N_k(A)$ the number of w of length k such that A is a w-tree.

Theorem [GC+ Guillem Perarnau 2022]

For a random 2-letter automaton A on n.

$$P\left(N_k(A) > 0\right) \rightarrow \begin{cases} 0 & , k \leq (1 - \epsilon) \log n \\ 1 & , k \geq (1 + \epsilon) \log n \end{cases}$$

so whp there exists w of length $(1 + \epsilon) \log(n)$ such that A is a w-tree.

In fact we have $\mathbf{E}N_k(A) \sim \frac{n^{1+\epsilon}}{n} = n^\epsilon$ and second moment concentration (this is how the pf works).
This works!

- Say that the 2-letter automaton A is a w-tree if (the 1-letter aut.) A_w is a tree.
- Let $N_k(A)$ the number of w of length k such that A is a w-tree*.

Theorem [GC+ Guillem Perarnau 2022]
For a random 2-letter automaton A on n.

$$
\Pr\left(N_k(A) > 0 \right) \rightarrow \begin{cases}
0 & , \ k \leq (1 - \epsilon) \log n \\
1 & , \ k \geq (1 + \epsilon) \log n
\end{cases}
$$

so whp there exists w of length $(1 + \epsilon) \log(n)$ such that A is a w-tree.

In fact we have $\mathbb{E}N_k(A) \sim \frac{n^{1+\epsilon}}{n} = n^\epsilon$ and second moment concentration (this is how the pf works)

- It is easy to see that any branch $v \rightarrow^* \ast$ in A_w has length $\leq 100\sqrt{n}$ with probability at least $1 - o(n^{-3})$ so we can take union bound on all w and on all v to deduce that the height of A_w is smaller than $100\sqrt{n}$.

- we get a synchronizing word w^H of length $H \cdot |w| = 100(1 + \epsilon) \log(n) \sqrt{n}$.
Two proofs from the book of Cayley’s formula
New (?) proof of n^{n-1} by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a : [n] \rightarrow [n]$ be a uniform random function.

 We reveal a iteratively:
 - pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
 - pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
 ...repeat
 - until last vertex future is revealed (at some time $T_k = n$)
New (?) proof of n^{n-1} by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

- Let $a : [n] \rightarrow [n]$ be a uniform random function.

We reveal a iteratively:
- pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
...repeat
- until last vertex future is revealed (at some time $T_k = n$)
New (?) proof of \(n^{n-1} \) by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

- Let \(a : [n] \to [n] \) be a uniform random function.

We reveal \(a \) iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time \(T_1 \))
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time \(T_2 \))
 ...
 ...repeat
- until last vertex future is revealed (at some time \(T_k = n \))
New (?) proof of \(n^{n-1} \) by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

- Let \(a : [n] \rightarrow [n] \) be a uniform random function.

We reveal \(a \) iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time \(T_1 \))
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time \(T_2 \))

...repeat
- until last vertex future is revealed (at some time \(T_k = n \))
New (?) proof of n^{n-1} by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

• Let $a : [n] \rightarrow [n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
 ...repeat
- until last vertex future is revealed (at some time $T_k = n$)
New (?) proof of n^{n-1} by exploration – telescopic argument

(related to [Foata-Fuchs 1970])

Let $a: [n] \rightarrow [n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
...repeat
- until last vertex future is revealed (at some time $T_k = n$)
New (?) proof of n^{n-1} by exploration – telescopic argument

related to [Foata-Fuchs 1970])

Let $a : [n] \longrightarrow [n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
...repeat
- until last vertex future is revealed (at some time $T_k = n$)

\[
\Pr(\text{get a kneel} \mid T_1, \ldots, T_k, K) = \frac{1}{T_1} \times \frac{T_1}{T_2} \times \frac{T_2}{T_3} \times \cdots \times \frac{T_{K-1}}{T_K} = \frac{1}{n} \quad \text{qed (!!)}
\]
New (?) proof of n^{n-1} by exploration – telescopic argument
(related to [Foata-Fuchs 1970])

- Let $a : [n] \longrightarrow [n]$ be a uniform random function.

We reveal a iteratively:

- pick vertex 1 and reveal its future until a cycle is made (at some random time T_1)
- pick smallest unexplored and reveal its future until it merges with the previous graph or a cycle is made (at some random time T_2)
...repeat
- until last vertex future is revealed (at some time $T_k = n$)

The proof also shows that the height of a random vertex in a random tree is the time of first collision in birthday paradox problem!
(exact equality, in law)

$$P(\text{height} = h) = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{h-1}{n}\right) \frac{h}{n} \approx \frac{h}{n} e^{-h^2/2n}$$

Rayleigh law in scale \sqrt{n} and deviations estimates are trivial.

$$\Pr(\text{get a knee} \mid T_1, \ldots, T_K, K) = \frac{1}{T_1} \times \frac{T_1}{T_2} \times \frac{T_2}{T_3} \times \cdots \times \frac{T_{K-1}}{T_K} = \frac{1}{n} \quad \text{qed (1)}$$
Joyal’s bijection

• Let $a : [n] \to [n]$ be a function.
 Remove the edge after the minimum in each cycle and concatenate by decreasing minima.
Joyal’s bijection

- Let $a : [n] \rightarrow [n]$ be a function.
 - Remove the edge after the minimum in each cycle and concatenate by decreasing minima.
Joyal’s bijection

• Let \(a : [n] \rightarrow [n] \) be a function.
 Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so \(n \times \text{rooted trees} = n^n \)
Joyal’s bijection

- Let \(a : [n] \rightarrow [n] \) be a function.
 Remove the edge after the minimum in each cycle and concatenate by decreasing minima.

One obtains a doubly marked tree (rewired edges = lower records on the branch) so \(n \times \text{rooted trees} = n^n \)

- This is super powerful: a random tree and a random function differ only on \(O(\log(n)) \) edges!
Our proof

- First moment = count w-trees. Apply w-variant of Joyal bijection.
Our proof

• First moment = count w-trees. Apply w-variant of Joyal bijection.

• PROBLEM: The w-version of the Joyal bijection is only approximate
 - rewiring one edge in fact rewires many edges!!!!
 - could create new cycles by accident!
 - no independence!
Our proof

- First moment = count w-trees. Apply w-variant of Joyal bijection.

• PROBLEM: The w-version of the Joyal bijection is only approximate
 - rewiring one edge in fact rewires many edges!!!!
 - could create new cycles by accident!
 - no independence!

- Second moment: count things which are both w_1 and w_2 trees.
 Apply w-variant of Joyal bijection twice in a row!!!
Our proof

- First moment = count w-trees. Apply w-variant of Joyal bijection.

\[\beta_1 \alpha_1 \rightarrow e_1 \beta_2 \alpha_2 \rightarrow e_2 \beta_\lambda \alpha_\lambda \rightarrow e_\lambda \beta_{\lambda+1} \alpha_\lambda \]

- **PROBLEM:** The w-version of the Joyal bijection is only approximate
 - rewiring one edge in fact rewire many edges!!!!
 - could create new cycles by accident!
 - no independence!

- Second moment: count things which are both w_1 and w_2 trees.
 Apply w-variant of Joyal bijection twice in a row!!!

- **SOLUTION:**
 We need to control certain bad events under which the bijection fails.
 Example: a w_1-lower record contains a w_2-lower record in its future
 Final proof is suprisingly messy (with many case disjunctions)
 using the w-variant of the exploration process.
Open problems

- Exact counting of w-trees? (start e.g. with $w = aab$)
- Do random w-trees converge to the CRT?
- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n \log n} \times O_P(1)$.
- Statistics question: I give you a sample of A_w, can you tell me w? (e.g. discriminate aa from ab)
Open problems

- Exact counting of w-trees? (start e.g. with $w = aab$)

- Do random w-trees converge to the CRT?

- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n \log n} \times O_P(1)$.

- Statistics question: I give you a sample of A_w, can you tell me w? (e.g. discriminate aa from ab)

- Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...
Open problems

- Exact counting of w-trees? (start e.g. with $w = aab$)

- Do random w-trees converge to the CRT?

- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n \sqrt{\log n}} \times O_P(1)$.

- Statistics question: I give you a sample of A_w, can you tell me w?
 (e.g. discriminate aa from ab)

- Fun fact: we prove the conjecture of Kisielewicz, Kowalski, and Szykuła (2013) about the $n^{0.5}$ exponent. But almost the same day we put our paper on arxiv, Szykuła and Zyzik put a paper going much further in the simulations and saying that the estimate is probably wrong, suggesting $n^{0.55}$ instead...

Merci!
Open problems

- Exact counting of w-trees? (start e.g. with $w = aab$)

- Do random w-trees converge to the CRT?

- Problem: improve bounds on the height of a random w-tree and (hopefully) improve our result to something like $\sqrt{n} \sqrt{\log n} \times O_P(1)$.

- Statistics question: I give you a sample of A_w, can you tell me w?

 (e.g. discriminate aa from ab)

Merci!