Colouring graphs excluding fixed subgraphs

joint work

with S. Thomassé, M. Bonamy
Problem

Very General Question:
What does having large chromatic number say about a graph?

First case: maybe it contains a big clique as a subgraph.

Is it the only case?

Of course not. There even exists triangle-free families of arbitrarily large χ (Mycielski, Tutte, Zykov...).

Even more: For every k, there exists graphs with arbitrarily large girth (size of a min cycle) and arbitrarily large χ. (Erdős).
Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?
Problem

Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case: maybe it contains a big clique as a subgraph.
Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case: maybe it contains a big clique as a subgraph.
- Is it the only case?
Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case: maybe it contains a big clique as a subgraph.
- Is it the only case?
- Of course not. There even exists triangle-free families of arbitrarily large χ (Mycielski, Tutte, Zykov...).
Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case: maybe it contains a big clique as a subgraph.
- Is it the only case?
- Of course not. There even exists triangle-free families of arbitrarily large χ (Mycielski, Tutte, Zykov...)
- Even more: For every k, there exists graphs with arbitrarily large girth (size of a min cycle) and arbitrarily large χ. (Erdős).
Very General Question:
What does having large chromatic number say about a graph?
What does it say in terms of the substructures it must contain?

- First case: maybe it contains a big clique as a subgraph.
- Is it the only case?
- Of course not. There even exists triangle-free families of arbitrary large χ (Mycielski, Tutte, Zykov...)
- Even more: For every k, there exists graphs with arbitrarily large girth (size of a min cycle) and arbitrarily large χ. (Erdős).
A class C of graphs is said to be *chi-bounded* if

$$\exists f_C : \mathbb{N} \to \mathbb{N}, \text{ such that } \forall G \in C, \chi(G) \leq f_C(\omega(G))$$
A class C of graphs is said to be *chi-bounded* if

$$\exists f_C : \mathbb{N} \rightarrow \mathbb{N}, \text{ such that } \forall G \in C, \chi(G) \leq f_C(\omega(G))$$

If the class is hereditary it is defined by a family of forbidden subgraphs \mathcal{F}, we say that such a \mathcal{F} is *chi-boundning* if the class is chi-bounded.
A class C of graphs is said to be **chi-bounded** if

$$\exists f_C : \mathbb{N} \to \mathbb{N}, \text{ such that } \forall G \in C, \chi(G) \leq f_C(\omega(G))$$

If the class is hereditary it is defined by a family of forbidden subgraphs \mathcal{F}, we say that such a \mathcal{F} is **chi-bounding** if the class is chi-bounded.

Now our question is: what families \mathcal{F} are chi-bounding?
What if \mathcal{F} contains a single graph F?
What if \mathcal{F} contains a single graph F?

- Then F must be a forest.
\mathcal{F} of size 1

What if \mathcal{F} contains a single graph F?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdos’s result: there exists a graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free.
What if \mathcal{F} contains a single graph F?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdos’s result: there exists graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free

- Is it sufficient??
What if \mathcal{F} contains a single graph F?

- Then F must be a forest.

Proof: If F contains at least one cycle, use Erdős’s result: there exists graph with arbitrarily large χ who do not contain any cycle of length less than $|F|$, which are hence F-free.

- Is it sufficient??

Conjecture (Gyarfás–Sumner)

If F is a forest, the class of graphs excluding F as an induced subgraph is chi-bounded.
\[\mathcal{F} = T \text{ tree} \]

Little is really known:

- true for \(K_{1,n} \) (by Ramsey)
$\mathcal{F} = T$ tree

Little is really known:
- true for $K_{1,n}$ (by Ramsey)
- true for paths (Gysefas)
\[\mathcal{F} = T \text{ tree} \]

Little is really known:

- true for \(K_{1,n} \) (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)
Little is really known:

- true for $K_{1,n}$ (by Ramsey)
- true for paths (Gyarfas)
- true for trees of radius 2 (Kierstead and Penrice)

Scott proved the following very nice "topological" version of the conjecture:

- For every tree T, the class of graphs excluding all subdivisions of T is chi-bounded.
Larger families \mathcal{F}

Erdős says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be χ-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4: chordal graphs are perfect
- excluding all cycles of length at least k: Open conjecture of Gyarfas.
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest?
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees

Open conjecture of Gyarfas.
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4: chordal graphs are perfect
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4: chordal graphs are perfect
- excluding all cycles of length at least k
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles: trees
- excluding all cycles of length at least 4: chordal graphs are perfect
- excluding all cycles of length at least k

Open conjecture of Gyarfas.
Larger families \mathcal{F}

Same as before, Erdos says that if \mathcal{F} is finite, then \mathcal{F} must contain a forest to be chi-bounding.

What about excluding infinite families that do not contain a forest? What about excluding families of cycles?

- excluding all cycles : trees
- excluding all cycles of length at least 4 : chordal graphs are perfect
- excluding all cycles of length at least k
 Open conjecture of Gyarfas.
Families of cycles

Gyárfás made in fact three conjectures about cycles.

Conjecture (Gyárfás, ’87)

1. The set of all cycles of length at least k is chi-bounding
2. The set of odd cycles is chi-bounding.
3. The set of all odd cycles of length at least k is chi-bounding

The second conjecture was proven very recently by Seymour and Scott.

Graphs that do not contain any odd hole nor any complement of odd hole: Berge graphs.

Strong Perfect Graph Theorem: $\chi = \omega$.

No simple proof of any (even much worse) other chi-bounding function.
Families of cycles

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,’87)

- *The set of all cycles of length at least k is chi-bounding.*
- *The set of odd cycles is chi-bounding.*
- *The set of all odd cycles of length at least k is chi-bounding.*
Families of cycles

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas, ’87)

- The set of all cycles of length at least k is chi-bounding
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least k is chi-bounding

The second conjecture was proven very recently by Seymour and Scott.
Families of cycles

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas,’87)

- *The set of all cycles of length at least* k *is chi-bound*.
- *The set of odd cycles is chi-bound*.
- *The set of all odd cycles of length at least* k *is chi-bound*.

The second conjecture was proven very recently by Seymour and Scott.

- Graphs that do not contain any odd hole nor any complement of odd hole: Berge graphs.
Families of cycles

Gyárfás made in fact three conjectures about cycles.

Conjecture (Gyárfás, ’87)

- The set of all cycles of length at least \(k \) is chi-bounding
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least \(k \) is chi-bounding

The second conjecture was proven very recently by Seymour and Scott.

- Graphs that do not contain any odd hole nor any complement of odd hole: Berge graphs.

Strong Perfect Graph Theorem: \(\chi = \omega \).
Families of cycles

Gyarfas made in fact three conjectures about cycles.

Conjecture (Gyarfas, ’87)

- The set of all cycles of length at least k is chi-bounding.
- The set of odd cycles is chi-bounding.
- The set of all odd cycles of length at least k is chi-bounding.

The second conjecture was proven very recently by Seymour and Scott.

- Graphs that do not contain any odd hole nor any complement of odd hole: Berge graphs.
- Strong Perfect Graph Theorem: $\chi = \omega$.
- No simple proof of any (even much worse) other chi-bounding function.
\(\mathcal{F} \) is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-boundning.
\(\mathcal{F} \) is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-bounding.

NO
\mathcal{F} is an family of cycles.

Could the following conjecture be also true?

Conjecture

Every infinite family of cycles is chi-bounding.

NO

Using Erdős Theorem construct a sequence F_i such that

- $\chi(F_i) \geq i$
- $\text{girth}(F_i) > |2^{F_i-1}|$

Let \mathcal{F} be the set of cycles that do not occur in any F_i. Then \mathcal{F} is NOT chi-bounding and is infinite (it contains at least all the $|F_i|$). Even more it has upper density 1 since it contains every interval $[|F_i|, 2|F_i|]$.
Conjecture (Scott-Seymour, 2014)

If $l \subset \mathbb{N}$ has bounded gaps (\(\exists k \text{ s.t. every } k \text{ consecutive integers contains an element of } F\)), then \(\{C_i, i \in l\}\) is k-bounding.
Our result

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.
Our result

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don’t even try to calculate it)
Our result

Theorem (Bonamy, C., Thomassé)

Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

▶ Our proof gives an horrible bound (we don’t even try to calculate it)
▶ The actual bound could be 4 (3?)
Our result

Theorem (Bonamy, C., Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

- Our proof gives an horrible bound (we don’t even try to calculate it)
- The actual bound could be 4 (3?)
 Chudnovsky et al recently proved that \(\chi > 4 \) implies the existence of a 3k cycle as a (not necessarily induced) subgraph.
Our result

Theorem (Bonamy, C., Thomassé)
Every graph with sufficiently large chromatic number must contain a cycle of length 0 mod 3.

▶ Our proof gives an horrible bound (we don’t even try to calculate it)
▶ The actual bound could be 4 (3?)
 Chudnovsky et al recently proved that \(\chi > 4 \) implies the existence of a 3k cycle as a (not necessarily induced) subgraph.
▶ The question originally came as a sub case of a more general question of Kalai and Meschulam.
Every graph with no induced C_{3k} (trinity graphs) has bounded χ.
Our result - a few ideas.

Every graph with no induced C_{3k} (trinity graphs) has bounded χ.

- Use distance layers.
Our result - a few ideas.

Every graph with no induced C_{3k} (trinity graphs) has bounded χ.

- Use distance layers.
- Gyarfas idea
Our result - a few ideas.

Every graph with no induced C_{3k} (trinity graphs) has bounded χ.

- Use distance layers.
- Gyarfás idea
- Trinity changing paths: try to find vertices x and y such that many independent paths exist between the two.
Our result - a few ideas.

Every graph with no $3k$ induced cycle has bounded χ.

Our result - a few ideas.

Every graph with no $3k$ induced cycle has bounded χ.

- Exclude C_5. Prove the result
Our result - a few ideas.

Every graph with no $3k$ induced cycle has bounded χ.

- Exclude C_5. Prove the result
- If C_5 is present and χ large, this also must be present.
Our result - a few ideas.

Every graph with no $3k$ induced cycle has bounded χ.

- Exclude C_5. Prove the result
- If C_5 is present and χ large, this also must be present.

- If this is present and χ large, this other must be present
Our result - a few ideas.

Every graph with no $3k$ induced cycle has bounded χ.

- Exclude C_5. Prove the result
- If C_5 is present and χ large, this also must be present.

- If this is present and χ large, this other must be present

- If this other is present prove it.
\[\{ C_{3k}, k > 1 \} \text{ is chi-bounding} \]
\[\{ C_{4k} \} \text{ is chi-bounding} \]