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Plan of the talk

(I) Main features of the Ergodic Theorem

(II) Another point of view

with focus in the case of a dynamical system of the interval

(III) Probabilistic studies of the truncated generic trajectories

Using the weighted density transformer

(IV) Particular trajectories for the Euclidean system:

– Finite trajectories (rational inputs)

– Periodic trajectories (irrational quadratic inputs)

– Statement of the main result

(V) Study of particular trajectories with three tools

– Dirichlet generating functions

– Singularity analysis

– the weighted transfer operator.

(VI) Return to the notion of size for a periodic trajectory

(I) the Ergodic Theorem and its main features

General ergodic framework.

Definitions. A probability space (X,X , µ), and a measurable mapping T : X → X.

– The subset E ∈ X is T -invariant iff T−1E = E.

– The measure µ is T -invariant [or the map T preserves the measure µ]

iff for every subset E ∈ X , one has µ(T−1E) = µ(E).

– Let T : X → X be a measure-preserving transformation on (X,X , µ).

The map T is ergodic iff

for every T–invariant subset E ∈ X , one has either µ(E) = 0 or µ(E) = 1.

Particular case of a dynamical system.

– A dynamical system is related to the particular case when:

X (compact) topological space, its Borel set X , T : X → X continuous.

– A dynamical system (X,T ) is said to be uniquely ergodic if

there exists a unique T -invariant Borel probability measure on X.

Such a measure is necessary ergodic for T .



Ergodic Theorem

Definition. Let T : X → X be a measure-preserving transformation on (X,X , µ).

Consider a µ-integrable function c [i.e., c ∈ L1(µ)] ( a “cost” or a “weight”)

Then, there are the following averages:

– space–average of c

µ[c] =

∫
X

c(x)dµ(x) .

– time–average of c along a n-th truncated trajectory (x, Tx, . . . , Tn−1x)

1

n
Cn(x), Cn(x) :=

n−1∑
`=0

c(T `x) .

Ergodic Theorem. If T is µ-ergodic, then one has

lim
n→∞

[
1

n

n−1∑
`=0

c(T `x)

]
= µ[c] for almost µ-every x ∈ X

In the case of the unique ergodicity, when c is moreover continuous,

the previous holds for every x ∈ X.

Main features of the Ergodic Theorem

lim
n→∞

[
1

n

n−1∑
`=0

c(T `x)

]
= µ[c] for almost µ-every x ∈ X

– Almost everywhere?

No information about the exceptional subset E (of measure 0)

where the Ergodic Theorem “fails”

– Speed of convergence? No information

=⇒ A possible complementary point of view,

notably for dynamical systems of the interval

– Replace almost everywhere by on average

– First on the total set X

– Why not on smaller sets Y ⊂ X?

– Why not on discrete subsets Y .... (of zero measure !)

– Obtain information about the speed of convergence

(II) Dynamical system of the interval : generalities

A dynamical system (I, T ) of the unit interval I is defined by

I a finite or infinite denumerable alphabet Σ,

I a topological partition of I :=]0, 1[ with open intervals Im,m∈Σ,

I a shift mapping T

s.t. T |Im is a bijection of class C2 from Im to Jm := T (Im).

Given an input x of I, this gives rise to the trajectory

T (x) := (x, Tx, T 2x, . . . )



xT xT x2 T x3

A dynamical system, with Σ = {a, b, c} and a word M(x) = (c, b, a, c . . .).

Correlations between symbols due to

– the geometry of the branches

– the shape of the branches

The geometry of the branches [position of T (Im) wrt I`] ;

it describes the set s(m) of possible successors of the symbol m.

Particular cases:

I Complete systems T (Im) = I
I Markovian systems T (Im) = union of some I`

give rise to a finite characterization of s(m).

The shape of the branches [derivatives of the branches] also explains how

the distribution evolves.

General case of interest.

A complete – or a Markovian – system

– with a possible infinite denumerable alphabet

– topologically mixing – and expansive.

Main instances: – (in this talk) the system defined with the Gauss map

T (x) :=
1

x
−
⌊

1

x

⌋
, T (0) = 0

– (in Frédéric’s talk), the system defined with the β-shift (for β > 1) with

Tβ(x) = βx− bβxc

(III) A probabilistic point of view on truncated trajectories.

Focus on dynamical systems (of the interval)



A probabilistic point of view on truncated trajectories.

– Describe the behaviour of the n-th weighted truncated trajectories

– and their limit for n→∞

Interest in the random variables Cn : X → R associated with a cost c

x 7→ Cn(x), with Cn(x) :=

n−1∑
`=0

c(T `x)

– What about the sequence of expectations E[Cn]?

– Are there limit distributional results for the random variables Cn?

for instance a limit gaussian law?

The weighted density transformer associated with a complete system.

H := {inverse branches}

Density Transformer: for an initial density f on [0, 1],

H[f ] is the density on [0, 1] after one iteration of the shift

H[f ](x) =
∑
h∈H

|h′(x)| f ◦ h(x)

Weighted density transformer : extension of H into H1,w.

H1,w[f ](x) =
∑
h∈H

|h′(x)| ewc(h(x))f ◦ h(x), H1,0 = H

The n-th iterate generates the weighted n-th truncated trajectories

Hn
1,w[f ](x) =

∑
h∈Hn

|h′(x)| ewCn(h(x)) f ◦ h(x)

d

dw

∣∣∣
w=0

[
w 7→ Hn

1,w[f ](x)
]

=
∑

h∈Hn
|h′(x)|Cn(h(x)) f ◦ h(x)

Remark: If the system is not complete, we must add indicator functions.

For a Markovian sytem, we can replace them by an operator matrix.

Weighted density transformer and probabilistic study of generic trajectories

Hn
1,w[f ](x) =

∑
h∈Hn

|h′(x)| ewCn(h(x)) f ◦ h(x)

d

dw

∣∣∣
w=0

[
w 7→ Hn

1,w[f ](x)
]

=
∑

h∈Hn
|h′(x)|Cn(h(x)) f ◦ h(x)

Take the integral over the unit interval + perform a change of variables

Ef [ewCn ] =

∫
I
Hn

1,w[f ](t)dt, Ef [Cn] =
d

dw

∣∣∣
w=0

[
w 7→

∫
I
Hn

1,w[f ](t)dt

]

Good dynamical system and cost of moderate growth

=⇒ Hn
1,w behaves as the n-th power of its dominant eigenvalue λ(1, w),

uniformy when w is near 0.

Ef [Cn] = n · µ[c] (1 +O (ρn)) , µ[c] = λ′w(1, 0)

Ef [ewCn ] behaves as a (uniform) n-th power + Quasi-Powers Theorem

=⇒ Asymptotic Gaussian law for Cn

(IV) Study of particular trajectories of the Euclidean system



Discrete sets X ⊂ I and

trajectories T (x) := (x, Tx, T 2x, . . . , T `x, . . . ) for x ∈ X .

Natural discrete sets X :

– The set Q of x for which the trajectory T (x) is finite

– The set P of x for which the trajectory T (x) is (purely) periodic.

In the particular case of the Euclidean system (Gauss map):

T (x) finite ⇐⇒ x rational,

T (x) (purely) periodic ⇐⇒ x (reduced) quadratic irrational

In each case, a bijection between X and a (subset) of H? = ∪p≥0Hp

Q := Q ∩ [0, 1] = {h(0) | h ∈ H? ×F}
P := I ∩ [0, 1] = {h(xh) | h ∈ H?, h primitive, xh fixed point of h}

There is also a natural notion of size ε and a natural definition of cost C

(Q) : ε(x) := denominator of x = |h′(0)|−1/2

(P) : ε(x) := |ĥ′(xĥ)|−1/2, ĥ: = the primitive h of even period

C(x) :=

P (x)−1∑
`=0

c(T `(x)), P (x) := length or period of the trajectory T (x)

Study of the mean cost along particular trajectories: Main result

For X ∈ {Q,P}, the set of interest is XN := {x ∈ X | ε(x) ≤ N}
There are two important costs on XN , the length P , and the cost C.

The mean values of the cost C or the cost P on XN are the ratios

EN [P ] :=
1

|XN |
∑
x∈XN

P (x), EN [C] :=
1

|XN |
∑
x∈XN

C(x)

Main Theorem. The asymptotic estimates hold on QN or PN

EN [P ] ∼ 2

h(T )
logN, EN [C] ∼ 2

h(T )
µ[c] logN, (N →∞)

and involve the entropy h(T ) of the Euclidean system

Corollary. When N →∞, the asymptotic estimate holds:
EN [C]

EN [P ]
→ µ[c]

The particular trajectories (finite or periodic) behave on average in the same way

as the generic trajectories behave almost everywhere.

(V) Proof of the result with three tools

– Dirichlet generating functions

– Singularity analysis

– the weighted transfer operator.

Generating functions and analytic combinatorics

A general tool: A (bivariate) generating function, of Dirichlet type

F (s, w) :=
∑
x∈X

ε(x)−s · ewC(x), G(s) =
∑
x∈X

C(x) · ε(x)−s

Main principles of analytic combinatorics: A good knowledge of

– the dominant singularity of G,

– the behaviour of G at this singularity

leads to the asymptotics of its coefficients, namely the behaviour of∑
x∈X

ε(x)≤N

C(x), |XN | :=
∑
x∈X

ε(x)≤N

1, (for N →∞)

This solves our question.

But, how to study the function s 7→ G(s)

and “discover” its dominant singularity?

We express F (s, w) – and thus G(s) – in terms of the transfer operator.



Generating functions and transfer operators (I)

The bivariate generating function F (s, w) :=
∑
x∈X

ε(x)−s ewC(x)

is first expressed as a sum over the (convenient subset) of H?

(Q) F (2s, w) ≈
∑
h∈H?

|h′(0)|s ewC(h(0)) =
∑
n≥0

∑
h∈Hn

|h′(0)|s ewC(h(0))

(P) F (2s, w) ≈
∑
h∈H?

|h′(xh)|s ewC(xh) =
∑
n≥0

∑
h∈Hn

|h′(xh)|s ewC(xh)

Three differences with the previous study (truncated n-th trajectories)

– A sum over all possible “depths”

– The parameter s leads to the weighted transfer operator

Hs,w[f ](x) =
∑
h∈H

|h′(x)|s ewc(h(x))f ◦ h(x)

– For (P), a variable point xh for each h and the replacement of h 7→ ĥ.

Generating functions and transfer operators (II)

In case (Q) (finite trajectories)

F (2s, w) ≈
∑
h∈H?

|h′(0)|sewC(h(0)) =
∑
n≥0

∑
h∈Hn

|h′(0)|sewC(h(0))

F (2s, w) ≈ (I −Hs,w)−1[1](0)

In case (P) (periodic trajectories)

F (2s, w) ≈
∑
n≥0

∑
h∈Hn

|h′(xh)|sewC(xh)

the presence of the fixed point xh of h leads to the trace of the operator.

Each component of the transfer operator is a composition operator,

f 7→ |h′|sewC◦hf ◦ h

On a good functional space, the set of its eigenvalues is

{|h′(xh)|sewC(xh) · (−1)nh′(xh)n | n ∈ N}

Finally:

F (2s, w) ≈ Tr
[
H2
s,w(I −H2

s,w)−1
]

Some principles for Singularity Analysis

We are interested by the singularities of the operator (as a function of s)

d

dw

∣∣∣
w=0

[
w 7→ (I −Hs,w)−1

]
= (I −Hs)

−1 ◦H[c]
s ◦ (I −Hs)

−1

Two main operators:

– The quasi inverse (I −Hs)−1 of the (unweighted) transfer operator

Hs[f ](x) =
∑
h∈H

|h′(x)|sf ◦ h(x)

It has a dominant singularity at s = 1 (in fact a simple pole)

– In the Euclidean case, no other singularities on the line <s = 1.

Good news for applying the Tauberian Theorem !!

– Not the case for the β-shift ....! There are an infinite set of poles

on <s = 1 located at s for which 1− β1−s = 0

– The weighted operator H[c]
s [f ](x) =

∑
h∈H

|h′(x)|s c(h(x)) f ◦ h(x)

For a cost of moderate growth, it is regular at s = 1. It “brings” the factor µ[c].

(VI) Return to the notion of size for a periodic trajectory
Case of the Euclidean system



A natural notion of the size of a (reduced) quadratic irrational (rqi) ?

The arithmetical point of view.

A real x for which the trajectory T (x) is purely periodic of period P (x).

Then x is defined by the relation h(x) = x,

with a (primitive) inverse branch h ∈ HP (x)

h(x) = x =⇒ ax2 + bx+ c = 0, with gcd(a, b, c) = 1

=⇒ x ∈ Q(
√

∆), with ∆ = b2 − 4ac > 0

There is a fundamental unit in the quadratic (real) number field Q(
√

∆)

When chosen > 1 it is denoted as ε(x) and is chosen as the size of x.

Its computation involves the smallest inverse branch ĥ of even length.

ε(x) = |ĥ′(xĥ)|−1/2

A natural notion of the size of a (reduced) quadratic irrational (rqi) ?

The dynamical point of view.

The hyperbolic plane H := {z = x+ iy ∈ C | y > 0}.
When endowed with the metric ds = |dz|/y, its geodesics are

the semi-circles centered on the real axis and the vertical lines.

The set {h(∆) | h ∈ SL2(Z)} where ∆ is the triangle with cusps i∞, 0 and 1

defines the Farey tessellation of H.

With a rqi number, x ∈ [0, 1] one associates

– its conjugate x̄ that satisfies x̄ < −1.

– its minimal even period q

– the sum of the digits along the even period M :=
∑

i≤qmi.

A natural notion of the size of a (reduced) quadratic irrational (rqi) ?

The dynamical point of view : Some geodesic pictures

0 1

∆

0

it(x)

xx

∆

x

it(x)

0 1

The oriented geodesic γ(x) that links x̄ to x

– intersects the imaginary axis at it(x).

– defines the oriented curve γ+(x) that links it(x) to x

– this curve “crosses” domains h(∆),

The primitive part of the geodesic is defined by the portion of γ+(x)

that corresponds to the first M domains it crosses.

Its length ρ(x) is related to the size ε(x) via ρ(x) = log ε(x)


