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(V1) Return to the notion of size for a periodic trajectory

General ergodic framework.

Definitions. A probability space (X, X, 1), and a measurable mapping 7' : X — X.
— The subset E € X is T-invariant iff T"'E = F.
— The measure pu is T-invariant [or the map T' preserves the measure p|

iff for every subset E € X, one has (T~ 'E) = u(E).

(|) the Ergodic Theorem and its main features —Let T': X — X be a measure-preserving transformation on (X, X, u).
The map T is ergodic iff
for every T—invariant subset E € X, one has either p(E) = 0 or pu(E) = 1.

Particular case of a dynamical system.

— A dynamical system is related to the particular case when:
X (compact) topological space, its Borel set X', T': X — X continuous.
— A dynamical system (X, T) is said to be uniquely ergodic if
there exists a unique T-invariant Borel probability measure on X.

Such a measure is necessary ergodic for T'.




Ergodic Theorem Main features of the Ergodic Theorem
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Definition. Let T': X — X be a measure-preserving transformation on (X, X, u). lim [ E C(Tex)
n
£=0

Consider a p-integrable function c [i.e., ¢ € £'(u)] ('a “cost” or a “weight”)

Then, there are the following averages:

— Almost everywhere?
— space—average of ¢

No information about the exceptional subset £ (of measure 0)
el = [ clw)du(a).

where the Ergodic Theorem *“fails”

— Speed of convergence? No information

— time-average of ¢ along a n-th truncated trajectory (z,Tz,...,T" 'x)
1 = _ . .
ECn(UC% Cn(z) := Z o(T"z). = A possible complementary point of view,
£=0

notably for dynamical systems of the interval

Ergodic Theorem. If T is p-ergodic, then one has — Replace almost everywhere by on average

— First on the total set X

n—1
. 1 i
lim |— (T x)| = plc] for almost p-every x € X
n—o0 {n ; — Why not on smaller sets Y C X7
In the case of the unique ergodicity, when c is moreover continuous, — Why not on discrete subsets Y ... (of zero measure !)
the previous holds for every z € X. — Obtain information about the speed of convergence

A dynamical system (Z,T) of the unit interval Z is defined by

» a finite or infinite denumerable alphabet 3,
> a topological partition of Z :=]0, 1] with open intervals Z,, e,

(I1) Dynamical system of the interval : generalities » a shift mapping T
s.t. T|z,, is a bijection of class C? from Z,,, to Jy, := T(Z,n).

Given an input x of Z, this gives rise to the trajectory

T(x) = (x, Tz, T?z,...)



T Tx X T%

A dynamical system, with ¥ = {a,b,c} and a word M (z) = (¢, b,qa,c...).

General case of interest.
A complete — or a Markovian — system
— with a possible infinite denumerable alphabet

— topologically mixing — and expansive.

Main instances: — (in this talk) the system defined with the Gauss map

— (in Frédéric’'s talk), the system defined with the 3-shift (for 5 > 1) with
Ts(x) = Bz — | Bx]

Correlations between symbols due to
— the geometry of the branches
— the shape of the branches
The geometry of the branches [position of T'(Z,,) wrt Zy] ;

it describes the set s(m) of possible successors of the symbol m.

Particular cases:
» Complete systems T'(Z,,) =T
» Markovian systems T'(Z,,) = union of some Z;,

give rise to a finite characterization of s(m).

The shape of the branches [derivatives of the branches] also explains how

the distribution evolves.

(I11) A probabilistic point of view on truncated trajectories.

Focus on dynamical systems (of the interval)



A probabilistic point of view on truncated trajectories.

— Describe the behaviour of the n-th weighted truncated trajectories
— and their limit for n — oo

Interest in the random variables C,, : X — R associated with a cost ¢

I
—

n

x = Cp(x), with Cp(z):= o(T x)

~
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o

— What about the sequence of expectations E[C,,]?

— Are there limit distributional results for the random variables C,,?

for instance a limit gaussian law?

Weighted density transformer and probabilistic study of generic trajectories

= 3 W (@) ") f o h(z)

heH™

[w—= HY W [fl(@)] = D W (@) Culh(x)) f o h(=)

heH™

%’w:

Take the integral over the unit interval 4+ perform a change of variables

Bl = [ B, B = go| oo [H

Good dynamical system and cost of moderate growth
= HY,, behaves as the n-th power of its dominant eigenvalue \(1,w),

uniformy when w is near 0.
Ef[Cu] =n-uld L+ 0(p"),  ule] = X,(1,0)

Ef[e““"] behaves as a (uniform) n-th power + Quasi-Powers Theorem
—> Asymptotic Gaussian law for C,

The weighted density transformer associated with a complete system.

Density Transformer: for an initial density f on [0, 1],
H][f] is the density on [0, 1] after one iteration of the shift

= > |W(2)| foh(x)
heH

Weighted density transformer : extension of H into Hj 4.

Hio[f](z) = Y W (@) e " foh(z), Hio=H

heH

The n-th iterate generates the weighted n-th truncated trajectories

' Twlf](x) = Z |n ()] eWCn (@) ¢ g h(x)

heH™

[wi= HY L [f]()] = D B (2)] Cu(h(z)) f o h(z)

heH™

d

‘H := {inverse branches} dw lw=o

Remark: If the system is not complete, we must add indicator functions.

For a Markovian sytem, we can replace them by an operator matrix.

(IV) Study of particular trajectories of the Euclidean system



Discrete sets X C Z and
trajectories 7 (x) := (x, Tz, T?x,..., T z,...) for z € X.

Natural discrete sets X'
— The set Q of x for which the trajectory 7T () is finite
— The set P of x for which the trajectory T () is (purely) periodic.

In the particular case of the Euclidean system (Gauss map):
T () finite <= « rational,
T (x) (purely) periodic <= x (reduced) quadratic irrational

In each case, a bijection between X’ and a (subset) of H* = Up>oH”
Q:=Qn[0,1]={h(0) | h e H* x F}
P:=1IN[0,1] = {h(zy) | h € H*, h primitive, z;, fixed point of h}

There is also a natural notion of size € and a natural definition of cost C'
(Q): e(x) := denominator of z = |n'(0)| /2

(P): e(x):= |ﬁ’(wﬁ)\_1/2, h: = the primitive h of even period
P(xz)—1
C(z) = Z ¢(T*(x)), P(z):= length or period of the trajectory T (z)
=0

(V) Proof of the result with three tools
— Dirichlet generating functions
— Singularity analysis

— the weighted transfer operator.

Study of the mean cost along particular trajectories: Main result

For X € {Q, P}, the set of interest is Xy := {z € X | e(x) < N}
There are two important costs on Xy, the length P, and the cost C.
The mean values of the cost C' or the cost P on X are the ratios

EmmpjéﬂEZP@, EMQﬁWQWE:C@
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Main Theorem. The asymptotic estimates hold on Oy or Py

2
log N, En[C]~ ——p[c]log N, (N — o0)

En[P]~ h(T)

)
h(T)

and involve the entropy h(T') of the Euclidean system

M i

Corollary. When N — oo, the asymptotic estimate holds: —
En[P]

The particular trajectories (finite or periodic) behave on average in the same way
as the generic trajectories behave almost everywhere.

Generating functions and analytic combinatorics

A general tool: A (bivariate) generating function, of Dirichlet type

F(s,w) := Z e(z)™% - ewC @), G(s) = Z C(z) - e(x)™°

TeEX TeX

Main principles of analytic combinatorics: A good knowledge of
— the dominant singularity of G,
— the behaviour of G at this singularity
leads to the asymptotics of its coefficients, namely the behaviour of

> Cl), |xnl= > 1, (for N— o)

zeX zEX
e(x)<N e(z)<N

This solves our question.

But, how to study the function s — G(s)
and “discover” its dominant singularity?
We express F'(s,w) — and thus G(s) — in terms of the transfer operator.



Generating functions and transfer operators (1)

The bivariate generating function F(s,w) := Z e(z)™% ewC@
TeEX

is first expressed as a sum over the (convenient subset) of H*

(Q F(2s,w)~ Y [W(0)]* M) =3~ 5™ |p/(0)[s ewC )

heH* n>0 heHn
(P) F(2s,w)m~ Y W (zn)]* e =57 37 |1/ ()| w0
heH* n>0 heH™

Three differences with the previous study (truncated n-th trajectories)
— A sum over all possible “depths”

— The parameter s leads to the weighted transfer operator

x) = Z W ()] eveh @) f o h(x)

heH

—For (P), a variable point xj, for each h and the replacement of h — h.

Some principles for Singularity Analysis

We are interested by the singularities of the operator (as a function of s)

d

| we (I -H.) = -H) e H o (1-H)™

Two main operators:

—1

— The quasi inverse (I — H,)™" of the (unweighted) transfer operator

H,[fl(z) = D W (2)|"f o h(x)
heH
It has a dominant singularity at s = 1 (in fact a simple pole)
— In the Euclidean case, no other singularities on the line f8s = 1.
Good news for applying the Tauberian Theorem !!
— Not the case for the S-shift ....] There are an infinite set of poles
on Rs =1 located at s for which 1 — 8*7* =0

— The weighted operator Z |/ (2)]° c(h(x)) f o h(z)
heH

For a cost of moderate growth, it is regular at s = 1. It "brings” the factor u[c].

Generating functions and transfer operators (I)
In case (Q) (finite trajectories)
F(2s,w) Z | (0)|5€wC(R(O) — Z Z |1/ (0) €€ (R (O)
heH* n>0 hEH™
F(2s,w) = (I — Hy,,) '[1](0)
In case (P) (periodic trajectories)

F(2s,w) Z Z | (xp)]%e wC(zn)

n>0 heHn
the presence of the fixed point x; of h leads to the trace of the operator.
Each component of the transfer operator is a composition operator,
f — |h/|sewCoth h
On a good functional space, the set of its eigenvalues is
{IW (@n)[#e ) - (=1)" W (x)" | n € N}
Finally:
F(2s,w) ~ Tr [HZ (I-H2,)" ]

S, w S, w

(V1) Return to the notion of size for a periodic trajectory
Case of the Euclidean system



A natural notion of the size of a (reduced) quadratic irrational (rqi) ?

The arithmetical point of view.

A real x for which the trajectory T (z) is purely periodic of period P(z).
Then z is defined by the relation h(z) = x,
with a (primitive) inverse branch h € H(*)

h(z) =2 = az® +br +c =0, with ged(a,b,c) =1

— e Q(WA),  with A=02—4ac>0

There is a fundamental unit in the quadratic (real) number field Q(\/A)
When chosen > 1 it is denoted as ¢(x) and is chosen as the size of .

Its computation involves the smallest inverse branch T of even length.
e(z) = |h'(a)[1/?

A natural notion of the size of a (reduced) quadratic irrational (rqi) 7

The dynamical point of view : Some geodesic pictures

- it(x)

The oriented geodesic vy(x) that links Z to z
— intersects the imaginary axis at it(z).
— defines the oriented curve 74 (x) that links it(x) to =
— this curve “crosses” domains h(A),

The primitive part of the geodesic is defined by the portion of v, ()
that corresponds to the first M domains it crosses.
Its length p(x) is related to the size €(z) via p(z) = log e(x)

A natural notion of the size of a (reduced) quadratic irrational (rqi) ?

The dynamical point of view.

The hyperbolic plane H:= {z =z + iy € C |y > 0}.
When endowed with the metric ds = |dz|/y, its geodesics are
the semi-circles centered on the real axis and the vertical lines.

The set {h(A) | h € SL2(Z)} where A is the triangle with cusps ico, 0 and 1
defines the Farey tessellation of H.

With a rqi number, = € [0, 1] one associates
— its conjugate T that satisfies T < —1.
— its minimal even period ¢

— the sum of the digits along the even period M := Zigq m;.



